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1. Introduction

If am ≥ 0, bn ≥ 0, 0 <
∑
∞

m=1 a2
m < ∞ and 0 <

∑
∞

n=1 b2
n < ∞, then

∞∑
m=1

∞∑
n=1

ambn

m + n
< π(

∞∑
m=1

a2
m)

1
2

(
∞∑

n=1

b2
n)

1
2

, (1)

where the constant factor π is the best possible. Inequality (1) is the celebrated Hilbert’s inequality
(see [1]). Inequality (1) was generalized by Hardy as follows:

If p > 1, 1
p + 1

q = 1, am, bn ≥ 0, 0 <
∑
∞

m=1 ap
m < ∞ and 0 <

∑
∞

n=1 bq
n < ∞, then

∞∑
m=1

∞∑
n=1

ambn

m + n
<

π

sin(π/p)
(
∞∑

m=1

ap
m)

1
p

(
∞∑

n=1

bq
n)

1
q

(2)

where the constant factor π
sin(π/p) is the best possible. Inequality (2) is called Hardy–Hilbert’s inequality

(c.f. [1], Theorem 315).
The following analogue of Hardy–Hilbert’s inequality

∞∑
m=1

∞∑
n=1

ambn

max{m, n}
< pq(

∞∑
m=1

ap
m)

1
p

(
∞∑

n=1

bq
n)

1
q

(3)

is known in the literature as Hardy–Littlewood–Polya’s inequality, and the constant factor pq in (3) is
the best possible (c.f. [1], Theorem 341).
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In 2006, Krnić and Pečarić [2] presented an extension of inequality (1) by introducing parameters
λ1 and λ2 as follows:

∞∑
m=1

∞∑
n=1

ambn

(m + n)λ
< B(λ1,λ2)[

∞∑
m=1

mp(1−λ1)−1ap
m]

1
p

[
∞∑

n=1

nq(1−λ2)−1bq
n]

1
q

(4)

where λi ∈ (0, 2] (i = 1, 2), λ1 + λ2 = λ ∈ (0, 4],

B(u, v) =
∫
∞

0

tu−1

(1 + t)u+v dt (u, v > 0)

is the beta function, in (4) the constant factor B(λ1,λ2) is the best possible.
For λ = 1, λ1 = 1

q , λ2 = 1
p , inequality (4) reduces to inequality (2); for p = q = 2, λ1 = λ2 = λ

2 ,
inequality (4) reduces to Yang’s inequality given in [3]. It is well known that inequalities (1–3) and
their integral analogues play an important role in analysis and its applications (see [4–14]).

Recently, by applying inequality (3), Adiyasuren, Batbold and Azar [15] gave a new Hilber-type
inequality with the kernel 1

(m+n)λ
and partial sums.

In 2016, Hong and Wen [16] studied the equivalent statements of the extended inequalities (1) and
(2), and estimated the best possible constant factor for several parameters.

The results proposed in [2,15,16] have greatly attracted our interest. In 2019, Yang, Wu and
Wang [17] established the following Hardy–Hilbert-type inequality and discussed its equivalent forms

∫
∞

0

∞∑
n=1

f (x)an

(x+n)λ
dx > B

1
p (σ,λ− σ)B

1
q (µ,λ− µ)

×

{∫
∞

0 (1− ρσ(x))x
p[1−( λ−σp +

µ
q )]−1 f p(x)dx

} 1
p
{
∞∑

n=1
nq[1−( σp +

λ−µ
q )]−1aq

n

} 1
q

,
(5)

where 0 < p < 1, 1
p + 1

q = 1, λ ∈ (0, 5], σ ∈ (0, 2] ∩ (0,λ), µ ∈ (0,λ),

ρσ(x) =
(1 + θx)

−λ

σB(σ,λ− σ)
1
xσ

= O(
1
xσ

) ∈ (0, 1) (θx ∈ (0,
1
x
); x > 0),

f (x) ≥ 0, x ∈ (0,∞), an ≥ 0

In a recent paper [18], Yang, Wu and Liao gave an extension of Hardy–Hilbert’s inequality for
kλ(λi) =

