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Abstract: In Hilbert space, we develop a novel framework to study for two new classes of convex
function depending on arbitrary non-negative function, which is called a predominating #-convex
function and predominating quasiconvex function, with respect to #, are presented. To ensure the
symmetry of data segmentation and with the discussion of special cases, it is shown that these classes
capture other classes of 7-convex functions, 77-quasiconvex functions, strongly fi-convex functions
of higher-order and strongly quasiconvex functions of a higher order, etc. Meanwhile, an auxiliary
result is proved in the sense of k-fractional integral operator to generate novel variants related to the
Hermite-Hadamard type for pth-order differentiability. It is hoped that this research study will open
new doors for in-depth investigation in convexity theory frameworks of a varying nature.

Keywords: convex function; #-convex functions; predominating convex functions; Hermite-Hadamard
inequality; predominating #-quasiconvex functions

1. Introduction

The fractional behavior of real-life phenomenon is condensed by powerful tools such as fractional
calculus (FC) in an accurate way. This characteristic is the principle of the expediency of derivatives
with fractional-order versus integer-order models. FC has acquired a lot of interest for their
utilities in distinct areas, for example, technology, porous media, image processing, and scientific
demonstrating on the grounds that they are increasingly reasonable and sensible to portray numerous
natural phenomena. As a consequence, FC has a solid possibility to regulate continuous issues
with high proficiency. The objective of analyzing FC for the aforementioned, major analysis [1-5]
had been carried out. Machado et al. [6] depicted a graph of the straightforward history of FC,
especially with applications, and it has also been observed that FC can be beneficial and even proficient.
Integral inequalities with applications that are nowadays very much popular among scientists for
research is one of the perspectives. Inequalities have concrete application in fixed point theory and
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the existence of solutions for differential equations. Integral inequalities of fractional techniques
appear much more commonly in several research areas and engineering applications. For instance,
the nonlinear oscillation of earthquakes can be demonstrated with fractional operators [7], as well as
the fluid-dynamic traffic model with fractional inequalities [8] that can dispense with the inadequacy
emerging from the suppositions of continuum traffic flow.

The noteworthy scope of uses of the integral inequalities on convexity for both derivation
and integration, while also maintaining the symmetry of sets and functions has been a subject of
discourse for a long while. These variants had been progressed by means of various analysts [9-13].
Sarikaya et al. [14] utilized the concepts of fractional calculus for deriving a bulk of variants that
essentially depend on Hermite-Hadamard inequality. Among them, most captivating inequality for a
convex function is of a Hermite-Hadamard type, which can be stated as follows:

Let A be an interval in R, G : A — R be a convex function on A, and 01,00 € A, 07 < 03,
then we have

(2~ G (D52 < [ Gy < (0 — o) AL 2I2)

We note that both the variants hold in the reversed direction if G is concave. These variants have
considerable significance in the literature. Numerous researchers have broadly used the ideas of FC
and attained many novel generalizations via convex functions and their refinements, see [15-17] and
the references therein.

Following this tendency, we introduce two more general concepts of higher-order strongly
n-convex functions which are known as the predominating #-convex functions and predominating
quasiconvex function. Several novel versions of Hermite-Hadamard inequality are established that
can be utilized to describe the uniformly reflex Banach spaces. Taking into account the novel ideas,
these variants are a connection of an auxiliary outcome dependent on identity which relates to FC.
New outcomes are introduced and new theorems are derived. Additionally, our consequences for
the new Definitions 3 and 7 in predominating #i-convex functions and predominating quasiconvex
function are presented. The recently acquainted numerical estimation is used to comprehend the
parallelogram laws for LP-spaces. The new definitions are thought to open new doors of investigation
toward convexity theory.

