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Abstract: For optimal control problems of Bolza with variable and free end-points, nonlinear
dynamics, nonlinear isoperimetric inequality and equality restrictions, and nonlinear pointwise
mixed time-state-control inequality and equality constraints, sufficient conditions for strong minima
are derived. The algorithm used to prove the main theorem of the paper includes a crucial symmetric
inequality, making this technique an independent self-contained method of classical concepts
such as embedding theorems from ordinary differential equations, Mayer fields, Riccati equations,
or Hamilton–Jacobi theory. Moreover, the sufficiency theory given in this article is able to detect
discontinuous solutions, that is, solutions which need to be neither continuous nor piecewise
continuous but only essentially bounded.
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1. Introduction

In [1], we studied the following nonparametric calculus of variations problem, denoted by (P̄),
which consists in minimizing a functional of the form

J (x) := `(x(t0), x(t1)) +
∫ t1

t0

L(t, x(t), ẋ(t))dt

over all x : [t0, t1]→ Rn absolutely continuous satisfying the constraints

c(t, x(t), ẋ(t)) is integrable on [t0, t1].
x(ti) ∈ Bi for i = 0, 1.
Ji(x) := `i(x(t0), x(t1)) +

∫ t1
t0
Li(t, x(t), ẋ(t))dt ≤ 0 (i = 1, . . . , k).

Jj(x) := `j(x(t0), x(t1)) +
∫ t1

t0
Lj(t, x(t), ẋ(t))dt = 0 (j = k + 1, . . . , K).

(t, x(t), ẋ(t)) ∈ R̄ (a.e. in [t0, t1]).

Elements x in X := AC([t0, t1]; Rn) are called arcs or trajectories, and a trajectory x is admissible
if it satisfies the constraints. Here, c(t, x, ẋ) denotes either L(t, x, ẋ), Lγ(t, x, ẋ) (γ = 1, . . . , K),
φ(t, x, ẋ) or any of its partial derivatives of order less than or equal to two with respect to x and
ẋ, where φ = (φ1, . . . , φs) determines the set of mixed-constraints

R̄ := {(t, x, ẋ) ∈ [t0, t1]×Rn ×Rn | φα(t, x, ẋ) ≤ 0 (α ∈ R), φβ(t, x, ẋ) = 0 (β ∈ S)},
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with R := {1, . . . , r} and S := {r + 1, . . . , s} (r = 0, 1, . . . , s). If r = 0, then R = ∅ and we disregard
statements involving ϕα. Similarly, if r = s, then S = ∅ and we disregard statements involving ϕβ.

The main novelty of the work in [1] is that the sets Bi (i = 0, 1) are any subsets of Rn satisfying
a crucial relation

B0 ×B1 ⊂ Ψ(Rn),

where Ψ is an adequately selected C2 function. Thus, a novelty of the sufficiency results given in [1]
concerns the fact that the end-points x(ti), (i = 0, 1), are not only variable end-points lying in a smooth
manifold determined by some functions and equalities or inequalities of the form

Φ(x(t0), x(t1)) = 0 or Φ(x(t0), x(t1)) ≤ 0,

but also completely free, in the sense that x(ti) ∈ Bi (i = 0, 1).
In this paper, we generalize the results of [1] to a general optimal control setting by establishing

and proving two new sufficiency results for strong minima and for optimal control problems of Bolza
with variable and free end-points, nonlinear dynamics, nonlinear isoperimetric inequality and equality
restrictions, and nonlinear mixed time-state-control pointwise inequality and equality constraints.
Concretely, the nonparametric optimal control problem we deal with, denoted by (P̄), consists in
minimizing a functional

J (x, u) := `(x(t0), x(t1)) +
∫ t1

t0

L(t, x(t), u(t))dt

over all (x, u) ∈ A satisfying the constraints

x(ti) ∈ Bi for i = 0, 1.
ẋ(t) = g(t, x(t), u(t)) (a.e. in [t0, t1]).
Ji(x, u) := `i(x(t0), x(t1)) +

∫ t1
t0
Li(t, x(t), u(t))dt ≤ 0 (i = 1, . . . , k).

Jj(x, u) := `j(x(t0), x(t1)) +
∫ t1

t0
Lj(t, x(t), u(t))dt = 0 (j = k + 1, . . . , K).

(t, x(t), u(t)) ∈ R̄ (t ∈ [t0, t1]).

Here, elements (x, u) in A := AC([t0, t1]; Rn) × L∞([t0, t1]; Rm) are called processes, a process
(x, u) is admissible if it satisfies the constraints and, the set R̄ is defined by the set of mixed
time-state-control constraints

R̄ := {(t, x, u) ∈ [t0, t1]×Rn ×Rm | φα(t, x, u) ≤ 0 (α ∈ R), φβ(t, x, u) = 0 (β ∈ S)}.

Even though the current optimal control problem has a similar statement from the calculus of
variations problem posed in [1] and even when the approach of sufficiency presented in this paper is
parallel from the one studied in [1], it is crucial to detect the dissimilarities. For instance, functions such
as L(t, x, u), Lγ(t, x, u) (γ = 1, . . . , K), g(t, x, u) or φ(t, x, u) have as their third independent variable
a control u whose role, in general, is not of the derivative of the trajectories x. Moreover, the motions ẋ
of the absolutely continuous trajectories x are controlled by a nonlinear dynamic g, that is, ẋ and g
must satisfy the relation

ẋ(t) = g(t, x(t), u(t)) a.e. in [t0, t1].

When g(t, x, u) 6≡ u, the optimal control theory of this paper lies beyond the scope of the theory
of sufficiency given in [1] (see examples 3.3 and 3.4 of section 3); in particular, the solutions provided
in this paper cannot be obtained from the results of [1].

On the other hand, let us mention that the proof of the main sufficiency theorem of the article
strongly depends upon a fundamental equality, commonly called the transversality condition, which is
inherited from the calculus of variations theory and a fundamental symmetric inequality condition
which arises from the original algorithm used to prove the previously mentioned sufficiency result.



Symmetry 2020, 12, 238 3 of 26

It is worth mentioning that this method has a self-contained nature and it is independent from classical
or alternative sufficient techniques frequently used to obtain sufficiency in optimal control. Some of
these approaches can be found in [2–23]. To give a brief overview of some of these treatments let us
mention that, in [2], sufficiency is obtained by means of the construction of a bounded solution to
a matrix-valued Riccati equation; in [3], a verification function satisfying the Hamilton–Jacobi equation
and a quadratic function that satisfies a Hamilton–Jacobi inequality become fundamental tools to
develop sufficiency; in [4], the insertion of the optimal control problem in a Banach space becomes
a fundamental component to obtain the corresponding sufficiency theory; in [5], an alternate algorithm
which involves some type of convexity arguments provides sufficient conditions for local minima in
the calculus of variations; in [6], an indirect method together with a generalized theory of Jacobi by
means of conjugate points provides sufficiency for local minima in an unconstrained optimal control
problem of Lagrange with fixed end-points; and in [7], a two norm approach yields an appropriate
theory which not only provides sufficiency in certain classes of optimal control problems, but also
the corresponding technique allows measuring the deviation between the cost of any admissible
process and the cost of the candidate to be an optimal control by means of the classical norm of the
Banach space L2.

It is worth mentioning that the optimal control sufficiency theories having the same degree of
applicability of that studied in this paper, in general, depend upon the hypotheses of the continuity
to the proposed optimal controls (see, for example, [2–8,10,12–16,19–21,23]), where that crucial
assumption is an indispensable device in the corresponding sufficiency treatments. A distinctive
feature of the new sufficiency theory presented in this paper is its applicability to optimal control
problems in which the proposed optimal control to be a strong minimum does not satisfy that crucial
hypothesis. In particular, in Section 3, we solve an optimal control problem with the property that the
admissible process satisfying all conditions of the new corollary has a discontinuous optimal control,
that is, the former is neither continuous nor piecewise continuous but only essentially bounded.
Additionally, it is important to point out that the furnished conclusion given in the examples of
Section 3 cannot be detected by a simple inspection of the constraints which must be satisfied by
feasible processes; in other words, the examples given in Section 3 show how one of the new sufficiency
results of this article fulfills the principal characteristic, which must have a sufficiency theorem that is
precisely able to detect solutions whose nature is neither trivial nor evident.

Some optimal control treatments having less degree of generality from the one studied in
this article with no assumptions of continuity of the propose optimal controls can be found in [24].
There, an optimal control problem of Lagrange with fixed-endpoints, nonlinear dynamics, and equality
control constraints is studied. The main novelty of the work in [24] is precisely the removal of continuity
of the proposed optimal controls in the main sufficiency theorem of that paper. Additionally, this proof
has been generalized in [25] to optimal control problems containing equality restrictions not only
depending on the controls but also on the time and the states. Moreover, sufficient conditions for
weak minima for a fixed end-points optimal control problem of Lagrange containing inequality and
equality constraints in the controls with no assumptions of continuity of the optimal controls can be
found in [26].

The main properties of the new sufficiency theorems of this paper can be outlined as follows:
given an admissible process which needs to be neither continuous nor piecewise continuous but
only essentially bounded, the pieces of the new sufficiency results of this article are two crucial
first-order sufficient conditions involving the Hamiltonian of the problem, the classical transversality
condition, an essential symmetric inequality which arises from the properties of the original algorithm
used to prove the main theorem of the article, a similar condition of the necessary condition of
Legendre–Clebsch, the positivity of the second variation on a cone of critical directions, and three
conditions involving some Weierstrass excess functions.

The paper is organized as follows. In Section 2, we pose the parametric optimal control problem
we deal with together with some basic definitions and the statement of the main result of the article.
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In Section 3, we enunciate the nonparametric optimal control problem we study, some basic definitions,
a corollary that is also one of the main results of the paper, and two examples that show how even
the nonexpert can manage to apply the result. Section 4 is devoted to stating three auxiliary lemmas,
in which the proof of the theorem is strongly based. Section 5 is dedicated to the proof of the main
theorem of the article, that is, the proof of Theorem 1. In Section 6, we prove the lemmas given in
Section 4 and in the final section we present some auxiliary results that are helpful to solve Example 1
of Section 3.