π
λ sin(πλi/λ)

(i = 1, 2), as follows:

∞∑
n=1

∞∑
m=1

ambn
mλ+nλ < k

1
p

λ
(λ2)k

1
q

λ
(λ1)

×{

∞∑
m=1

mp[1−(
λ−λ2

p +
λ1
q )]−1ap

m}

1
p
{

∞∑
n=1

nq[1−(
λ2
p +

λ−λ1
q )]−1bq

n}

1
q
,

(6)

where p > 1, 1
p + 1

q = 1, λ ∈ (0, 5
2 ], λi ∈ (0, 5

4 ] ∩(0,λ) (i = 1, 2) am, bn ≥ 0.
For more results related to the extensions of inequalities (1) and (2) and their equivalent statements,

we refer the reader to [19–24] and references cited therein.
Motivated by the ideas of [2] and [16], in the present paper we deal with a new Hilbert-type

inequality containing positive homogeneous kernel (min{m, n})λ and deduce its equivalent forms.
Furthermore, we discuss the equivalent statements relating to the best possible constant factor, based on
the obtained Hilbert-type inequality.
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2. Some Lemmas

In what follows, we suppose that p > 1, 1
p + 1

q = 1, λ ∈ (0, 34
11 ], λi ∈ (0, 11

8 ] ∩(0,λ) (i = 1, 2),
am, bn ≥ 0 (m, n ∈ N = {1, 2, . . . }) such that

0 <
∞∑

m=1

mp(1+
λ1
p +

λ−λ2
q )−1ap

m < ∞ and 0 <
∞∑

n=1

nq(1+
λ2
q +

λ−λ1
p )−1bq

n < ∞.

Lemma 1. Define the weight coefficient with positive homogeneous kernel

$λ(λ1, m) :=
1

mλ1

∞∑
n=1

(min{m, n})λ

nλ−λ1+1
(m ∈ N)

Then, we have the following inequalities

kλ(λ1)(1−
λ− λ1

λmλ1
) < $λ(λ1, m) < kλ(λ1) :=

λ

λ1(λ− λ1)
(m ∈ N) (7)

Proof. For fixed m ∈ N, we define a function gm(t) := (min{m,t})λ

tλ−λ1+1 (t > 0), and obtain

gm(t) =

 tλ1−1, 0 < t < m,
mλ

tλ−λ1+1 , t ≥ m
, g′m(t) =

 (λ1 − 1)tλ1−2, 0 < t < m,
−(λ− λ1 + 1) mλ

tλ−λ1+2 , t > m
,

gm(1) = 1, and
∫ 1

0 gm(t)dt =
∫ 1

0
tλ

tλ−λ1+1 dt = 1
λ1

.
To prove the inequalities in (7), we consider two cases below:
(i) For λ1 ∈ (0, 1] ∩ (0,λ), it is easy to observe that gm(t) is decreasing in (0,∞), and strictly

decreasing in [m,∞). By following the decreasing property of the series, we find

$λ(λ1, m) <
1

mλ1

∫
∞

0

(min{m, t})λdt
tλ−λ1+1

=
1

mλ1
[

∫ m

0

tλdt
tλ−λ1+1

+

∫
∞

m

mλdt
tλ−λ1+1

] = kλ(λ1),

$λ(λ1, m) > 1
mλ1

∫
∞

1
(min{m,t})λdt

tλ−λ1+1 = 1
mλ1

∫
∞

0
(min{m,t})λdt

tλ−λ1+1 −
1

mλ1

∫ 1
0

tλdt
tλ−λ1+1

= kλ(λ1) −
1

λ1mλ1
= kλ(λ1)(1−

λ−λ1
λmλ1

),

which implies the required inequalities in (7).
(ii) For λ1 ∈ (1, 11

8 ] ∩ (0,λ), by using the Euler–Maclaurin summation formula (c.f. [2,3]) with the
Bernoulli function of 1-order ρ(t) := t− [t] − 1