2. Related Work

The idea of strongly convex functions was contemplated and investigated by Polyak [18],
which had a significant contribution to fitting most machine learning models that involve solving
some sort of optimization problem and concerned areas. Strongly convex functions are helpful in
determining the existence of a solution of nonlinear complementary problems, see [19]. Zu and
Marcotte [20] investigated the convergence of the iterative techniques for solving variational
inequalities and equilibrium problems by employing the idea of strongly convex functions. The novel
and innovative application of the characterization of the inner product space was discovered by
Nikodem and Pales in [21] with the help of strongly convex functions. The assembly of stochastic
slope descent for the class of functions fulfilling the Polyak-Lojasiewicz condition that relies upon
strongly-convex functions too as a wide scope of non-convex functions incorporating those utilized in
machine learning applications [22]. Recently, Rashid et al. [23] proposed the concepts of differentiable
higher-order strongly 7i-convex functions. Kalsoom et al. [24] explored the higher-order strongly
generalized preinvex function in a different way and presented several generalizations for two-variable
quantum Simpson’s-type inequalities. For more features and utilities of the strongly convex functions,
see [25-32].

In [33], Varosanec discovered a class of convex functions unifies and modify numerous new
concepts of classical convexity, comprising Breckner type convex functions [34], P-functions [35],
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Godunova-Levin type convex, and Q-functions [36,37]. We admit that this class plays a significant
contribution to convexity theory and helps to define some new classes of a convex function. Therefore,
a number of papers had been investigated for this class. For information, see [38,39].

3. Preliminaries

Firstly, suppose K be a nonempty set in a real Hilbert space H. The inner product and norm
are presented by (.,.) and ||.||, respectively. Moreover, there is an arbitrary non-negative function
1:(0,1) — R and a continuous bifunction 7(.,.) : R x R — R.

Definition 1. ([40]) A function G : K C R — R is said to be an y-convex function in the sense of 1 :
RxR—Rif

G(rx+(1-1)y) <7G(x) + (1 - 1) [G(x) +7(G(y), G(x))] @
forall x,y € Kand T € [0,1].

If #(x,y) = x — y, then the y-convex functions reduces to convex function.

Further, we mention the concept of 77-convex functions which depend on arbitrary non-negative
function fi. These concepts also explore several new classes of convex and #-convex functions under
some specific conditions.

Definition 2. ([41]) Suppose i : | — R is a non-negative arbitrary function and a function G : K C R -+ R
is said to be (1, h)-convex function in the sense of 1 : R x R — R if

G(tx+ (1 -1)y) <MD)G(x) + (1 - 1) [G(x) +71(G(y), G(x))]
forall x,y € Kand T € [0,1].

Further, We demonstrate several novel classes of #-convex mappings considering arbitrary
non-negative function.

Definition 3. Suppose I : | — R is a non-negative arbitrary function and a function G : I C R — R is said
to be predominating h-convex function in the sense of 1 : R x R — R if the inequality

G(tx+(1-1)y) <n(1)G(x) + (1 - 7)[G(x) +7(G(y),G(x))] +D(x,y), ©)
holds for all x,y € KC, T € [0,1].

Some remarkable cases of Definition 3 are presented as follows:
(I). If we choose D(x,y) = —pu{1%(1 — 1) + 7(1 — 7)¢}||ly — x||¢ for some y > 0 and ¢ > 2,
then Definition 3 reduces to a new definition of a higher-order strongly #-convex function for a
given arbitrary non-negative function .

Definition 4. Suppose i : | — R be a non-negative arbitrary function and a function G : K C R — R is said
to be a higher-order strongly y-convex function in the sense of a continuous bifunction  : R x R — R with
u > 0 if the inequality

Glrx+(1—-1)y)  <h(1)G(x)+h(1—1)[G(x) +1(G(y),G(x))]
{1 =7)+ (1 =7)°}ly — x|

holds for all x,y € K, T € [0,1].
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(IT). If we choose D(x,y) = —u{7?(1 — ) + (1 — 7)?}||ly — x||¢ along with ii(T) = 7 for some u > 0
and ¢ > 2, then Definition 3 reduces to a new definition of higher-order strongly #-convex function.

Definition 5. A function G : K C R — R is said to be higher-order strongly n-convex function in the sense of
7 : R xR — R having p > 0 if the inequality

G(rx+(1-7)y) <G +m(G(x),G() - p{r?(1 - 1) + (1 = 1)}y — x[|*,
holds for all x,y € IC, T € [0,1].

(II0). If we choose D(x,y) = —p{1%(1 — 7) + T(1 — 7)?}(y — x)?, h(7) = T along with ¢ = 2 for some
# > 0in Definition 3, then we get the definition of strongly #-convex function proposed by [27].