2. A Parametric Problem of Bolza and the Main Result

Suppose we are given an interval T := [t0, t1] in R, and functions l(b) : Rp → R, lγ(b) : Rp → R
(γ = 1, . . . , K), Ψi(b) : Rp → Rn (i = 0, 1), L(t, x, u) : T×Rn×Rm → R, Lγ(t, x, u) : T×Rn×Rm → R
(γ = 1, . . . , K), f (t, x, u) : T ×Rn ×Rm → Rn, and ϕ(t, x, u) : T ×Rn ×Rm → Rs. Set

R := {(t, x, u) ∈ T ×Rn ×Rm | ϕα(t, x, u) ≤ 0 (α ∈ R), ϕβ(t, x, u) = 0 (β ∈ S)}

where R := {1, . . . , r} and S := {r + 1, . . . , s} (r = 0, 1, . . . , s). If r = 0, then R = ∅ and we disregard
statements involving ϕα. Similarly, if r = s, then S = ∅ and we disregard statements involving ϕβ.

It is assumed throughout the paper that L, Lγ (γ = 1, . . . , K), f and ϕ = (ϕ1, . . . , ϕs) have
first- and second-derivatives with respect to x and u. Moreover, we assume that the functions l, lγ
(γ = 1, . . . , K) and Ψi (i = 0, 1) are of class C2 on Rp. In addition, if we denote by c(t, x, u) either
L(t, x, u), Lγ(t, x, u) (γ = 1, . . . , K), f (t, x, u), ϕ(t, x, u) or any of its partial derivatives of order less
than or equal to two with respect to x and u, we assume that, if C is any bounded subset of T×Rn×Rm,
then |c(C)| is a bounded subset of R. Additionally, we assume that, if {(Γq, Λq)} is any sequence in
AC(T; Rn)× L∞(T; Rm) such that for some Υ ⊂ T measurable and some {(Γ0, Λ0)} ∈ AC(T; Rn)×
L∞(T; Rm), (Γq(t), Λq(t)) → (Γ0(t), Λ0(t)) uniformly on Υ, then, for all q ∈ N, c(t, Γq(t), Λq(t)) is
measurable on Υ and

c(t, Γq(t), Λq(t))→ c(t, Γ0(t), Λ0(t)) uniformly on Υ.

Note that all conditions above concerning the functions L, Lγ (γ = 1, . . . , K), f and ϕ, are satisfied
if the functions L, Lγ (γ = 1, . . . , K), f and ϕ and their first and second derivatives with respect to x
and u are continuous on T ×Rn ×Rm.

Define

X := AC(T; Rn) = {x : T → Rn | x is absolutely continuous on T},
Uη := L∞(T; Rη) = {u : T → Rη | u is essentially bounded on T}.

Here, the natural number η denotes the dimension of the codomain of the controls u : T → Rm or
of the multipliers µ : T → Rs associated to the mixed pointwise constraints.

Set
A := X × Um ×Rp.

We use the notation zb to denote any element zb := (z, b) = (x, u, b) ∈ A. The parametric optimal
control problem we deal with, denoted by (P), is that of minimizing the functional

I(zb) := l(b) +
∫ t1

t0

L(t, x(t), u(t))dt
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over all zb ∈ A satisfying the constraints

ẋ(t) = f (t, x(t), u(t)) (a.e. in T).
x(ti) = Ψi(b) for i = 0, 1.
Ii(zb) := li(b) +

∫ t1
t0

Li(t, x(t), u(t))dt ≤ 0 (i = 1, . . . , k).
Ij(zb) := lj(b) +

∫ t1
t0

Lj(t, x(t), u(t))dt = 0 (j = k + 1, . . . , K).
(t, x(t), u(t)) ∈ R (t ∈ T).

The elements b = (b1, . . . , bp)∗ (the notation ∗ denotes transpose) are called parameters,
the elements zb in A are called processes, and a process zb is admissible if it satisfies the constraints.
The notation z0b0

refers to an element (z0, b0) = (x0, u0, b0) ∈ A.
Let us now introduce some definitions that are used throughout the paper.

• A process z0b0
solves (P) if it is admissible and I(z0b0

) ≤ I(zb) for all admissible processes zb.
An admissible process z0b0

is called a strong minimum of (P) if it is a minimum of I relative to the
following norm

‖zb‖ := |b|+ sup
t∈T
|x(t)| = |b|+ ‖x‖C,

that is, if for some ε > 0, I(z0b0
) ≤ I(zb) for all admissible processes satisfying ‖zb − z0b0

‖ < ε.
• For all (x, u) ∈ X × Um, we use the notation (z̃(t)) to represent (t, x(t), u(t)). In addition,

(z̃0(t)) represents (t, x0(t), u0(t)).
• Given K real numbers λ1, . . . , λK, consider the functional I0 : A → R defined by

I0(zb) := I(zb) +
K

∑
γ=1

λγ Iγ(zb) = l0(b) +
∫ t1

t0

L0(z̃(t))dt,

where l0 : Rp → R is given by

l0(b) := l(b) +
K

∑
γ=1

λγlγ(b),

and L0 : T ×Rn ×Rm → R is given by

L0(t, x, u) := L(t, x, u) +
K

∑
γ=1

λγLγ(t, x, u).

• Given λ1, . . . , λK, for all (t, x, u, ρ, µ) ∈ T × Rn × Rm × Rn × Rs, define the Hamiltonian of the
problem by

H(t, x, u, ρ, µ) := 〈ρ, f (t, x, u)〉 − L0(t, x, u)− 〈µ, ϕ(t, x, u)〉,

where ρ ∈ Rn denotes the adjoint variable and µ ∈ Rs is the associated multiplier of the mixed
time-state-control constraints.

• Given (ρ, µ) ∈ X × Us, and λ1, . . . , λK, for all (t, x, u) ∈ T × Rn × Rm, define the following
function associated to the Hamiltonian,

F0(t, x, u) := −H(t, x, u, ρ(t), µ(t))− 〈ρ̇(t), x〉.

• Given (ρ, µ) ∈ X × Us and λ1, . . . , λK, define J0 : A → R by

J0(zb) := 〈ρ(t1), x(t1)〉 − 〈ρ(t0), x(t0)〉+ l0(b) +
∫ t1

t0

F0(z̃(t))dt.

• The notation wβ refers to any element (y, v, β) in X × L2(T; Rm)×Rp.
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• For any zb ∈ A and any wβ ∈ X × L2(T; Rm)×Rp consider the first variation of Iγ (γ = 1, . . . , K)
with respect to zb over wβ which is given by

I′γ(zb; wβ) := l′γ(b)β +
∫ t1

t0

{Lγx(z̃(t))y(t) + Lγu(z̃(t))v(t)}dt.

• For all (t, x, u) ∈ T ×Rn ×Rm, denote by

Ia(t, x, u) := {α ∈ R | ϕα(t, x, u) = 0},

the set of active indices of (t, x, u) with respect to the mixed inequality constraints.
• For all zb ∈ A, denote by

ia(zb) := {i = 1, . . . , k | Ii(zb) = 0},

the set of active indices of zb with respect to the isoperimetric inequality constraints.
• Given zb ∈ A, let Y(zb) be the set of all wβ ∈ X × L2(T; Rm)×Rp satisfying

ẏ(t) = fx(z̃(t))y(t) + fu(z̃(t))v(t) (a.e. in T), y(ti) = Ψ′i(b)β (i = 0, 1),
I′i (zb; wβ) ≤ 0 (i ∈ ia(zb)), I′j(zb; wβ) = 0 (j = k + 1, . . . , K),
ϕαx(z̃(t))y(t) + ϕαu(z̃(t))v(t) ≤ 0 (a.e. in T, α ∈ Ia(z̃(t))),
ϕβx(z̃(t))y(t) + ϕβu(z̃(t))v(t) = 0 (a.e. in T, β ∈ S).

The set Y(zb) is called the cone of critical directions along zb.
• Given (ρ, µ) ∈ X × Us, and λ1, . . . , λK, for any zb ∈ A and any wβ ∈ X × L2(T; Rm) × Rp,

we define the second variation of J0 with respect to zb over wβ, by

J′′0 (zb; wβ) := 〈l′′0 (b)β, β〉+
∫ t1

t0

2Ω0(z; t, y(t), v(t))dt,

where, for all (t, y, v) ∈ T ×Rn ×Rm,

2Ω0(z; t, y, v) := 〈y, F0xx(z̃(t))y〉+ 2〈y, F0xu(z̃(t))v〉+ 〈v, F0uu(z̃(t))v〉.

• Denote by E0 the Weierstrass excess function of F0, given by

E0(t, x, u, v) := F0(t, x, v)− F0(t, x, u)− F0u(t, x, u)(v− u).

• Similarly, the Weierstrass excess function of Lγ (γ = 1, . . . , K) is given by

Eγ(t, x, u, v) := Lγ(t, x, v)− Lγ(t, x, u)− Lγu(t, x, u)(v− u).

• For all π = (π1, . . . , πn)∗ ∈ Rn or π = (π1, . . . , πm)∗ ∈ Rm, set

V(π) := (1 + |π|2)1/2 − 1.

• For all x ∈ X and all u ∈ L1(T; Rm), define

Q(x, u) := max{Q1(x),Q2(u)}

where

Q1(x) :=
∫ t1

t0

V(ẋ(t))dt and Q2(u) :=
∫ t1

t0

V(u(t))dt.
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• For all x ∈ X and all u ∈ L1(T; Rm), define

D(x, u) := max{D1(x), D2(x, u)}

where
D1(x) := V(x(t0)) +Q1(x) and D2(x, u) := V(x(t0)) +Q2(u).

• As mentioned above, the symbol ∗ denotes transpose.

The following theorem is the main result of the article. This theorem gives sufficient conditions
for a strong minimum of problem (P). Hypothesis (i) of Theorem 1 is commonly called the
transversality condition; Hypothesis (ii) is a symmetric inequality which arises from the properties
of the original proof of the theorem; Hypothesis (iii) is a similar version of the necessary condition
of Legendre–Clebsch; Hypothesis (iv) is the positivity of the second variation on the cone of critical
directions; and Hypothesis (v) involves three conditions related to the Weierstrass excess functions.
Note that the proposed optimal control need not be continuous or piecewise continuous but only
essentially bounded.