2 , we obtain

m∑
n=2

gm(n) =
∫ m

1 gm(t)dt + 1
2 gm(t)|m1 +

∫ m
1 ρ(t)g′m(t)dt

=
∫ m

1 gm(t)dt + 1
2 gm(t)|m1 + (λ1 − 1)

∫ m
1 ρ(t)tλ1−2dt

=
∫ m

1 gm(t)dt + 1
2 gm(t)|m1 + (λ1 − 1) ε̃12 tλ1−2

|
m
1

≤

∫ m
1 gm(t)dt + 1

2 gm(t)|m1 (1 < λ1 < 2, 0 < ε̃ < 1),

∞∑
n=m+1

gm(n) =
∫
∞

m gm(t)dt + 1
2 gm(t)|∞m +

∫
∞

m ρ1(t)g′m(t)dt

=
∫
∞

m gm(t)dt + 1
2 gm(t)|∞m + λ1−λ−1

12 mλε1tλ1−λ−2
|
∞
m

<
∫
∞

m gm(t)dt + 1
2 gm(t)|∞m + λ−λ1+1

12m2−λ1
(λ1 < λ, 0 < ε1 < 1),
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and then one has
∞∑

n=1
gm(n) <

∫
∞

1 gm(t)dt + 1
2 gm(1) +

λ−λ1+1
12m2−λ1

=
∫
∞

0 gm(t)dt− hm(λ,λ1),

where h(λ1) := 12− (7 + λ)λ1 + λ2
1 and

hm(λ,λ1) :=
∫ 1

0 gm(t)dt− 1
2 gm(1) −

λ−λ1+1
12m2−λ1

= 1
λ1
−

1
2−

λ−λ1+1
12m2−λ1

≥
1
λ1
−

1
2−

λ−λ1+1
12

=
h(λ1)
12λ1

.

Since h′(λ1) = −(7 + λ) + 2λ1 < 0 (λ1 ∈ (1, 11
8 ], λ ∈ (0, 34

11 ]), it follows that

hm(λ,λ1) >
h(λ1)

12λ1
≥

12− (7 + λ) × ( 11
8 ) + ( 11

8 )
2

12λ1
=

273− 88λ
768λ1

> 0 (λ ∈ (0,
34
11

])

Thus, we get

$λ(λ1, m) =
1

mλ1

∞∑
n=1

gm(n) <
1

mλ1

∫
∞

0
gm(t)dt = kλ(λ1) =

λ

λ1(λ− λ1)
.

On the other hand, we have

m∑
n=2

gm(n) =
∫ m

1 gm(t)dt + 1
2 gm(t)|m1 + (λ1 − 1) ε̃12 tλ1−2

|
m
1

≥

∫ m
1 gm(t)dt + 1

2 gm(t)|m1 + λ1−1
12 (mλ1−2

− 1),

∞∑
n=m+1

gm(n) =
∫
∞

m gm(t)dt + 1
2 gm(t)|∞m + λ1−λ−1

12 mλε1tλ1−λ−2
|
∞
m

>
∫
∞

m gm(t)dt + 1
2 gm(t)|∞m ,

and then by 1
2 −

λ1−1
12 > 1

2 −
1

12 > 0 (λ1 < 2), we find

∞∑
n=1

gm(n) >
∫
∞

1 gm(t)dt + 1
2 gm(1) +

λ1−1
12 (mλ1−2

− 1)

>
∫
∞

1 gm(t)dt + ( 1
2 −

λ1−1
12 ) >

∫
∞

0 gm(t)dt−
∫ 1

0 gm(t)dt.

Hence, from the expression gm(t) we deduce the inequalities in (7). The proof of Lemma 1 is
thus complete. �

Next, we shall establish a new inequality of Hilbert type for positive homogeneous kernel.