Definition 6. ([27]) A function G : K C R — R is said to be strongly n-convex function in the sense of
7 : R xR — R having u > 0 if the inequality

Grx+(1-7)y) <G +m(9(x),9) —pr(l =)y -2
holds for all x,y € IC, T € [0,1].
We now introduce more a general version of strongly #-quasiconvex functions as follows:

Definition 7. A function G : K C R — Ris said to be predominating quasi-convex function in the sense of
7 : R x R — R if the inequality

G(vx+ (1-1)y) < max {G(x), [6(x) + 1 (G(),G(x))| } + D(xy),
holds for all x,y € K.

We now discuss some remarkable cases of Definition 7.
(I). If we choose D(x,y) = —u{7?(1 — 1)+ (1 — 7)%}|ly — x||¢ for some ¢ > 0 and 0 > 2,
then Definition 7 reduces to a new definition of higher-order strongly 7-quasiconvex function.

Definition 8. A function G : K C R — R is said to be higher-order strongly y-quasiconvex function in the
senseof 1 : R x R — R with u > 0 if the inequality

G(rr+(1-7)y)  <max{G(y), [6(y) +1(5(x), 6(w))]}
{1 =) + (1= T}y — ],

holds for all x,y € KC, T € [0,1] and ¢ > 2.

Example 1. The mapping G(x) = x? is strongly n-quasiconvex in the sense of bifunction n(x,y) = 2x +y
and ¢ = 2 with y = 1. Observe that, let T € [0,1]. Then

max {G(y), [9(y) +1(9(x) )}}—u{r@(l—r>+r<1—r>@}|\y—xn@
>G(y) +1(6(x),G(y)) — (1 - 1) (y — x)?

> y? +T(2x —|—y) T(l—r)(y—x)2

= 2x% + 2xyt(1 — 7) 4+ (1 — 7)%y% + (2% + 2¢?)

> 2x% + 2xyt(1— 1) + (1 - 7)%°

=G(tx+ (1—-1)y).

+(
+(
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(IT). If we choose D(x,y) = —pu{t?(1 — 1) + 7(1 — 7)%}||ly — x||¢ for some y > 0 and 0 = 2,
then Definition 7 reduces to strongly 7-quasiconvex function introduced by [27].

Definition 9. ([27]) A function G : K C R — R is said to be higher-order strongly n-quasiconvex function in
the sense of n : R x R — R with u > 0 if the inequality

Glrx+(1-7y)  <max{G(y), [(y) +n(G(x),GW)]} —pr(1 = )lly — x|
holds for all x,y € IC, and T € [0,1].
We close this segment by presenting a notable x-fractional integral operators in the literature

presented by [42].

Definition 10. ([42])For { > 0 and let ¥ € Lq[oy, 03], then the k-fractional integrals ]gf and ]gf are
1 2
defined as

; 1 i
S (x) = .0 / (x =) A, x <o 3)
and
; 1 7 .
S = oy [A -0, x> @

respectively, where k > 0, and T(x) := [ Ax’le_gd)\, R(x) > 0, is the x-Gamma function, with the

0
condition that Ty (x + 1) = xT(x) and T (x) = 1.

The incomplete Beta function is defined as follows:

X
By(o1,02) = /T”l*l(l — T)”Tldr, a,ap > 0,0 < x < 1.
0

Remark 1. Observe that for exceptional and appropriate selections of function h(.), i.e., h(t) = 7, 7%, 75,77},

and h(t) = 1, in Definitions 3, 4, 5, and 6, we can acquire several other versions of predominating convex,
predominating s-convex of Breckner type, predominating s-convex of Godunova—Levin type, predominating
P-convex function, higher-order strongly n-convex, higher-order strongly (1,s)-convex of Breckner type,
higher-order strongly (1, s)-convex of Godunova—Levin type, and higher-order strongly 1-P-convex function,
respectively. Moreover, if we take (y, x) = y — x, then all above cases can be reduced to classical higher-order
strongly convex and classical strongly convex functions.