Theorem 1. Let z0b0
be an admissible process. Assume that Ia(z̃0(·)) is piecewise constant on T, and there

exist (ρ, µ) ∈ X × Us with µα(t) ≥ 0 and µα(t)ϕα(z̃0(t)) = 0 (α ∈ R, t ∈ T), two positive numbers δ, ε,
and multipliers λ1, . . . , λK with λi ≥ 0 and λi Ii(z0b0

) = 0 (i = 1, . . . , k) such that

ρ̇(t) = −H∗x (z̃0(t), ρ(t), µ(t)) (a.e. in T),

H∗u(z̃0(t), ρ(t), µ(t)) = 0 (t ∈ T),

and the following holds

(i) l′∗0 (b0) + Ψ′∗1 (b0)ρ(t1)−Ψ′∗0 (b0)ρ(t0) = 0.
(ii) ρ∗(t1)Ψ′′1 (b0; β)− ρ∗(t0)Ψ′′0 (b0; β) ≥ 0 for all β ∈ Rp.
(iii) Huu(z̃0(t), ρ(t), µ(t)) ≤ 0 (a.e. in T).
(iv) J′′0 (z0b0

; wβ) > 0 for all nonnull wβ ∈ Y(z0b0
).

(v) For all zb admissible with ‖x− x0‖C < ε,

a. E0(t, x(t), u0(t), u(t)) ≥ 0 (a.e. in T).

b.
∫ t1

t0
E0(t, x(t), u0(t), u(t))dt ≥ δQ(z− z0).

c.
∫ t1

t0
E0(t, x(t), u0(t), u(t))dt ≥ δ|

∫ t1
t0

Eγ(t, x(t), u0(t), u(t))dt| (γ = 1, . . . , K).

Then, for some θ1, θ2 > 0 and all admissible processes zb satisfying ‖zb − z0b0
‖ < θ1,

I(zb) ≥ I(z0b0
) + θ2 min{|b− b0|2, D(z− z0)}.

In particular, z0b0
is a strong minimum of (P).

3. A Nonparametric Problem of Bolza

Suppose we are given an interval T := [t0, t1] in R, two sets B0,B1 ⊂ Rn and functions
`(x1, x2) : Rn × Rn → R, `γ(x1, x2) : Rn × Rn → R (γ = 1, . . . , K), L(t, x, u) : T × Rn × Rm → R,
Lγ(t, x, u) : T ×Rn ×Rm → R (γ = 1, . . . , K), g(t, x, u) : T ×Rn ×Rm → Rn, and φ(t, x, u) : T ×Rn ×
Rm → Rs. Set

R̄ := {(t, x, u) ∈ T ×Rn ×Rm | φα(t, x, u) ≤ 0 (α ∈ R), φβ(t, x, u) = 0 (β ∈ S)}
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where R := {1, . . . , r} and S := {r + 1, . . . , s} (r = 0, 1, . . . , s). If r = 0, then R = ∅ and we disregard
statements involving ϕα. Similarly, if r = s, then S = ∅ and we disregard statements involving ϕβ.

It is assumed throughout this section that L, Lγ (γ = 1, . . . , K), g and φ = (φ1, . . . , φs) have
first and second derivatives with respect to x and u. Moreover, we assume that the functions `, `γ

(γ = 1, . . . , K) are of class C2 on Rn × Rn. In addition, if we denote by c(t, x, u) either L(t, x, u),
Lγ(t, x, u) (γ = 1, . . . , K), g(t, x, u), φ(t, x, u) or any of its partial derivatives of order less than or equal
to two with respect to x and u, we assume that all the assumptions posed in Section 2 in the statement
of the problem are satisfied.

As in Section 2, X denotes the set of absolutely continuous functions mapping T to Rn and
Uη := L∞(T; Rη) the set of essentially bounded functions mapping T to Rη . Set A := X × Um.

The nonparametric optimal control problem we deal with, denoted by (P̄), consists in minimizing
the functional

J (x, u) := `(x(t0), x(t1)) +
∫ t1

t0

L(t, x(t), u(t))dt

over all (x, u) ∈ A satisfying the constraints

x(ti) ∈ Bi for i = 0, 1.
ẋ(t) = g(t, x(t), u(t)) (a.e. in T).
Ji(x, u) := `i(x(t0), x(t1)) +

∫ t1
t0
Li(t, x(t), u(t))dt ≤ 0 (i = 1, . . . , k).

Jj(x, u) := `j(x(t0), x(t1)) +
∫ t1

t0
Lj(t, x(t), u(t))dt = 0 (j = k + 1, . . . , K).

(t, x(t), u(t)) ∈ R̄ (t ∈ T).

The elements (x, u) in A are called processes, and a process (x, u) is admissible if it satisfies
the constraints.

A process (x0, u0) solves (P̄) if it is admissible and J (x0, u0) ≤ J (x, u) for all admissible processes
(x, u). An admissible process (x0, u0) is called a strong minimum of (P̄) if it is a minimum of J relative
to the norm

‖x‖ := sup
t∈T
|x(t)|,

that is, if for some ε > 0, J (x0, u0) ≤ J (x, u) for all admissible processes satisfying ‖x− x0‖ < ε.
Let Ψ : Rn → Rn × Rn be any function of class C2 such that B0 × B1 ⊂ Ψ(Rn). Associate the

nonparametric problem (P̄) with the parametric problem of Section 2, which we denote by (PΨ), that is,
(PΨ) is the parametric problem given in Section 2, with p = n, l = ` ◦Ψ, lγ = `γ ◦Ψ (γ = 1, . . . , K),
L = L, Lγ = Lγ (γ = 1, . . . , K), f = g, ϕ = φ, and Ψ0, Ψ1 the components of Ψ, that is, Ψ = (Ψ0, Ψ1).
Recall that the notation zb means (x, u, b) where b ∈ Rn is a parameter.

Lemma 1. The following is satisfied:

(i) zb is an admissible process of (PΨ) if and only if z = (x, u) is an admissible process of (P̄) and b ∈
Ψ−1(x(t0), x(t1)).

(ii) If zb is an admissible process of (PΨ), then

J (x, u) = I(zb).

(iii) If z0b0
is a solution of (PΨ), then (x0, u0) is a solution of (P̄).

Proof. Copy the proof of Lemma 3.1 of [1].

The following corollary, which is a consequence of Theorem 1 and Lemma 1, provides a set
of sufficient conditions of problem (P̄). Once again, it is worth observing that the control of the
proposed process to be a strong minimum need not be continuous nor piecewise continuous but only
essentially bounded.
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Corollary 1. Let Ψ : Rn → Rn ×Rn be any function of class C2 such that B0 × B1 ⊂ Ψ(Rn) and let (PΨ)

be the parametric problem defined in the previous paragraph of Lemma 1. Let z0b0
be an admissible process of

(PΨ). Assume that Ia(z̃0(·)) is piecewise constant on T, and there exist (ρ, µ) ∈ X × Us with µα(t) ≥ 0 and
µα(t)ϕα(z̃0(t)) = 0 (α ∈ R, t ∈ T), two positive numbers δ, ε, and multipliers λ1, . . . , λK with λi ≥ 0 and
λi Ii(z0b0

) = 0 (i = 1, . . . , k) such that

ρ̇(t) = −H∗x (z̃0(t), ρ(t), µ(t)) (a.e. in T),

H∗u(z̃0(t), ρ(t), µ(t)) = 0 (t ∈ T),

and the following holds

(i) l′∗0 (b0) + Ψ′∗1 (b0)ρ(t1)−Ψ′∗0 (b0)ρ(t0) = 0.
(ii) ρ∗(t1)Ψ′′1 (b0; β)− ρ∗(t0)Ψ′′0 (b0; β) ≥ 0 for all β ∈ Rn.
(iii) Huu(z̃0(t), ρ(t), µ(t)) ≤ 0 (a.e. in T).
(iv) J′′0 (z0b0

; wβ) > 0 for all nonnull wβ ∈ Y(z0b0
).

(v) For all zb admissible with ‖x− x0‖ < ε,

a. E0(t, x(t), u0(t), u(t)) ≥ 0 (a.e. in T).

b.
∫ t1

t0
E0(t, x(t), u0(t), u(t))dt ≥ δQ(z− z0).

c.
∫ t1

t0
E0(t, x(t), u0(t), u(t))dt ≥ δ|

∫ t1
t0

Eγ(t, x(t), u0(t), u(t))dt| (γ = 1, . . . , K).

Then, (x0, u0) is a strong minimum of (P̄).

Now, we illustrate by means of two examples the properties of the sufficiency theory developed in
this article. In Example 1, we solve an inequality constrained nonparametric optimal control problem
(P̄) with a completely free final end-point in which the proposed optimal control is neither continuous
nor piecewise continuous but only essentially bounded and moreover for some (ρ, µ) ∈ X × U4

an element (x0, u0, ρ, µ) satisfies the first-order sufficient conditions

ρ̇(t) = −H∗x (z̃0(t), ρ(t), µ(t)) (a.e. in T), H∗u(z̃0(t), ρ(t), µ(t)) = 0 (t ∈ T),

conditions (i)–(v) of Corollary 1 becoming in this way a strong minimum of (P̄).

Example 1. Let u02 : [0, 1]→ R be given by

u02(t) :=


1, t = 0
1, t ∈ ∪∞

j=1[
1
2j ,

1
2j−1 ]

−1, t ∈ ∪∞
j=2(

1
2j−1 , 1

2j−2 ).

Consider the nonparametric optimal control problem (P̄) of minimizing

J (x, u) := x2(1) +
∫ 1

0
{u1(t) + u2

1(t) cos(2πu2(t))− x2(t)}dt

over all (x, u) ∈ A satisfying the constraints
x(0) ∈ {0}, x(1) ∈ R.
ẋ(t) = −u1(t)u2(t)− 1

2 u1(t) (a.e. in [0, 1]).
J1(x, u) :=

∫ 1
0 {(1/2)(u1(t)u2(t) + (1/2)u1(t))2 − u2

1(t)}dt ≤ 0.
(t, x(t), u(t)) ∈ R̄ (t ∈ [0, 1])
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where

R̄ := {(t, x, u) ∈ [0, 1]×R×R2 | u1 ≥ 0, u2 − u02(t) ≤ 1, u02(t)− u2 ≤ 1, u2
2 = 1},

A := X × U2,

X := {x : [0, 1]→ R | x is absolutely continuous on [0, 1]},

U2 := {u : [0, 1]→ R2 | u is essentially bounded on [0, 1]}.