Lemma 2. The following Hilbert-type inequality holds true:

I =
∞∑

n=1

∞∑
m=1

(min{m, n})λambn < k
1
p

λ
(λ1)k

1
q

λ
(λ2)

×[
∞∑

m=1
mp(1+

λ1
p +

λ−λ2
q )−1ap

m]

1
p
[
∞∑

n=1
nq(1+

λ2
q +

λ−λ1
p )−1bq

n]

1
q

(8)
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Proof. Following the pattern in which the proof of Lemma 1 was obtained, for n ∈ N, λ ∈ (0, 34
11 ],

λ2 ∈ (0, 11
8 ] ∩(0,λ), we have the following inequality:

kλ(λ2)(1−
λ− λ2

λnλ2
) <ω(λ2, n) :=

1
nλ2

∞∑
m=1

(min{m, n})λ

mλ−λ2+1
< kλ(λ2). (9)

Using the Hölder’s inequality (see [25]), we obtain

I =
∞∑

n=1

∞∑
m=1

(min{m, n})λ[
m(λ−λ2+1)/q

n(λ−λ1+1)/p
am][

n(λ−λ1+1)/p

m(λ−λ2+1)/q
bn]

≤ [
∞∑

m=1

∞∑
n=1

(min{m, n})λ
m(λ−λ2+1)(p−1)

nλ−λ1+1
ap

m]

1
p

× [
∞∑

n=1

∞∑
m=1

(min{m, n})λ
n(λ−λ1+1)(q−1)

mλ−λ2+1
bq

n]

1
q

= [
∞∑

m=1

$(λ1, m)mp(1+
λ1
p +

λ−λ2
q )−1ap

m]

1
p

[
∞∑

n=1

w(λ2, n)nq(1+
λ2
q +

λ−λ1
p )−1bq

n]

1
q

.

Hence, by using the inequalities in (7) and (9), we derive inequality (8). This completes the proof
of Lemma 2. �

As a consequence of Lemma 2, we can deduce the following Hilbert-type inequality for the
positive homogeneous kernel.

Remark 1. By inequality (8), forλ1 + λ2 = λ ∈ (0, 11
4 ](⊂ (0, 34

11 ]), λi ∈ (0, 11
8 ] ∩(0,λ) (i = 1, 2) we obtain

0 <
∞∑

m=1

mp(1+λ1)−1ap
m < ∞, 0 <

∞∑
n=1

nq(1+λ2)−1bq
n < ∞

and the following inequality:

∞∑
n=1

∞∑
m=1

(min{m, n})λambn <
λ

λ1λ2
[
∞∑

m=1

mp(1+λ1)−1ap
m]

1
p

[
∞∑

n=1

nq(1+λ2)−1bq
n]

1
q

(10)

In Lemma 3 below, we show that the constant factor given in (10) is the best possible.

Lemma 3. For λ1 + λ2 = λ ∈ (0, 11
4 ],λi ⊂ (0, 11

8 ]∩ (0,λ) (i = 1, 2), the constant factor λ
λ1λ2

in (10) is the
best possible.

Proof. For any 0 < ε < qλ1, we set

ãm := m−λ1−
ε
p−1, b̃n := n−λ2−

ε
q−1

(m, n ∈ N)

If there exists a constant M ≤
λ

λ1λ2
such that (10) is valid when replacing λ

λ1λ2
by M, then in

particular, by substitution of am = ãm and bn = b̃n in (10), we have

Ĩ :=
∞∑

n=1

∞∑
m=1

(min{m, n})λãmb̃n< M[
∞∑

m=1

mp(1+λ1)−1ãp
m]

1
p

[
∞∑

n=1

nq(1+λ2)−1̃bq
n]

1
q

(11)
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In the following, we shall prove that M ≥ λ
λ1λ2

, which would reveal that M = λ
λ1λ2

is the best
possible constant factor in (10).

By inequality (11) and the decreasing property of the series, we obtain

Ĩ < M[
∞∑

m=1
mp(1+λ1)−1m−pλ1−ε−p]

1
p
[
∞∑

n=1
nq(1+λ2)−1n−qλ2−ε−q]

1
q

= M(1 +
∞∑

m=2
m−ε−1)

1
p
(1 +

∞∑
n=2

n−ε−1)

1
q

< M(1 +
∫
∞

1 x−ε−1dx)
1
p (1 +

∫
∞

1 y−ε−1dy)
1
q = M

ε (ε+ 1).