4. Auxiliary Result

The following lemma assumes a key job in setting up the principle consequences of this paper.
The distinguishing proof is expressed as follows.
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Lemma 1. For { >0, n,p € N, there is a pth-order differentiable function ¥ : A — R such that oy, 0p € A
with o5 >, 01 and ¥YP) € Ly ([0, 03] )(the Lebesgue space). Then

Y(p,n,¢,x01,02)(Y)

C+K P [(—1)971—1] 2 0 (p—0) el %)
“"PZrmx(p 6+1)) (az—m)‘” ( 2 )

=1
gtxp
I'(C+xp)l % T ok ix
1nr
+ KP— 1r o — 01 ]‘71+‘72 (01) ( ) ]171+t72) 11I(O'l) ’
where
Y(PI”[g,K;Ul,O’Z)(‘II)
n
— [yt g (PP, BT () (P-Ty T
—/(n T) [T 2n o1t 2n o) +¥ 2n o1t 2n o2 )| dr.
0
Proof. Let
n é + +
-l () (BT T n—t ("7 hTt
b/(n 7) |:"P ( " o o o | +Y o o+ o o || dt.
n
5 2n 2n
f +
K+P_1 (P) n T n
# oty ("o " ) e
=hL+Dh
Now
n . N
Il :/(ﬂ—T)?+P*11II(p) (nz T o+ znT(72> aT
2n Ly _ n+t n—T n
= g R (2T 4 e )
0
2"(%4_}7_1) i {+k—2(p— n+T n—t
- - - — p—1)
(02 —07) /(n oY ( o T o 02) aT
4
_ 2 ey (Ot
0y — 01 2
mErp—1) | _
_M/W_T)%w—zxy(pfl) nET TN e
0y — 0 2n 2n

Again, by the integration by parts, we have

4 4
I 2nxtP w(p-1) ((71 +(72> _ 22”””(% +tr— 1)‘I’(k_2) (‘71 +Uz>

- 2 (02 —01)? 2

2,28 _1\(& _2n "

MRS +(p 1)(),(2+P 2) /(n s () <”2+n%1 T ”_Taz) d.
o —0

0
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Applying successive integration by parts up to x-times, we get

o () T (249)

6=1 (+xp)xd=1 \o2 — 7=0
—1)P 2 pp n . L B
e (o) [T sp=a) [r=0) (4 ) e
1

q
e L (=1)° 2\ (p-0) (0112
= (C +xp)xd-1 (Uz—Ul) ql:%(g-l-K(P_q))‘I’P ( 5 )

(~)PT(C+xp) (21 \P 7 (g (MET 1t
i KPI(2) <f72<71> O/(n_T)K hF( 2n o+ 2n 02>dr

_ew B (=)' +xp) 2 ‘ (r—0) (1T 2
- 921,{9—@@4_,((?7_94_1))<(02_01)> b ( 2 )

(—)PT@+xp)Te(E) [ 20 5 o,
xkP=1T(2) (02—01) Q@)Jﬂﬁ)'

Analogously, we have

n
g n—rt n+Tt
I - — ) etp—1y(p)
2 /(n 7) o ! + o 2 az
0
2n Ly 1) (N—T n+t "
= —_ kTP \P(p 1) -
02—01 (n=7) 2n o1t 2n 72 0
—1) _
+p / +p 2‘~F(p 1) 7’1—0—1 + n+Tg'2 ks
2n 2n
0
CHrp 1
= I g (01 +(Tz) 2P - Dy (pr-2) <‘71 +‘72)
0y — 01 2 (0’2 *0’1)2 2
2n2(& 4 p—1)( 2) —
s Y o1+ oy | dt
+ Gt +p )etr—3y(p-3) T ntT N4
(o —(71 / Zn 2n

i U C+Kp) ((72201)991_[(“1{(;? 7)o (‘7142“72>

q=0
1 2n \F L r { gy (N—T n+t
s () e+ sp=m) [ ¥ (Mo + T ) ar
P 2 0—1 ) o1 + 0
_nyige-e) (1t o2
; C+KPK91<02—01>H(€+K(}? 7Y < 2 )

kPL(G) \o—o

+1"(§+Kp)( 2 >p/(n—f)§1‘I’<n2_T o1+ ;T(Tz) dt
0
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<=1 . I'(+xp) 2 ¢ (p—0) (01 + 2
=—n ZK9*1F(C+K(p—9+1)) (0’2—0’1> ¥ ( 2 )