For this problem, we consider the data of the nonparametric problem given in this section which
are given by T = [0, 1], n = 1, m = 2, r = 3, s = 4, k = 1, K = 1, B0 = {0}, B1 = R, `(x1, x2) = x2

2,
L(t, x, u) = u1 + u2

1 cos(2πu2) − x2, L1(t, x, u) = 1
2 (u1u2 +

1
2 u1)

2 − u2
1, g(t, x, u) = −u1u2 − 1

2 u1,
φ1(t, x, u) = −u1, φ2(t, x, u) = u2 − u02(t)− 1, φ3(t, x, u) = u02(t)− u2 − 1 and φ4(t, x, u) = 1− u2

2.
As one readily verifies, the functions `, L, L1, g, and φ = (φ1, φ2, φ3, φ4) satisfy all the assumptions

posed in this section in the statement of the problem.
Moreover, it is evident that the process z0 = (x0, u0) = (x0, u01, u02) with x0 ≡ 0, u01 ≡ 0 and u02

given above, is admissible of (P̄). Let Ψ : R → R× R be defined by Ψ(b) := (0, b). Clearly, Ψ is C2

in R and B0 ×B1 ⊂ Ψ(R). The associated parametric problem of Section 2 denoted by (PΨ) has the
following data, p = 1, l = ` ◦ Ψ, L = L, L1 = L1, f = g, ϕ = φ, and Ψ0, Ψ1 the components of Ψ,
that is, Ψ = (Ψ0, Ψ1) with Ψ0(b) = 0 and Ψ1(b) = b (b ∈ R). Recall that the notation zb means (x, u, b)
where b ∈ R is a parameter.

Observe that if we set b0 := 0, then z0b0
= (x0, u0, b0) ≡ (x0, u0, 0) is admissible of (PΨ)

and u0 is neither continuous nor piecewise continuous but only essentially bounded. In addition,
clearly Ia(z̃0(·)) = {1} is constant on T. Let ρ ≡ 0, µ = (µ1, µ2, µ3, µ4) ≡ (1, 0, 0, 0) and note that
(ρ, µ) ∈ X × U4, µα(t) ≥ 0, and µα(t)ϕα(z̃0(t)) = 0 (α ∈ R = {1, 2, 3}, t ∈ T). In addition, if we set
λ1 := 0, then λ1 ≥ 0 and λ1 I1(z0b0

) = 0.
Now, observe that the Hamiltonian H is given by

H(t, x, u, ρ, µ) = −ρu1u2 − 1
2 ρu1 − u1 − u2

1 cos(2πu2) + x2

+µ1u1 − µ2[u2 − u02(t)− 1]− µ3[u02(t)− u2 − 1]− µ4[1− u2
2],

and note that

Hu(t, x, u, ρ, µ) =

(
−ρu2 − 1

2 ρ− 1− 2u1 cos(2πu2) + µ1

−ρu1 + 2πu2
1 sin(2πu2)− µ2 + µ3 + 2µ4u2

)∗
,

Hx(t, x, u, ρ, µ) = 2x.

As one readily verifies, for all t ∈ T,

Hx(z̃0(t), ρ(t), µ(t)) = 0 and Hu(z̃0(t), ρ(t), µ(t)) = (0, 0)

and thus, for all t ∈ T,

ρ̇(t) = −Hx(z̃0(t), ρ(t), µ(t)) and H∗u(z̃0(t), ρ(t), µ(t)) = 0,

that is, (x0, u0, ρ, µ) satisfies the first-order sufficient conditions of Corollary 1. Since Ψ0(b) = 0,
Ψ1(b) = b, l0(b) = b2 (b ∈ R), then

l′0(b0) + Ψ′1(b0)ρ(1)−Ψ′0(b0)ρ(0) = 0
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and thus Condition (i) of Corollary 1 is satisfied. In addition, as one readily verifies,

ρ(1)Ψ′′1 (b0; β)− ρ(0)Ψ′′0 (b0; β) = 0 for all β ∈ R

and thus the condition of symmetry (ii) of Corollary 1 is fulfilled.
Now, for all (t, x, u) ∈ T ×R×R2, we have

H(t, x, u, ρ(t), µ(t)) = −u2
1 cos(2πu2) + x2

and thus, for all t ∈ T,
〈Huu(z̃0(t), ρ(t), µ(t))h, h〉 = −2h2

1 ≤ 0

which in turn implies that (x0, u0, ρ, µ) satisfies Condition (iii) of Corollary 1.
In addition, for all (t, x, u) ∈ T ×R×R2, we have

F0(t, x, u) = −H(t, x, u, ρ(t), µ(t))− ρ̇(t)x = u2
1 cos(2πu2)− x2,

and, for all t ∈ T,
fx(z̃0(t)) = 0, fu(z̃0(t)) = (−u02(t)− 1

2 , 0),

ϕ1x(z̃0(t)) = 0, ϕ1u(z̃0(t)) = (−1, 0), ϕ4x(z̃0(t)) = 0, ϕ4u(z̃0(t)) = (0,−2u02(t)).

Since Y(z0b0
) is given by all wβ ∈ X × L2(T; R2) × R satisfying y(0) = 0, y(1) = β,

ẏ(t) = (−u02(t) − 1
2 )v1(t), and −v1(t) ≤ 0, v2(t) = 0 (a.e. in T), the fact that l′′0 (b0) = 2 and,

for all t ∈ T,

F0xx(z̃0(t)) = −2, F0xu(z̃0(t)) = (0, 0), F0uu(z̃0(t)) =

(
2 0
0 0

)
,

then, for all wβ ∈ Y(z0b0
),

J′′0 (z0b0
; wβ) = 2β2 + 2

∫ 1

0
{v2

1(t)− y2(t)}dt = 2β2 + 2
∫ 1

0

{
ẏ2(t)

(u02(t) + 1
2 )

2
− y2(t)

}
dt

≥ 2β2 + 2
∫ 1

0
{(4/9)ẏ2(t)− y2(t)}dt.

From the calculus of variations theory and Appendix A, it follows that the integral

∫ 1

0
{(4/9)ẏ2(t)− y2(t)}dt

is greater than zero for all nonnull y : [0, 1]→ R absolutely continuous with ẏ ∈ L2([0, 1]; R) satisfying
y(0) = y(1) = 0. Consequently,

J′′0 (z0b0
; wβ) > 0

for all nonnull wβ ∈ Y(z0b0
), and thus Condition (iv) of Corollary 1 is verified.

Now, if zb is admissible, for all t ∈ T, we have

E0(t, x(t), u0(t), u(t)) = u2
1(t) cos(2πu2(t)) = u2

1(t) cos(2πu02(t)) = u2
1(t).

Therefore, if zb is admissible, for all t ∈ T,

E0(t, x(t), u0(t), u(t)) ≥ 0. (1)
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In addition, note that if zb is admissible, for all t ∈ T,

u(t)− u0(t) = (u1(t)− u01(t), u2(t)− u02(t)) = (u1(t), u02(t)− u02(t)) = (u1(t), 0),

and hence∫ 1

0
E0(t, x(t), u0(t), u(t))dt =

∫ 1

0
u2

1(t)dt ≥
∫ 1

0
V(u1(t))dt =

∫ 1

0
V(u(t)− u0(t))dt = Q2(u− u0). (2)

Additionally, if zb is admissible, we have∫ 1
0 E0(t, x(t), u0(t), u(t))dt =

∫ 1
0 u2

1(t)dt ≥
∫ 1

0
1
2 (u1(t)u2(t) + 1

2 u1(t))2dt
=

∫ 1
0

1
2 (ẋ(t)− ẋ0(t))2dt ≥

∫ 1
0 V(ẋ(t)− ẋ0(t))dt = Q1(x− x0).

(3)

By Equations (2) and (3), if zb is admissible,

∫ 1

0
E0(t, x(t), u0(t), u(t))dt ≥ max{Q1(x− x0),Q2(u− u0)} = Q(x− x0, u− u0) = Q(z− z0). (4)

Finally, note that, if zb is admissible, for all t ∈ T,

E1(t, x(t), u0(t), u(t)) = 1
2 (u1(t)u2(t) + 1

2 u1(t))2 − u2
1(t).

Consequently, if zb is admissible,∣∣∣∣∫ 1
0 E1(t, x(t), u0(t), u(t))dt

∣∣∣∣ =

∣∣∣∣∫ 1
0 {

1
2 (u1(t)u2(t) + 1

2 u1(t))2 − u2
1(t)}dt

∣∣∣∣
=

∣∣∣∣∫ 1
0 {

1
2 (u1(t)u02(t) + 1

2 u1(t))2 − u2
1(t)}dt

∣∣∣∣
=

∣∣∣∣∫ 1
0 {

1
2 u2

1(t)(u02(t) + 1
2 )

2 − u2
1(t)}dt

∣∣∣∣
≤

∫ 1
0 u2

1(t)|
1
2 (u02(t) + 1

2 )
2 − 1|dt

≤
∫ 1

0 u2
1(t)dt =

∫ 1
0 E0(t, x(t), u0(t), u(t))dt.

(5)

Thus, by Equations (1), (4), and (5), Condition (v)(a)–(c) of Corollary 1 are satisfied with any ε > 0 and δ = 1.
By Corollary 1, (x0, u0) is a strong minimum of (P̄).

In Example 2, we solve an inequality constrained nonparametric optimal control problem (P̄) with a
completely free initial end-point and for which for some (ρ, µ) ∈ X × U2, an element (x0, u0, ρ, µ) satisfies the
first-order sufficient conditions

ρ̇(t) = −H∗x (z̃0(t), ρ(t), µ(t)) (a.e. in T), H∗u(z̃0(t), ρ(t), µ(t)) = 0 (t ∈ T),

Conditions (i)–(v) of Corollary 1 becoming in this way a strong minimum of (P̄).
As in Example 2, isoperimetric constraints are not imposed, thus l, L, F, E, and J′′ correspond to l0, L0, F0,

E0, and J′′0 respectively.

Example 2. Consider the nonparametric optimal control problem (P̄) of minimizing

J (x, u) := x3(0) +
∫ 1

0
{2u2

1(t) + u2
2(t) + 2u4

1(t) + u4
2(t)− sinh x(t)}dt

over all (x, u) ∈ A satisfying the constraints
x(0) ∈ R, x(1) ∈ {0}.
ẋ(t) = sin2 u1(t)− sin2 u2(t) + u2

1(t) (a.e. in [0, 1]).
(t, x(t), u(t)) ∈ R̄ (t ∈ [0, 1])

where
R̄ := {(t, x, u) ∈ [0, 1]×R×R2 | 2x− u2

1 − u2
2 ≤ 0, sin2 u1 − sin2 u2 ≤ 0},

A := X × U2,
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X := {x : [0, 1]→ R | x is absolutely continuous on [0, 1]},

U2 := {u : [0, 1]→ R2 | u is essentially bounded on [0, 1]}.