By inequalities in (9) and setting

λ̂1 = λ1 −
ε
q
∈ (0,

11
8
)∩ (0,λ) (0 < λ̂2 = λ2 +

ε
q
= λ− λ̂1 < λ),

we obtain
Ĩ =

∞∑
m=1

[m−(λ1−
ε
q )
∞∑

n=1
(min{m, n})λn−(λ2+

ε
q )−1

]m−ε−1

=
∞∑

m=1
$(λ̂1, m)m−ε−1 > λ

λ̂1λ̂2

∞∑
m=1

(1− λ̂2

λmλ̂1
)m−ε−1

= λ
λ̂1λ̂2

(
∞∑

m=1
m−ε−1

−
λ̂2
λ

∞∑
m=1

1

mλ1+
ε
p +1 ) >

λ
λ̂1,λ̂2

(
∫
∞

1 x−ε−1dx−O(1))

= λ
ελ̂1λ̂2

(1− εO(1)).

Then, we have
λ

(λ1 −
ε
q )(λ2 +

ε
q )

(1− εO(1)) < ε̃I < M(ε+ 1).

Taking ε→ 0+ , we deduce that λ
λ1λ2

≤M. Hence, M = λ
λ1,λ2

is the best possible constant factor
in (10). Lemma 3 is thus proven. �

Setting λ̃1 := λ1
p + λ−λ2

q , λ̃2 := λ2
q + λ−λ1

p , we find λ̃1 + λ̃2 = λ, and then we can reduce inequality
(8) to the following:

I =
∞∑

n=1

∞∑
m=1

(min{m, n})λambn < k
1
p

λ
(λ1)k

1
q

λ
(λ2)

×[
∞∑

m=1
mp(1+λ̃1)−1ap

m]

1
p
[
∞∑

n=1
nq(1+λ̃2)−1bq

n]

1
q

(12)

It is worth noting that inequality (12) is an analogue of the Hilbert-type inequality (8). In the
following lemma, we present a relation between the parameters λ, λ1 and λ2 on the best possible
constant factor in inequality (12).

Lemma 4. If inequality (12) has the best possible constant factor k
1
p

λ
(λ1)k

1
q

λ
(λ2) for various parameters,

then λ = λ1 + λ2.

Proof. From the assumption conditions of inequality (12), it follows that

λ̃1 =
λ1

p
+
λ− λ2

q
> 0, λ̃1 <

λ
p
+
λ
q
= λ, 0 < λ̃2 = λ− λ̃1 < λ.

Hence, we have

kλ(λ̃1) =
λ

λ̃1(λ− λ̃1)
=

λ

λ̃1λ̃2
∈ R+ = (0,∞)
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If the constant factor k
1
p

λ
(λ1)k

1
q

λ
(λ2) in (12) is the best possible, then in view of inequality (10),

we have

k
1
p

λ
(λ1)k

1
q

λ
(λ2) ≤kλ(λ̃1)

By Hölder’s inequality with weight, we find

kλ(λ̃1) = kλ(
λ1
p + λ−λ2

q )

=
∫
∞

0 (min{1, u})λu−(
λ1
p +

λ−λ2
q )−1du =

∫
∞

0 (min{1, u})λ(u
−λ1−1

p )(u
−λ+λ2−1

q )du

≤ [
∫
∞

0 (min{1, u})λu−λ1−1du]
1
p [
∫
∞

0 (min{1, u})λu−λ+λ2−1du]
1
q

= [
∫
∞

0 (min{1, u})λu−λ1−1du]
1
p [
∫
∞

0 (min{1, v})λv−λ2−1dv]
1
q

= k
1
p

λ
(λ1)k

1
q

λ
(λ2).

(13)

It follows that k
1
p

λ
(λ1)k

1
q

λ
(λ2) = kλ(λ̃1), and thus (13) keeps the form of equality.

It is easy to see that (13) keeps the form of equality if, and only if, there exist constants A and B
(not all zero) such that (c.f. [25])

Au−λ1−1 = Bu−(λ−λ2)−1 a.e. in R+.