=1
rC+aped) [ 2\ .,
+ Kpflr(g) (02_0_1> ]U’1+ITZ (02)

Summing up I; and I, we have

i p
L+1 =”§TPF(§+KP) Y. (1

—1] < 2 )9T(p9)(¢71+02)
911"§+Kp 9+1)) ) — 07 2

+F(C+Kp)l";<(§)( 2 ) {]g’%@‘i’(tﬁ) (— )]501”2 ((71)}.

kP=1T(Z) o — 0

O

5. Some New Results for Predominating --Convex Functions in Settings of pth-Order
Differentiable Functions

Let A be an interval in real line R, and there is a differentiable mapping ¥ : A = [0, 02] CR — R
on the interior A° of A, also let 77(.,.) : R x R — R be a continuous bifunction.

Theorem 1. For n,p € N,x > 0, > 0, and let there be a differentiable mapping ¥ : A — R such that
01,07 € Awith oy > 01. If¥P) € Ly([0q, 0]) and [¥\P)| is a predominating h-convex function on A, then

Y(p,n,,x;01,02)(F)]
2D(e, 172)7‘”“"“

G+ px

< Di(pm, &) (2129 (01) [+ (12 P (02), [¥7)(0)) | +

where

_ é Cipafy(ntT n—t
W(p,n, g, x)= /n T) [h(Zn )—i—h( o )}d‘c.
0
Proof. By the given supposition, utilizing Lemma 1 and the modulus property, we have

Y(p, 1, 501,02) ()]
n
< [(n —T)‘ZﬁP*l\II(P) (B0 + 50y dr

(=}

n
+ [(n—1) S Ty(p P (1-Toq + T oy) dT

(==}

dt

< fn—oytr- 1[1‘1("”)&” o)l +1( %55 ) [P (@1)] + 5 (2P (02), [£1)(01))] +D(ex, )
0
+

Of"n—rfﬂ’ (25 1000+ (15 19 ) -+ 1 (¥ 02,149 (e2)] + Dlen, )|

< [21¥0)00)| + 5 ([¥9) (02), ]¥P) (1)) ] [n =) E501 [h(”;:) +h(”;)}dr
0
+2D(0q, 0%) } (n—1) +P—1d1’ (5)
0

:yl(p,n,g,x)[Z\‘Y ((71)|+;7(|‘~P( (02), [¥P) (o ))]4—2]1) 01,0, Ofnn—r ) tr=ldr,
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where
r g Kn e
— E+p_1 = .
O/(n T) dt [T e (6)

Substituting Equation (6) in Equation (5), we get the desired inequality of Equation (5). O

Now we shall discuss some remarkable cases of Theorem 1.
(I) If we choose i(T) = T, then we get a new result for predominating convex functions.

Corollary 1. For n,p € N,x > 0, > 0, and let there be a differentiable mapping ¥ : A — R such that
01,00 € Awith oy > 0. If¥P) € Ly([oy,02]) and [¥P)| is a predominating y-convex function on A, then

Y(p,n,¢,x;01,02)()]

{+xp
2Kkn «

~ (C+xp)

[2129 )]+ 0147 (02), [¥9) (00)] + Dler, ).

(II) If we choose hi(T) = 7°, then we get Breckner type predominating s-convex functions.

Corollary 2. Forn,p € N,x > 0, > 0, and let there be a differentiable mapping ¥ : A — R such that
01,00 € Awith oy > 0. f¥P) € Li([oy,02]) and [¥(P)| is a Breckner type predominating s-convex function
on A, then

IY(p,n,¢ x;01,00) ()]

< Ya(pn, ) [21¥ ) (00)| + (1P (02), [¥9) (1)) | +

where

0

_|_
N
=
R
Iy
h‘
N———
w
|
[
,_]

Ctx(p+s)

1 Kn & Ltx(p+s) C+xp
= 2 B
(2n)s [Q—i—x(p—i—s) +(2n) K

(I1I) If we choose fi(T) = T~ %, then we get Godunova-Levin predominating s-convex functions.