For this problem, we consider the data of the nonparametric problem given in this section, which are given
by T = [0, 1], n = 1, m = 2, r = 2, s = 2, k = 0, K = 0, B0 = R, B1 = {0}, `(x1, x2) = x3

1, L(t, x, u) = 2u2
1 + u2

2 +

2u4
1 + u4

2 − sinh x, g(t, x, u) = sin2 u1 − sin2 u2 + u2
1, φ1(t, x, u) = 2x− u2

1 − u2
2, and φ2(t, x, u) = sin2 u1 − sin2 u2.

As one readily verifies, the functions L, g, φ = (φ1, φ2) and their first and second derivatives with respect to
x and u are continuous on T ×R×R2. In addition, the function ` is C2 in R×R.

Moreover, it is evident that the process z0 = (x0, u0) ≡ (0, 0, 0) is admissible of (P̄). Let Ψ : R→ R×R be
defined by Ψ(b) := (b, 0). Clearly, Ψ is C2 in R and B0 ×B1 ⊂ Ψ(R). The associated parametric problem of this
section denoted by (PΨ) has the following data, p = 1, l = ` ◦Ψ, L = L, f = g, ϕ = φ, and Ψ0, Ψ1 the components
of Ψ, that is, Ψ = (Ψ0, Ψ1) with Ψ0(b) = b and Ψ1(b) = 0 (b ∈ R).

Observe that, if we set b0 := 0, then z0b0
= (x0, u0, b0) ≡ (0, 0, 0) is admissible of (PΨ). In addition, clearly

Ia(z̃0(·)) = {1, 2} is constant on T. Let ρ ≡ −t, µ = (µ1, µ2) ≡ (0, 0) and note that (ρ, µ) ∈ X × U2, µα(t) ≥ 0
and µα(t)ϕα(z̃0(t)) = 0 (α ∈ R = {1, 2}, t ∈ T).

Now, observe that the Hamiltonian H is given by

H(t, x, u, ρ, µ) = ρ sin2 u1 − ρ sin2 u2 + ρu2
1 − 2u2

1 − u2
2 − 2u4

1 − u4
2 + sinh x

−µ1[2x− u2
1 − u2

2]− µ2[sin2 u1 − sin2 u2],

and note that

Hu(t, x, u, ρ, µ) =

(
2ρ sin u1 cos u1 + 2ρu1 − 4u1 − 8u3

1 + 2µ1u1 − 2µ2 sin u1 cos u1
−2ρ sin u2 cos u2 − 2u2 − 4u3

2 + 2µ1u2 + 2µ2 sin u2 cos u2

)∗
,

Hx(t, x, u, ρ, µ) = cosh x− 2µ1.

As one readily verifies,

ρ̇(t) = −Hx(z̃0(t), ρ(t), µ(t)) and H∗u(z̃0(t), ρ(t), µ(t)) = 0

and thus (x0, u0, ρ, µ) satisfies the first order sufficient conditions of Corollary 1. Since Ψ0(b) = b, Ψ1(b) = 0,
and l(b) = b3 (b ∈ R), then

l′(b0) + ρ(1)Ψ′1(b0)− ρ(0)Ψ′0(b0) = 0

and thus Condition (i) of Corollary 1 is satisfied. In addition, as one readily verifies,

ρ(1)Ψ′′1 (b0; β)− ρ(0)Ψ′′0 (b0; β) = 0 for all β ∈ R

and thus the symmetric Condition (ii) of Corollary 1 is fulfilled.
Now,

H(t, x, u, ρ(t), µ(t)) = −t sin2 u1 + t sin2 u2 − tu2
1 − 2u2

1 − u2
2 − 2u4

1 − u4
2 + sinh x

and thus, for all t ∈ T,
〈Huu(z̃0(t), ρ(t), µ(t))h, h〉 = −[4t + 4]h2

1 + [2t− 2]h2
2 ≤ 0

which in turn implies that (x0, u0, ρ, µ) satisfies Condition (iii) of Corollary 1.
In addition, for all (t, x, u) ∈ T ×R×R2, we have

F(t, x, u) = −H(t, x, u, ρ(t), µ(t))− ρ̇(t)x = t sin2 u1 − t sin2 u2 + tu2
1 + 2u2

1 + u2
2 + 2u4

1 + u4
2 + x− sinh x

and, for all t ∈ T,
fx(z̃0(t)) = 0, fu(z̃0(t)) = (0, 0),

ϕx(z̃0(t)) =

(
2
0

)
, ϕu(z̃0(t)) =

(
0 0
0 0

)
.
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Since Y(z0b0
) is given by all wβ ∈ X × L2(T; R2)× R satisfying y(0) = β, y(1) = 0, ẏ(t) = 0, y(t) ≤ 0

(a.e. in T), the fact that l′′(b0) = 0 and, for all t ∈ T,

Fxx(z̃0(t)) = 0, Fxu(z̃0(t)) = (0, 0), Fuu(z̃0(t)) =

(
4t + 4 0

0 2− 2t

)
,

then, for all wβ ∈ Y(z0b0
),

J′′(z0b0
; wβ) =

∫ 1

0
{[4t + 4]v2

1(t) + [2− 2t]v2
2(t)}dt.

Consequently,
J′′(z0b0

; wβ) > 0

for all nonnull wβ ∈ Y(z0b0
) and thus Condition (iv) of Corollary 1 is verified.

Now, note that, for all t ∈ T,

E(t, x(t), u0(t), u(t)) = t sin2 u1(t)− t sin2 u2(t) + tu2
1(t) + 2u2

1(t) + u2
2(t) + 2u4

1(t) + u4
2(t).

Since for all t ∈ T, the function Φ(u2) := u2
2 − t sin2 u2 is nonnegative for all u2 ∈ R, then Condition (v)(a)

of Corollary 1 is satisfied for any ε > 0.
To verify Condition (v)(b) of Corollary 1, note first that, for all π ∈ R, V(π) ≤ |π|2/2, and thus, for all zb

admissible and all t ∈ T,

E(t, x(t), u0(t), u(t)) ≥ 2u4
1(t) + u4

2(t) ≥ sin4 u1(t) + sin4 u2(t) + u4
1(t)

≥ [sin2 u2(t)− sin2 u1(t)]2 + u4
1(t) ≥ 1

4 [| sin2 u2(t)− sin2 u1(t)|+ u2
1(t)]

2

= 1
4 | sin2 u2(t)− sin2 u1(t) + u2

1(t)|2 ≥ 1
4 | sin2 u2(t)− sin2 u1(t)− u2

1(t)|2

= 1
4 | sin2 u1(t)− sin2 u2(t) + u2

1(t)|2 ≥ 1
2 V(sin2 u1(t)− sin2 u2(t) + u2

1(t))

= 1
2 V(ẋ(t)) = 1

2 V(ẋ(t)− ẋ0(t)).

Consequently, for any zb admissible,

∫ 1

0
E(t, x(t), u0(t), u(t))dt ≥ 1

2Q1(x− x0). (6)

Now, observe that for any zb admissible,

∫ 1

0
E(t, x(t), u0(t), u(t))dt ≥

∫ 1

0
{u2

1(t) + u2
2(t)}dt +

∫ 1

0
t{sin2 u1(t)− sin2 u2(t) + u2

1(t)}dt

=
∫ 1

0
|u(t)|2dt +

∫ 1

0
tẋ(t)dt =

∫ 1

0
|u(t)|2dt +

∫ 1

0
−x(t)dt

≥
∫ 1

0
|u(t)|2dt− 1

2

∫ 1

0
{u2

1(t) + u2
2(t)}dt

=
1
2

∫ 1

0
|u(t)|2dt ≥

∫ 1

0
V(u(t))dt

=
∫ 1

0
V(u(t)− u0(t))dt = Q2(u− u0).

With this in mind and Equation (6), it follows that, for any ε > 0 and for any zb admissible with ‖x− x0‖ < ε,

∫ 1

0
E(t, x(t), u0(t), u(t))dt ≥ 1

2 max{Q1(x− x0),Q2(u− u0)} = 1
2Q(x− x0, u− u0) =

1
2Q(z− z0).

Therefore, Condition (v)(b) of Corollary 1 is verified for any ε > 0 and δ = 1
2 . Since k = K = 0, it is evident

that Condition (v)(c) of Corollary 1 is also satisfied with any ε > 0 and δ given above. By Corollary 1, (x0, u0) is a
strong minimum of (P̄).

4. Auxiliary Results

In this section, we state three auxiliary results, which are used to prove Theorem 1. The proof of these results
is given in Section 6.
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Throughout this section, we assume that we are given an element z0 := (x0, u0) ∈ X × L1(T; Rm) and a
sequence {zq := (xq, uq)} in X × L1(T; Rm) such that

lim
q→∞

D(zq − z0) = 0 and dq := [2D(zq − z0)]
1/2 > 0 (q ∈ N).

For all q ∈ N and t ∈ T, define

yq(t) :=
xq(t)− x0(t)

dq
and vq(t) :=

uq(t)− u0(t)
dq

.

For all q ∈ N and for almost all t ∈ T, define

Wq(t) := max{W1q(t), W2q(t)}

where

W1q(t) := [1 + 1
2 V(ẋq(t)− ẋ0(t))]1/2 (a.e. in T), W2q(t) := [1 + 1

2 V(uq(t)− u0(t))]1/2 (t ∈ T).

Lemma 2. For some v0 ∈ L2(T; Rm) and some subsequence of {zq}, again denoted by {zq}, {vq} converges weakly to v0

in L1(T; Rm). Moreover, {uq} converges almost uniformly to u0 on T in the sense that, for any ε > 0, there exists Υε ⊂ T
measurable with m(Υε) < ε such that uq(t)→ u0(t) uniformly on T \ Υε.

Lemma 3. There exist σ0 ∈ L2(T; Rn), ȳ0 ∈ Rn, and a subsequence of {zq}, again denoted by {zq}, such that {ẏq}
converges weakly in L1(T; Rn) to σ0. Moreover, if y0(t) := ȳ0 +

∫ t
t0

σ0(τ)dτ (t ∈ T), then yq(t)→ y0(t) uniformly on T.