Assuming that A , 0, we have uλ−λ2−λ1 = B
A a.e. in R+, and this yields λ − λ2 − λ1 = 0,

hence λ = λ1 + λ2. The proof of Lemma 4 is thus complete. �

3. Main Results and Some Particular Cases

Theorem 1. Inequality (8) is equivalent to the following inequality:

J : =

{
∞∑

n=1
n−p(

λ2
q +

λ−λ1
p )−1

[
∞∑

m=1
(min{m, n})λam]

p} 1
p

< k
1
p

λ
(λ1)k

1
q

λ
(λ2)[

∞∑
m=1

mp(1+
λ1
p +

λ−λ2
q )−1ap

m]

1
p
.

(14)

If the constant factor in (8) is the best possible, then so is the constant factor in (14).

Proof. Suppose that inequality (14) is valid. By Hölder’s inequality (c.f. [25]), we have

I =
∞∑

n=1

[n
−1
p −

λ2
q −

λ−λ1
p )

∞∑
m=1

(min{m, n})λam][n
1
p+

λ2
q +

λ−λ1
p bn]≤ J[

∞∑
n=1

nq(1+
λ2
q +

λ−λ1
p )−1bq

n]

1
q

(15)

Then, by using inequality (14), we obtain inequality (8).
On the other hand, assuming that inequality (8) is valid, we set

bn := n−p(
λ2
q +

λ−λ1
p )−1

[
∞∑

m=1

(min{m, n})λam]

p−1

, n ∈ N
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If J = 0, then inequality (14) is naturally valid; if J = ∞, then it is impossible to make inequality
(14) valid, which implies J < ∞. Suppose that 0 < J < ∞. By inequality (8), we have

∞∑
n=1

nq(1+
λ2
q +

λ−λ1
p )−1bq

n = Jp = I< k
1
p

λ
(λ1)k

1
q

λ
(λ2)×[

∞∑
m=1

mp(1+
λ1
p +

λ−λ2
q )−1ap

m]

1
p

[
∞∑

n=1
nq(1+

λ2
q +

λ−λ1
p )−1bq

n]

1
q
,

J = [
∞∑

n=1

nq(1+
λ2
q +

λ−λ1
p )−1bq

n]

1
p

< k
1
p

λ
(λ1)k

1
q

λ
(λ2)[

∞∑
m=1

mp(1+
λ1
p +

λ−λ2
q )−1ap

m]

1
p

Thus, inequality (14) follows, and we conclude that inequality (8) is equivalent to inequality (14).
Furthermore, we show that if the constant factor in (8) is the best possible, then the constant factor

in (14) is also the best possible. Otherwise, from inequality (15) we would reach a contradiction, namely
that the constant factor in (8) is not the best possible. The proof of Theorem 1 is thus completed. �

In the following theorem, we give some equivalent statements of the best possible constant factor
related to several parameters.

Theorem 2. The statements (i), (ii), (iii) and (iv) below are equivalent:

(i) k
1
p

λ
(λ1)k

1
q

λ
(λ2) is independent of p, q;

(ii) k
1
p

λ
(λ1)k

1
q

λ
(λ2) is expressible as a single integral

kλ(λ̂1) =

∫
∞

0
(min{1, u})λu−λ̂1−1du (0 < λ̂1 < λ)

(iii) k
1
p

λ
(λ1)k

1
q

λ
(λ2) in (8) is the best possible constant factor;

(iv) λ = λ1 + λ2 (∈ (0, 11
4 ]).

If the statement (iv) is valid, namely, λ = λ1 + λ2 ∈ (0, 11
4 ], then we have inequality (10) and the following

equivalent inequality with the best possible constant factor λ
λ1λ2

:

 ∞∑
n=1

1
npλ2+1

[
∞∑

m=1

(min{m, n})λam]

p
1
p

<
λ

λ1λ2
[
∞∑

m=1

mp(1+λ1)−1ap
m]

1
p

(16)

Proof. (i)⇒ (ii). By (i), we have

k
1
p

λ
(λ1)k

1
q

λ
(λ2) = lim

p→1+
lim
q→∞

k
1
p

λ
(λ1)k

1
q

λ
(λ2) = kλ(λ1).