Corollary 3. For n,p € N,x > 0, > 0, and let there be a differentiable mapping ¥ : A — R such that
01,00 € Awith oy > 0q. If ¥(®) € Li([o1, 0]) and [¥P)| is Godunova—Levin type predominating s-convex
function on A, then

IY(p,n,¢,x;01,00) ()|

4
2ID)((71,0'2)K1’1#

¢+ px

< apm, &) [212 9 (01) [+ (129 (02), [¥7)(0)) | +
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where

Ya(p,n,8,5) /71<”‘T>g+p1[(n;f)s () Jar
0
{+x(p—s)

_ s| xnx CHx(ps) {+xp
— (2n) [MP_S)+(2n) By (ST, —s—l—l)}

(IV) If we choose 11(T) = 1, then we get predominating P-7-convex functions.

Corollary 4. For n,p € N,x > 0, > 0O, and let there be a differentiable mapping ¥ : A — R such that
01,00 € Awith oy > 01. IfYP) € Ly([0q,0]) and [¥(P)| is a predominating P-convex function on A, then

|Y(pr n, é/ K,01, 02)(1P)|

C+Kp
Kn

T {+px

|21 @)1+ 114902, [¥9 (00)] + 2D(er, )|

(V) If we choose D(cq,07) = —(Zn)%{(n —1)n+1)+ (n—1)(n+ 1)%} (02 — 07)?, then we get
higher-order strongly #-convex function for a given arbitrary non-negative function #.

Corollary 5. For n,p € N,x > 0, > 0, and let there be a differentiable mapping ¥ : A — R such that
01,07 € Awith oy > 0. IF¥P) € Ly([oy, 02]) and |¥P)| is a higher-order strongly -convex function for a
given arbitrary non-negative function i on A, then

Y(p,n, 8,501, 02) (9)
< Di(pm, &) 2129 (01)| 4+ (1FP (02), [¥7) (01)]

N a)e["”w + (o) (SRR ED o4y
2TV k(p o+ 1) By K ¢ ’

where

B zﬂ,,l n+7t n—T
W(p,n, g x)= 'O/n T) [Fz( o )—l—h( o )}d”{.
(VI) If we choose 1(T) = T along with D(cy,02) = —W{(ﬂ —1)0°(n+1)+(n—1)(n+ 1)} (02 —
01)¢, then we get higher-order strongly #-convex functions.
Corollary 6. For n,p € N,x > 0, > 0, and let there be a differentiable mapping ¥ : A — R such that

01,00 € Awith oy > 1. If¥YP) € Ly([0q,0]) and [¥\P)| is a higher-order strongly yj-convex function on
A, then

X (p,n, g, x;01,02) (%)

Cinp
2kn
<ZZ " o1y w(p) g (p)
< oy 2V @01+ (0 2,190 @) |
{+x(ptotl)
2 of M ¥ Shrlptetl) o w
(Zn)QJrl( ) [€+K(P+Q+1)+(2n) 2( ,Q+1)}.
(VII) If we choose hi(t) = 7° along with D(oy,02) = —7(271?;@“{(11 —)m+1)+n—1)(n+

T)¢} (02 — 01)%, then we get a Breckner type of a higher-order strongly (7, s)-convex function.
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Corollary 7. For n,p € N,x > 0, > 0, and let there be a differentiable mapping ¥ : A — R such that
01,00 € A with oy > o1 IF¥W) € Ly([oy,05]) and |¥(P)| is a Breckner type of a higher-order strongly
(1, s)-convex function on A\, then
Z+x(p+s)
1 Kn-— « Ttr(p-ts) C+xp
2 B
e @) o

X [21¥0) ()] 4+ ([ ¥ (02), [¥9) (01))

Y (p,n,g,1;01,00)(F)| <

{+x(p+o+1)
n K

. Y P L Gnlprest) b (A r(p 1)
(2n)et1 (02 —01) [g—i-;((p—l—g—i—l) +(2n) B%( K 'Q+1)}'
(VIII) If we choose hi(t) = 7~° along with D(0y,0,) = —W{(ﬂ —1)n+1)+(m—1)(n+

T)%}(0p — 01)¢, then we get Godunova-Levin type of a higher-order strongly (7, s)-convex function.