Lemma 4. Suppose Υ ⊂ T is measurable and Wq(t) → 1 uniformly on Υ. Let Rq, R0 ∈ L∞(Υ; Rm×m), assume that
Rq(t)→ R0(t) uniformly on Υ, R0(t) ≥ 0 (t ∈ Υ), and let v0 be the function considered in Lemma 2. Then,

lim inf
q→∞

∫
Υ
〈Rq(t)vq(t), vq(t)〉dt ≥

∫
Υ
〈R0(t)v0(t), v0(t)〉dt.

5. Proof of Theorem 1

The proof of Theorem 1 is divided into three Lemmas. In Lemmas 5–7, we assume that all hypotheses of
Theorem 1 are satisfied. Before enunciating the lemmas, we introduce some definitions.

First, note that, given x = (x1, . . . , xn)∗ ∈ Rn and b = (b1, . . . , bp)∗ ∈ Rp, if we define xi, bj ∈ Rn+p by
xi := (x1, . . . , xn, 0, . . . , 0)∗ and bj := (0, . . . , 0, b1, . . . , bp)∗, then

xi + bj = (x1, . . . , xn, b1, . . . , bp)
∗ =

(
x
b

)
∈ Rn+p.

Define F̃0 : T ×Rn+p ×Rm → R by

F̃0(t, ξ, u) :=
l0(ξn+1, . . . , ξn+p)

t1 − t0
+ F0(t, ξ1, . . . , ξn, u).

Observe that the Weierstrass excess function Ẽ0 : T ×Rn+p ×Rm ×Rm → R of F̃0 is given by

Ẽ0(t, ξ, u, v) := F̃0(t, ξ, v)− F̃0(t, ξ, u)− F̃0u(t, ξ, u)(v− u).

It is clear that, for all (t, x, u, v) ∈ T ×Rn ×Rm ×Rm and all b ∈ Rp,

Ẽ0(t, xi + bj, u, v) = E0(t, x, u, v).

Define

J̃0(zb) := 〈ρ(t1), x(t1)〉 − 〈ρ(t0), x(t0)〉+
∫ t1

t0

F̃0(t, x(t)i + bj, u(t))dt.

We have that J0(zb) = J̃0(zb) for all zb ∈ A, and

J̃0(zb) = J̃0(z0b0
) + J̃′0(z0b0

; zb − z0b0
) + K̃0(z0b0

; zb) + Ẽ0(z0b0
; zb) (7)



Symmetry 2020, 12, 238 16 of 26

where

Ẽ0(z0b0
; zb) :=

∫ t1

t0

Ẽ0(t, x(t)i + bj, u0(t), u(t))dt,

K̃0(z0b0
; zb) :=

∫ t1

t0

{M̃0(t, x(t)i + bj) + 〈u(t)− u0(t), Ñ0(t, x(t)i + bj)〉}dt,

J̃′0(z0b0
; zb − z0b0

) := 〈ρ(t1), x(t1)− x0(t1)〉 − 〈ρ(t0), x(t0)− x0(t0)〉

+
∫ t1

t0

{F̃0ξ(t, x0(t)i + b0j, u0(t))([x(t)− x0(t)]i + [b− b0]j)

+F̃0u(t, x0(t)i + b0j, u0(t))(u(t)− u0(t))}dt,

and M̃0, Ñ0 are given by

M̃0(t, xi + bj) := F̃0(t, xi + bj, u0(t))− F̃0(t, x0(t)i + b0j, u0(t))

−F̃0ξ(t, x0(t)i + b0j, u0(t))([x− x0(t)]i + [b− b0]j),

Ñ0(t, xi + bj) := F̃∗0u(t, xi + bj, u0(t))− F̃∗0u(t, x0(t)i + b0j, u0(t)).

We have,

M̃0(t, xi + bj) = 1
2 〈[x− x0(t)]i + [b− b0]j, P̃0(t, xi + bj)([x− x0(t)]i + [b− b0]j)〉, (8a)

Ñ0(t, xi + bj) = Q̃0(t, xi + bj)([x− x0(t)]i + [b− b0]j), (8b)

where

P̃0(t, xi + bj) := 2
∫ 1

0
(1− λ)F̃0ξξ(t, [x0(t) + λ(x− x0(t))]i + [b0 + λ(b− b0)]j, u0(t))dλ,

Q̃0(t, xi + bj) :=
∫ 1

0
F̃0uξ(t, [x0(t) + λ(x− x0(t))]i + [b0 + λ(b− b0)]j, u0(t))dλ.

Lemma 5. For some ν, ζ > 0 (ζ ≤ ε) and any admissible process zb satisfying ‖zb − z0b0
‖ < ζ,

Ẽ0(z0b0
; zb) ≥ δ[D(z− z0)−V(x(t0)− x0(t0))],

|K̃0(z0b0
; zb)| ≤ ν‖zb − z0b0

‖[1 + D(z− z0)].

Proof. Keeping in mind the definitions of Qi, Di (i = 1, 2), Q and D, copy the proof of Lemma 5.1 of [1].

Lemma 6. If the conclusion of Theorem 1 is false, then there exists a subsequence {zq
bq
} of admissible processes such that

lim
q→∞

D(zq − z0) = 0 and dq := [2D(zq − z0)]
1/2 > 0 (q ∈ N).

Proof. Observing that D(zq − z0) = D(xq − x0, uq − u0) = 0 if and only if xq = x0 and uq = u0, copy the proof
of Lemma 5.2 of [1].

Lemma 7. If conclusion of Theorem 1 is false, then Condition (iv) of Theorem 1 is false.

Proof. Let {zq
bq
} be the sequence of admissible processes given in Lemma 6. Then,

lim
q→∞

D(zq − z0) = 0 and dq = [2D(zq − z0)]
1/2 > 0 (q ∈ N).

Case (1): Suppose first that the sequence {(bq − b0)/dq} is bounded in Rp.
For all q ∈ N and t ∈ T, define

yq(t) :=
xq(t)− x0(t)

dq
, vq(t) :=

uq(t)− u0(t)
dq

,
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ωq(t) := yq(t)i +
bq − b0

dq
j.

By Lemma 2, there exist v0 ∈ L2(T; Rm) and a subsequence of {zq}, again denoted by {zq}, such that {vq}
converges weakly in L1(T; Rm) to v0. By Lemma 3, there exist σ0 ∈ L2(T; Rn), ȳ0 ∈ Rn, and a subsequence of
{zq}, again denoted by {zq}, such that, if y0(t) := ȳ0 +

∫ t
t0

σ0(τ)dτ (t ∈ T), then

lim
q→∞

yq(t) = y0(t) uniformly on T. (9)

Since the sequence {(bq − b0)/dq} is bounded in Rp; then, we may assume that there exists some β0 ∈ Rp

such that

lim
q→∞

bq − b0

dq
= β0. (10)

First, we show that, for i = 0, 1,
y0(ti) = Ψ′i(b0)β0. (11)

Note first that for i = 0, 1 and all q ∈ N, we have that

yq(ti) =
∫ 1

0
Ψ′i(b0 + λ[bq − b0])

(bq − b0)

dq
dλ. (12)

By Equations (9), (10) and (12), we obtain Equation (11). Now, we claim that

J′′0 (z0b0
; w0β0

) ≤ 0 and w0β0
= (y0, v0, β0) 6≡ (0, 0, 0). (13)

To prove it, observe that by Equations (8)–(10),

lim
q→∞

M̃0(t, xq(t)i + bqj)
d2

q
= lim

q→∞
1
2 〈ωq(t), P̃0(t, xq(t)i + bqj)ωq(t)〉

= 1
2 〈y0(t)i + β0j, F̃0ξξ(t, x0(t)i + b0j, u0(t))[y0(t)i + β0j]〉,

lim
q→∞

Ñ0(t, xq(t)i + bqj)
dq

= lim
q→∞

Q̃0(t, xq(t)i + bqj)ωq(t) = F̃0uξ(t, x0(t)i + b0j, u0(t))[y0(t)i + β0j]

both uniformly on T. This fact together with Lemma 2, implies that

lim
q→∞

K̃0(z0b0
; zq

bq
)

d2
q

=
1
2

∫ t1

t0

{〈y0(t)i + β0j, F̃0ξξ(t, x0(t)i + b0j, u0(t))[y0(t)i + β0j]〉

+2〈v0(t), F̃0uξ(t, x0(t)i + b0j, u0(t))[y0(t)i + β0j]〉}dt. (14)

Since (x0, u0, ρ, µ) satisfies the first-order sufficient conditions

ρ̇(t) = −H∗x (z̃0(t), ρ(t), µ(t)) (a.e. in T), H∗u(z̃0(t), ρ(t), µ(t)) = 0 (t ∈ T),

and by Condition (i) of Theorem 1, it follows that

lim
q→∞

J̃′0(z0b0
; zq

bq
− z0b0

)

d2
q

= lim
q→∞

1
d2

q
[〈ρ(t1), xq(t1)− x0(t1)〉 − 〈ρ(t0), xq(t0)− x0(t0)〉+ l′0(b0)(bq − b0)]

= lim
q→∞

1
d2

q
[ρ∗(t1)(Ψ1(bq)−Ψ1(b0)−Ψ′1(b0)(bq − b0))− ρ∗(t0)(Ψ0(bq)

−Ψ0(b0)−Ψ′0(b0)(bq − b0))]

= lim
q→∞

1
d2

q

∫ 1

0

1

∑
i=0

(−1)i+1(1− λ)ρ∗(ti)Ψ
′′
i (b0 + λ[bq − b0]; bq − b0)dλ

= 1
2 [ρ
∗(t1)Ψ′′1 (b0; β0)− ρ∗(t0)Ψ′′0 (b0; β0)]. (15)
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Consequently, by Equation (7), the fact that

J0(z
q
bq
)− J0(z0b0

) < min
{ |bq − b0|2

q
,

D(zq − z0)

q

}
,

Equation (15) and Condition (ii) of Theorem 1,

0 ≥ lim
q→∞

K̃0(z0b0
; zq

bq
)

d2
q

+ lim inf
q→∞

Ẽ0(z0b0
; zq

bq
)

d2
q

. (16)

Now, let us show that

lim inf
q→∞

Ẽ0(z0b0
; zq

bq
)

d2
q

≥ 1
2

∫ t1

t0

〈v0(t), F̃0uu(t, x0(t)i + b0j, u0(t))v0(t)〉dt. (17)

To this end, let Υ be a measurable subset of T such that uq(t) → u0(t) uniformly on Υ. For all q ∈ N and
t ∈ Υ, we have that

1
d2

q
Ẽ0(t, xq(t)i + bqj, u0(t), uq(t)) = 1

2 〈vq(t), Rq(t)vq(t)〉,

where

Rq(t) := 2
∫ 1

0
(1− λ)F̃0uu(t, xq(t)i + bqj, u0(t) + λ[uq(t)− u0(t)])dλ.