Namely, k
1
p

λ
(λ1)k

1
q

λ
(λ2) is expressible as a single integral

kλ(λ1) =

∫
∞

0
(min{1, u})λu−λ1−1du (0 < λ1 < λ)

(ii)⇒ (iv). If k
1
p

λ
(λ1)k

1
q

λ
(λ2) is expressible as a single integral

kλ(λ̂1) =

∫
∞

0
(min{1, u})λu−λ̂1−1du (0 < λ̂1 < λ)
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then for λ̂1 = λ̃1 (∈ (0,λ)), (13) keeps the form of equality. In view of the proof of Lemma 4, it follows
that λ = λ1 + λ2.

(iv) ⇒ (i). If λ = λ1 + λ2, then k
1
p

λ
(λ1)k

1
q

λ
(λ2) = kλ(λ1), which is independent of p, q. Thus,

we deduce that (i)⇔ (ii)⇔ (iv).
(iii)⇒ (iv). By Lemma 4, we get λ = λ1 + λ2.

(iv)⇒ (iii). By Lemma 3, for λ = λ1 + λ2, k
1
p

λ
(λ1)k

1
q

λ
(λ2) (=

λ
λ1λ2

) is the best possible constant
factor in (8). It follows that (iii)⇔ (iv).

Therefore, we assert that the statements (i), (ii), (iii) and (iv) are equivalent. This completes the
proof of Theorem 2. �

Now, we discuss some particular cases of the inequalities obtained above, from which we will
derive some interesting inequalities.

Remark 2. (i) Putting λ = 1, λ1 = 1
q , λ2 = 1

p in (10) and (16), we obtain the following equivalent inequalities
with the best possible constant factor pq:

∞∑
n=1

∞∑
m=1

min{m, n}ambn < pq[
∞∑

m=1

m2(p−1)ap
m]

1
p

[
∞∑

n=1

n2(q−1)bq
n]

1
q

(17)

[
∞∑

n=1

1
n2 (

∞∑
m=1

min{m, n}am)

p

]

1
p

< pq[
∞∑

m=1

m2(p−1)ap
m]

1
p

(18)

(ii) Putting λ = 1, λ1 = 1
p , λ2 = 1

q in (10) and (16), we get the following equivalent inequalities with the
best possible constant factor pq:

∞∑
n=1

∞∑
m=1

min{m, n}ambn< pq[
∞∑

m=1

(mam)

p

]
1
p [
∞∑

n=1

(nbn)

q

]
1
q (19)

[
∞∑

n=1

(
1
n

∞∑
m=1

min{m, n}am)

p

]

1
p

< pq[
∞∑

m=1

(mam)

p

]
1
p (20)

(iii) Setting p = q = 2, both (17) and (19) reduce to the inequality:

∞∑
n=1

∞∑
m=1

min{m, n}ambn< 4[
∞∑

m=1

(mam)

2 ∞∑
n=1

(nbn)
2]

1
2 (21)

furthermore, both (18) and (20) reduce to the equivalent form of (21) as follows:

[
∞∑

n=1

(
1
n

∞∑
m=1

min{m, n}am)

2

]

1
2

< 4[
∞∑

m=1

(mam)

2

]
1
2 (22)

(iv) Putting λ = 2, λ1 = λ2 = 1 in (10) and (16), we have the following equivalent inequalities with the
best possible constant factor 2:

∞∑
n=1

∞∑
m=1

(min{m, n})2ambn < 2(
∞∑

m=1

m2p−1ap
m)

1
p

(
∞∑

n=1

n2q−1bq
n)

1
q

(23)
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{

∞∑
n=1

1
np+1

[
∞∑

m=1

(min{m, n})2am]

p

}

1
p

< 2(
∞∑

m=1

m2p−1ap
m)

1
p

(24)