Corollary 8. For n,p € N,x > 0, > 0, and let there be a differentiable mapping ¥ : A — R such that
01,00 € A with oy > 07. If‘I’(P) € L([o1,02]) and [¥P)| is a Godunova—Levin of a higher-order strongly
(1, s)-convex function on A, then

1Y (p,n,,x;01,02)(Y)| < (m)ﬂ% n (zn)wB%(HTKPI —S—i—l)}
x {2|t1f(p) (o) + 1 ([¥P) (), [¥1P) (Ul))}
_(2112)}2“(02 —01)° [% + (2@%13% (%Q i 1)]
(1X) 1f we choose (t) = 1along with D(01,02) = — oo {(n = 1)2(n +7) + (n = T) (n +7)%} (0 -

01)¢, then we get higher-order strongly 1-P-convex function.

Corollary 9. For n,p € N,x > 0, > 0, and let there be a differentiable mapping ¥ : A — R such that
01,00 € Awith oy > 01. If¥P) € Ly([o1,05]) and [¥P)| is a higher-order strongly -P-convex function on
A, then

gt+xp
Y(pn i) (9] < 2 2080 @)+ (Y0 (02, 10 (@) |
+x(p+o+1)
I vy B < L Clprory) o G+ K(p A1)
(2n)et1 (o2 —01) [g—i-;((p—l—g—i—l) +(2n) B%( K 'Q+1)}'
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Theorem 2. Forn,p € N,x > 0, > 0, and let there be a differentiable mapping ¥ : A — R such that
01,00 € Awith oy > 01. IF¥P) € Ly ([0, 05)) and |¥P)|%1, &, > 1 is a predominating h-convex function on
A, then

1Y (p,n, g, x;01,02)(F)]

01(€+K(p 1))+x
< (strpmo) [{ (05

+h("2+,f) [0 (01) 2 4+ (419 ) 2, ) <01>|‘52>}>“ o) } 52

P)(07)|2

+{/n<h(n2+T)|‘I’ 4" ) [l 0 (F o), 7 o))

0
1

+n]]])((71,02)}02].

Proof. Since [¥(P)|%1 is a predominating fi-convex function on A, utilizing Lemma 1 and the
well-known Holder inequality, we have

X (p,n,8,x;01,02)(F)]

n

< </(n—T) Bt Ddr) |
0
+(/(n—r)‘sl(g+’”—1)dr) ' (0/

b‘b—\
/N
—=
ot
=
/~
=
2
=
ﬁl
2
+
=
R+
N
S~
Ng
[u
r*]
N~
INs

0

= (‘Sléix(pk—l))+,{>51 [{/(Fl(nz_n’r)ry(lq)(alﬂéz

+h(n2J;T) [\‘Y(”)(U1)|52 +17 (P (o) 12, ¥ P) (o) |52)DdT + nD(ey, 02) } ’

+{/n<h(”;T)|\P< ()l +n("

0
1
%
+n]]])((71,(72)} ],

the required result. O

)P @) 4+ (F0 (o), ¥ (m)i‘sz)D‘”

Now we shall discuss some remarkable cases of Theorem 2.

(I) If we choose i(T) = T, then we get predominating convex functions.
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Corollary 10. Forn,p € N,x > 0, > Oand let ¥ : A — R be a predominating convex function such that
01,00 € Awith oy > 1. IF¥WP) € Li([oq, o)) and [¥P)|%1, 6, > 1 is a predominating convex function on
A, then

Y(p,n,¢,1;01,00) ()]

3 (THx(p—1))+x

L g e () () 152
= (51(€+K(p—1))+x) l<4|‘ffp(01)|

[ @l + (1P ) ¥ o) )] ) + ”D(‘”’”)}JZ

3 N
+{ZT<P><01>|"2 + 5 [P @)= 40 (3P (@) 2, ¥ ) <al>|52>})
1

+HD(0'1,0'2)}§2].

(II) If we choose h(T) = 7°, then we get Breckner type predominating s-convex functions.

Corollary 11. For n,p € N,x > 0,7 > 0, and let there be a differentiable mapping ¥ : A — R such that
01,00 € Awithoy, > 07. If‘I’(p) € Li([oq,02)) and [¥P)|%1, 8, > 1 is a Breckner type predominating s-convex
functions on A, then

|Y(P, n, g/ K; 01102) (\F)|

31 (G Hx(p—1))+x
n I3

: (51<5+K<p_1>>+,()51

{25(5”4_1)&(;7)(01”52

1

m ([ (@l + (10 02) &, 30 01) )] ) + ”M‘“’”)} |

25(s+1) (s+1)
+nI[D((71,(72)}52].