Clearly,
lim

q→∞
Rq(t) = R0(t) := F̃0uu(t, x0(t)i + b0j, u0(t)) uniformly on Υ.

By Condition (iii) of Theorem 1, we have

F̃0uu(t, x0(t)i + b0j, u0(t)) = R0(t) ≥ 0 (t ∈ Υ). (18)

For all q ∈ N and almost all t ∈ T, define

Wq(t) := max{W1q(t), W2q(t)}

where
W1q(t) := [1 + 1

2 V(ẋq(t)− ẋ0(t))]1/2 (a.e. in T),

W2q(t) := [1 + 1
2 V(uq(t)− u0(t))]1/2 (t ∈ T).

By the fact that
‖zq

bq
− z0b0

‖ < min{ζ, 1/q},

and the admissibility of zq
bq

, Wq(t)→ 1 uniformly on Υ. With this in mind, and since by (v)(a) of Theorem 1 for all
q ∈ N,

E0(t, xq(t), u0(t), uq(t)) ≥ 0 (a.e. in T),

by (18) and Lemma 4,

lim inf
q→∞

Ẽ0(z0b0
; zq

bq
)

d2
q

= lim inf
q→∞

1
d2

q

∫ t1

t0

Ẽ0(t, xq(t)i + bqj, u0(t), uq(t))dt

= lim inf
q→∞

1
d2

q

∫ t1

t0

E0(t, xq(t), u0(t), uq(t))dt

≥ lim inf
q→∞

1
d2

q

∫
Υ

E0(t, xq(t), u0(t), uq(t))dt

= lim inf
q→∞

1
d2

q

∫
Υ

Ẽ0(t, xq(t)i + bqj, u0(t), uq(t))dt

=
1
2

lim inf
q→∞

∫
Υ
〈vq(t), Rq(t)vq(t)〉dt ≥ 1

2

∫
Υ
〈v0(t), R0(t)v0(t)〉 dt.
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As Υ can be chosen to differ from T by a set of an arbitrarily small measure and the function

t 7→ 〈v0(t), R0(t)v0(t)〉

belongs to L1(T; R), this inequality holds when Υ = T, and this establishes Equation (17). With this in mind,
by Equations (14) and (16), we have

0 ≥
∫ t1

t0

{〈v0(t), F̃0uu(t, x0(t)i + b0j, u0(t))v0(t)〉+ 2〈v0(t), F̃0uξ(t, x0(t)i + b0j, u0(t))[y0(t)i + β0j]〉

+〈y0(t)i + β0j, F̃0ξξ(t, x0(t)i + b0j, u0(t))[y0(t)i + β0j]〉}dt

= 〈l′′0 (b0)β0, β0〉

+
∫ t1

t0

{〈v0(t), F0uu(z̃0(t))v0(t)〉+ 2〈v0(t), F0ux(z̃0(t))y0(t)〉+ 〈y0(t), F0xx(z̃0(t))y0(t)〉}dt

= 〈l′′0 (b0)β0, β0〉+
∫ t1

t0

2Ω0(z0; t, y0(t), v0(t))dt = J′′0 (z0b0
; w0β0

).

Now, let us show that w0β0
6≡ (0, 0, 0). By Equation (16), the first conclusion of Lemma 5, the fact that

V(π) ≤ |π|2/2 for all π ∈ Rn,

0 ≥ lim
q→∞

K̃0(z0b0
; zq

bq
)

d2
q

+
δ

2
− δ

2
lim sup

q→∞

|xq(t0)− x0(t0)|2

d2
q

= lim
q→∞

K̃0(z0b0
; zq

bq
)

d2
q

+
δ

2
− δ

2
lim sup

q→∞

|Ψ0(bq)−Ψ0(b0)|2

d2
q

= lim
q→∞

K̃0(z0b0
; zq

bq
)

d2
q

+
δ

2
− δ

2
lim sup

q→∞

∣∣∣∣∫ 1

0
Ψ′0(b0 + λ[bq − b0])

(
bq − b0

dq

)
dλ

∣∣∣∣2

= lim
q→∞

K̃0(z0b0
; zq

bq
)

d2
q

+
δ

2
− δ

2
|Ψ′0(b0)β0|2

= lim
q→∞

K̃0(z0b0
; zq

bq
)

d2
q

+
δ

2
− δ

2
|y0(t0)|2.

With this in mind and Equation (14), the fact that w0β0
≡ (0, 0, 0) contradicts the positivity of δ and this

establishes Equation (13). Now, let us show that

ẏ0(t) = fx(z̃0(t))y0(t) + fu(z̃0(t))v0(t) (a.e. in T). (19)

Observe that for all q ∈ N,

ẏq(t) = Aq(t)yq(t) + Bq(t)vq(t) (a.e. in T)

where

Aq(t) =
∫ 1

0
fx(t, x0(t) + λ[xq(t)− x0(t)], u0(t) + λ[uq(t)− u0(t)])dλ,

Bq(t) =
∫ 1

0
fu(t, x0(t) + λ[xq(t)− x0(t)], u0(t) + λ[uq(t)− u0(t)])dλ.

Choose Υ ⊂ T measurable such that

Aq(t)→ fx(z̃0(t)), Bq(t)→ fu(z̃0(t))

both uniformly on Υ. As yq(t)→ y0(t) uniformly on Υ and {vq} converges weakly in L1(Υ; Rm) to v0, it follows
that {ẏq} converges weakly in L1(Υ; Rn) to fx(z̃0(t))y0(t) + fu(z̃0(t))v0(t). By Lemma 3, {ẏq} converges weakly
in L1(Υ; Rn) to σ0 = ẏ0. Then,

ẏ0(t) = fx(z̃0(t))y0(t) + fu(z̃0(t))v0(t) (t ∈ Υ).
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As Υ can be chosen to differ from T by a set of an arbitrarily small measure, there cannot exist a subset of T
of positive measure where the functions y0 and v0 do not satisfy the differential equation ẏ0(t) = fx(z̃0(t))y0(t) +
fu(z̃0(t))v0(t), and thus, Equation (19) is verified.

Now, we claim that

i. I′i (z0b0
; w0β0

) ≤ 0 (i ∈ ia(z0b0
)).

ii. I′j (z0b0
; w0β0

) = 0 (j = k + 1, . . . , K).
iii. ϕαx(z̃0(t))y0(t) + ϕαu(z̃0(t))v0(t) ≤ 0 (a.e. in T, α ∈ Ia(z̃0(t))).
iv. ϕβx(z̃0(t))y0(t) + ϕβu(z̃0(t))v0(t) = 0 (a.e. in T, β ∈ S).

As one readily verifies Conditions (i)–(iv) above are obtained if one simply copies the proofs from
Equations (22)–(29) of [1].

Consequently, from Equations (11) and (19) and Conditions (i)–(iv) above, it follows that w0β0
∈ Y(z0b0

).
This fact together with Equation (13) contradicts Condition (iv) of Theorem 1.

Case (2): Now, suppose that the sequence {(bq − b0)/dq} is not bounded. Then,

lim
q→∞

∣∣∣∣ bq − b0

dq

∣∣∣∣ = +∞.

In this case, if one copies the proofs from Equations (31)–(43) of [1], then one obtains that for some β̄0 ∈ Rp

with |β̄0| = 1,

a. Ψ′i(b0)β̄0 = 0 (i = 0, 1).
b. J′′0 (z0b0

; 0β̄0
) ≤ 0.

c. I′i (z0b0
; 0β̄0

) ≤ 0 (i ∈ ia(z0b0
)).

d. I′j (z0b0
; 0β̄0

) = 0 (j = k + 1, . . . , K).

Consequently, Conditions (a)–(d) above contradict Condition (iv) of Theorem 1 and this completes the proof
of Theorem 1.

6. Proof of Lemmas 2–4

Proof of Lemma 2. Observe that for all π ∈ Rm, V(π)(2 + V(π)) = |π|2. For all q ∈ N, we have

∫ t1

t0

|vq(t)|2

W2
q (t)

dt ≤ 1
d2

q

∫ t1

t0

|uq(t)− u0(t)|2

1 + 1
2 V(uq(t)− u0(t))

dt =
1

D(zq − z0)

∫ t1

t0

|uq(t)− u0(t)|2

2 + V(uq(t)− u0(t))
dt

=
1

D(zq − z0)

∫ t1

t0

V(uq(t)− u0(t))dt =
Q2(uq − u0)

D(zq − z0)
≤ D2(zq − z0)

D(zq − z0)
≤ 1.

Then, there exist v0 ∈ L2(T; Rm) and a subsequence of {zq}, again denoted by {zq}, such that {vq/Wq}
converges weakly in L2(T; Rm) to v0. As for i = 1, 2, W2

iq(t) ≥ Wiq(t) ≥ 1 for all q ∈ N and for almost all t ∈ T,
we have

0 ≤
∫ t1

t0

[Wiq(t)− 1]dt ≤
∫ t1

t0

[W2
iq(t)− 1]dt

≤ max
{∫ t1

t0

V(ẋq(t)− ẋ0(t))dt,
∫ t1

t0

V(uq(t)− u0(t))dt
}

= max{Q1(xq − x0),Q2(uq − u0)}
= Q(xq − x0, uq − u0)

≤ D(zq − z0).

Thus, it follows that

lim
q→∞

∫ t1

t0

[Wq(t)− 1]dt = lim
q→∞

∫ t1

t0

[W2
q (t)− 1]dt = 0.

Note also that ∫ t1

t0

[Wq(t)− 1]2dt =
∫ t1

t0

[W2
q (t)− 1]dt− 2

∫ t1

t0

[Wq(t)− 1]dt.