(v) Putting λ = e (< 11
4 = 2.75), λ1 = λ2 = e

2 in (10) and (16), we have the following equivalent
inequalities with the best possible constant factor 4

e :

∞∑
n=1

∞∑
m=1

(min{m, n})eambn <
4
e
[
∞∑

m=1

mp(1+ e
2 )−1ap

m]

1
p

[
∞∑

n=1

nq(1+ e
2 )−1bq

n]

1
q

(25)

 ∞∑
n=1

1

n
e
2 p+1

[
∞∑

m=1

(min{m, n})eam]

p
1
p

<
4
e
[
∞∑

m=1

mp(1+ e
2 )−1ap

m]

1
p

(26)

4. Operator Expressions

We choose the functions

φ(m) := mp(1+
λ1
p +

λ−λ2
q )−1, ψ(n) := nq(1+

λ2
q +

λ−λ1
p )−1,

where from,

ψ1−p(n) = n−p(
λ2
q +

λ−λ1
p )−1

(m, n ∈ N)

We define the following real normed spaces:

lp,ϕ := {a = {am}
∞

m=1; ||a||p,ϕ := (
∞∑

m=1
ϕ(m)|am|

p)

1
p
< ∞},

lq,ψ := {b = {bn}
∞

n=1; ||b||q,ψ := (
∞∑

n=1
ψ(n)

∣∣∣bn |
q)

1
q
< ∞},

lp,ψ1−p := {c = {cn}
∞

n=1; ||c||p,ψ1−p := (
∞∑

n=1
ψ1−p(n)|cn|

p)

1
p
< ∞}.

We let a ∈ lp,ϕ, and set

c = {cn}
∞

n=1, cn :=
∞∑

m=1

(min{m, n})λam, n ∈ N.

Then, we can rewrite inequality (14) as follows:

||c||p,ψ1−p < k
1
p

λ
(λ1)k

1
q

λ
(λ2)||a||p,ϕ < ∞, that is c ∈ lp,ψ1−p .

Definition 1. Define a Hilbert-type operator T : lp,ϕ → lp,ψ1−p as follows: For any a ∈ lp,ϕ, there exists a unique
representation c ∈ lp,ψ1−p . Define the formal inner product of Ta and b ∈ lq,ψ, and the norm of T as follows:

(Ta, b) :=
∞∑

n=1

[
∞∑

m=1

(min{m, n})λam]bn

||T|| := sup
a(,θ)∈lp,ϕ

||Ta||p,ψ1−p

||a||p,ϕ

Then, by Theorems 1 and 2, we obtain the operator expressions of inequalities (8) and (14) as follows:
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Theorem 3. If a ∈ lp,φ, b ∈ lq,ψ, ||a||p,φ, ||b||q,ψ > 0, then we have the following inequalities:

(Ta, b) < k
1
p

λ
(λ1)k

1
q

λ
(λ2)||a||p,ϕ||b||q,ψ, (27)

||Ta||p,ψ1−p < k
1
p

λ
(λ1)k

1
q

λ
(λ2)||a||p,ϕ (28)

Furthermore, λ1 + λ2 = λ (∈ (0, 11
4 ]) if, and only if, the constant factor k

1
p

λ
(λ1)k

1
q

λ
(λ2) in (27) and (28) is

the best possible, namely, ∣∣∣∣∣∣∣∣∣∣T∣∣∣∣∣∣∣∣∣∣= kλ(λ1) =
λ

λ1λ2
(λi ∈ (0,

11
8
] ∩ (0,λ), i = 1, 2) (29)

5. Conclusions

In this paper, we give, with Lemma 2 and Theorem 1, respectively, a new inequality of the
Hilbert-type containing positive homogeneous kernel and its equivalent forms. Based on the obtained
Hilbert-type inequality, we discuss in Theorem 2 the equivalent statements of the best possible
constant factor related to several parameters. As applications, the operator expressions of the obtained
inequalities are given in Theorem 3, and some particular cases of the obtained inequalities (10) and (16)
are considered in Remark 2. It is shown that the results obtained in Theorems 1 and 2 would generate
more new inequalities of Hilbert-type.
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