Then, for any ψ ∈ L∞(T; Rm),
lim

q→∞
‖ψWq − ψ‖2 = 0,
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and thus

lim
q→∞

∫ t1

t0

〈ψ(t), vq(t)〉dt = lim
q→∞

∫ t1

t0

〈
ψ(t)Wq(t),

vq(t)
Wq(t)

〉
dt =

∫ t1

t0

〈ψ(t), v0(t)〉dt.

Therefore, {vq} converges weakly in L1(T; Rm) to v0.
Now, let us show that uq(t)→ u0(t) almost uniformly on T. For all t ∈ T, define

W(t) := [1 + 1
2 V(u(t))]1/2.

Observe that∫ t1

t0

2W2(t)dt = 2t1 − 2t0 +
∫ t1

t0

V(u(t))dt = 2t1 − 2t0 +Q2(u) ≤ 2t1 − 2t0 + D(x, u),

∫ t1

t0

|u(t)|2
2W2(t)

dt =
∫ t1

t0

|u(t)|2
2 + V(u(t))

dt =
∫ t1

t0

V(u(t))dt = Q2(u) ≤ D(x, u).

From these relations, we have

‖u‖2
1 ≤

∫ t1

t0

|u(t)|2
2W2(t)

dt
∫ t1

t0

2W2(t)dt ≤ D(x, u)[2t1 − 2t0 + D(x, u)].

Consequently, ‖uq − u0‖1 → 0 and thus some subsequence of {uq} converges almost uniformly to u0

on T.

Proof of Lemma 3. For all q ∈ N, define

cq := [1 + 1
2 V(xq(t0)− x0(t0))]

1/2.

For all q ∈ N, note that

|yq(t0)|2

c2
q

+
∫ t1

t0

|ẏq(t)|2

W2
q (t)

dt

≤
|xq(t0)− x0(t0)|2

d2
q [1 + 1

2 V(xq(t0)− x0(t0))]
+

1
d2

q

∫ t1

t0

|ẋq(t)− ẋ0(t)|2

1 + 1
2 V(ẋq(t)− ẋ0(t))

dt

=
|xq(t0)− x0(t0)|2

D(zq − z0)[2 + V(xq(t0)− x0(t0))]
+

1
D(zq − z0)

∫ t1

t0

|ẋq(t)− ẋ0(t)|2

2 + V(ẋq(t)− ẋ0(t))
dt

=
1

D(zq − z0)

(
V(xq(t0)− x0(t0)) +

∫ t1

t0

V(ẋq(t)− ẋ0(t))dt
)

=
D1(xq − x0)

D(zq − z0)
≤ 1.

Clearly, limq→∞ cq = 1. Then, there exist some subsequence of {zq}, again denoted by {zq}, some ȳ0 ∈ Rn

and some σ0 ∈ L2(T; Rn) such that

lim
q→∞

yq(t0)

cq
= lim

q→∞
yq(t0) = ȳ0,

{ẏq/Wq} converges weakly in L2(T; Rn) to σ0.

Thus,
lim

q→∞
yq(t0) = ȳ0,

{ẏq} converges weakly in L1(T; Rn) to σ0.

Hence, {ẏq} is equi-integrable on T and therefore the sequence {yq} is equi-continuous on T. Thus, if y0(t) :=
ȳ0 +

∫ t
t0

σ0(τ)dτ, then

lim
q→∞

yq(t) = lim
q→∞

yq(t0) + lim
q→∞

∫ t

t0

ẏq(τ)dτ = y0(t) uniformly on T.
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Proof of Lemma 4. Copy the proof of Lemma 4.2 of [1].
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Appendix A

Suppose we are given a continuous function L(t, x, u) : [0, 1] × R× R → R having first- and
second-order continuous partial derivatives with respect to x and u. For all x ∈ AC([0, 1]; R) with
ẋ ∈ L∞([0, 1]; R) and all y ∈ AC([0, 1]; R) with ẏ ∈ L2([0, 1]; R), define

I′′(x, y) :=
∫ 1

0
{Lxx(x̃(t))y2(t) + 2Lxu(x̃(t))y(t)ẏ(t) + Luu(x̃(t))ẏ2(t)}dt

where as usual (x̃(t)) represents (t, x(t), ẋ(t)). The functional I′′(x, y) is commonly called the second
variation of I along x in the direction y where I is given by

I(x) :=
∫ 1

0
L(t, x(t), ẋ(t))dt.

Theorem A1. Set
Y := {y : [0, 1]→ R | y is absolutely continuuos in [0, 1]

with ẏ ∈ L2([0, 1]; R) and y(0) = y(1) = 0},

and let x0 ∈ AC([0, 1]; R) with ẋ0 ∈ L∞([0, 1]; R). Then,

I′′(x0, y) ≥ 0 for all y ∈ Y

if and only if
I′′(x0, y) ≥ 0 for all y ∈ C1 with y(0) = y(1) = 0.

Proof. =⇒: It is trivial.
⇐=: Let y ∈ Y be given. For all q ∈ N, let ỹq ∈ C([0, 1]; R) with ỹq(0) = 0 such that

‖ỹq − ẏ‖2 <
1
q

.

Define yq : [0, 1]→ R by

yq(t) :=
∫ t

0
ỹq(τ)dτ.

Then,
ẏq(t) = ỹq(t) (t ∈ [0, 1]).

Therefore, for all q ∈ N,

‖ẏq − ẏ‖2 <
1
q

.
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Thus, for all t ∈ T and q ∈ N,

|yq(t)− y(t)| =

∣∣∣∣∫ t

0
ẏq(τ)dτ −

∫ t

0
ẏ(τ)dτ

∣∣∣∣
≤

∫ 1

0
|ẏq(t)− ẏ(t)|dt

≤ ‖ẏq − ẏ‖2.

Hence,
lim
q→∞
‖yq − y‖C = 0. (A1)

Consequently,
lim
q→∞

I′′(x0, yq) = I′′(x0, y).

Since y(0) = y(1) = 0, by Equation (A1), there exists ȳq ∈ C1([0, 1]; R) with ȳq(0) = ȳq(1) = 0
such that

|I′′(x0, yq)− I′′(x0, ȳq)| <
1
q

(q ∈ N).

With this in mind and by hypothesis,

I′′(x0, y) = lim
q→∞

I′′(x0, ȳq) ≥ 0.

Theorem A2. Let L : [0, 1]×R×R→ R be given by

L(t, x, u) := (4/9)u2 − x2.

Let (P) be the problem of minimizing

I(x) :=
∫ 1

0
L(t, x(t), ẋ(t))dt

over all x ∈ Y , where Y is the set defined in Theorem A1. Then,

I(x) > 0 for all x ∈ Y , x 6= 0.

To make the proof of Theorem A2, we make use of the following results and definitions.

Definition A1. A function x0 : [0, 1] → R satisfies a Lipschitz condition in [0, 1] if there exists a positive
number M such that

|x(τ)− x(t)| ≤ M|τ − t| for all τ, t ∈ [0, 1].

If the function x0 satisfies a Lipschitz condition in [0, 1], we write x0 ∈ Lip [0, 1].

Lemma A1. Let x0 ∈ Lip [0, 1] satisfy the integral form of the Euler equation, where for almost all t ∈ [0, 1],
the function u 7→ L(t, x0(t), u) is strictly convex. Then, x0 is C1 in [0, 1].

Lemma A1 is precisely Theorem 15.9 of [10].
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Lemma A2. Let L(t, x, u) have the form f (t, x) + g(u), where f and g are continuously differentiable and,
for some constant c > 0, the function g satisfies

|g′(u)| ≤ c(1 + |u|+ |g(u)|) for all u ∈ R.

Then, any weak local solution of (P) satisfies the integral form of the Euler equation.

Lemma A2 is precisely Exercise 16.14 of [10].

Definition A2. We say that L has Nagumo growth along x0 if there exists a function θ : [0,+∞) → R
satisfying

lim
t→∞

θ(t)
t

= +∞,

such that
t ∈ [0, 1], u ∈ R =⇒ L(t, x0(t), u) ≥ θ(|u|).

Definition A3. The Lagrangian L is autonomous when L does not depend on the t variable.

Theorem A3. Let x0 ∈ AC([0, 1]; R) be a strong local minimizer for problem (P), where the Lagrangian is
continuous, autonomous, convex in u, and has Nagumo growth along x0. Then, x0 is Lipschitz in [0, 1].

Theorem A3 is precisely Theorem 16.18 of [10].

Proof. Proof of Theorem A2:
If we set

f (t, x) := −x2 and g(u) := (4/9)u2 (t ∈ [0, 1], x, u ∈ R),

we have that f and g are continuously differentiable and for the constant c = 8/9, the function
g satisfies

|g′(u)| ≤ c(1 + |u|+ |g(u)|) for all u ∈ R. (A2)

Indeed, g′(u) = (8/9)u and hence, Equation (A2) turns out to be

(8/9)|u| ≤ (8/9)(1 + |u|+ (4/9)u2) for all u ∈ R

which is always true. Therefore, if we suppose that x0 ∈ Y , x0 6= 0 and

∫ 1

0
{(4/9)ẋ2

0(t)− x2
0(t)}dt = 0,

then, from the classical calculus of variations theory and by Theorem A1, the integral I of Theorem A2
affords a global minimum at the arc x = x0. By Lemma A2, x0 satisfies the integral form of the Euler
equation. Now, define θ : [0,+∞)→ R by

θ(t) := (4/9)t2 − K

where K is such that
x2

0(t) ≤ K (t ∈ [0, 1]).

We have that

lim
t→∞

θ(t)
t

= lim
t→∞

(4/9)t2 − K
t

= +∞,

and, moreover,
t ∈ [0, 1], u ∈ R =⇒ (4/9)u2 − x2

0(t) ≥ (4/9)u2 − K = θ(|u|).
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Consequently, L(t, x, u) = (4/9)u2 − x2 has Nagumo growth along x0. Clearly, the Lagrangian L
is continuous, autonomous, convex in u and since x0 ∈ AC([0, 1]; R) is a strong local minimum of (P)
and L has Nagumo growth along x0, then by Theorem A3, x0 is Lipschitz in [0, 1]. By Lemma A1 and
since for almost all t ∈ [0, 1], the function

u 7→ L(t, x0(t), u)

is strictly convex, then x0 is C1 in [0, 1]. Thus, once again from the classical calculus of variations theory,
it follows that ∫ 1

0
{(4/9)ẋ2

0(t)− x2
0(t)}dt > 0

which is a contradiction.
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