(I1I) If we choose 1i(T) = 7%, then we get Godunova-Levin type predominating s-convex functions.

+{ <”(25H_1)|\y(p)(m)|5z + % [|\F(F’)(gl)|5z + 7 (FP) (o) %2, ¥ ) (Ul)éz)])
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Corollary 12. Forn,p € N,x > 0,0 > 0, and let there be a differentiable mapping ¥ : A — R such that
01,00 € Awith oy > 0. IF¥P) € Li([oy,02]) and [¥P)|%1, 81 > 1 is a Godunova-Levin type predominating
s-convex function on A, then

Y(p,n,C,1;01,02) ()|

PRLUSETE TSN
< : y(p) %
< (sarmomTs) Hl—s' (@)l

25n (2175 - 1)
1-—s

(¥ + (20 )| 70 @)|)] ) + ”D(‘”"”)}&Z

1-—s 1-—s

1

+n]1)(c71,c72)}02].

N { 2@ 1) ) gy 4 2T [P (1) %2+ (37 <az>|‘5z,lf(”<fn>l‘”)])

(IV) If we choose 11(T) = 1, then we get predominating P-convex functions.

Corollary 13. Forn,p € N,x > 0,7 > 0, and let there be a differentiable mapping ¥ : A — R such that
01,00 € Awith oy > 01. IF¥P) € Ly ([0, 02]) and [¥P)|%1, 5, > 1is a predominating P-convex function on
A, then

|Y(p, n, g/ K; 01102) (TN

31 (G Hx(p—1))+x
K

< (mgix(p— ) +K>1

{ <|‘P<P> (o))

+ [P 01) 2 + 5 (¥ (02)|§21‘Y(p)(f71)|52)D - nmm,az)}

1=

+{‘1’(”)(01)|‘52 + [[¥7 @)% + 5 (2P (02) |2, ¥V <al>"‘2>})

%
+n]D>((71,c72)} .

(V) If we choose D(0q,07) = —(2,1)% (n—1)n+71)+ (n—1)(n+1)%} (02 — 07)?, then we get

higher-order strongly #-convex function for a given arbitrary non-negative function #.
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Corollary 14. For n,p € N,x > 0,0 > 0, and let there be a differentiable mapping ¥ : A — R such that
01,00 € Awith oy > 1. If¥W) € Li([o1,00]) and [¥P)|1, 8, > 1 is a higher-order strongly y-convex
function for a given arbitrary non-negative function i on A, then

Y(p,n,C,5;01,00) ()]

3 (THx(p—=1))+x

Kn [3 % E () 5,
= (51(C+K(p—l))+x) [<4|Tp(‘71)|

+?an [\‘Y(p)(m)l% +17(¥P) (0n)]%2, ¥ P ((71)|52)D

2np(o — 02)° 2
(0+1)(e+2)

+{‘°’jw< (@) + 5 [EP @)l () 02) 2,0 1)) )

_ 2np(or — 02)° %
(e+1)(e+2)

(VI) If we choose hi(t) = T along with D(cq,07) = —(zm%{(n —1)0°n+1)+(n—1)(n+ 1)} (07 —

01)¢, then we get higher-order strongly 1-convex functions.

Corollary 15. For n,p € N,x > 0,7 > 0, and let there be a differentiable mapping ¥ : A — R such that
01,00 € A with oy > 01 If¥W) € Li([o1,00]) and [¥P)|%1,6, > 1 is a higher-order strongly y-convex
function on A, then

|Y(p, n, g/ K; 01102> (‘F)|

31 (G Hx(p—1))+x

< (sermomT) l(zx'w)((’”'&z
2npu(oy — )}‘512

3” 2 2 2
3 [P @) 4 (20 (@)l 7 ey) )] ) - 2R

+{31|‘P< (01)1% + 5 [[¥P) (@) 4+ (¥P) (02) |2, ¥ ) () %) )
CESVICESY

(VII) If we choose h(t) = 7° along with D(oy,02) = —W{(m —1)em+1)+n—-1)(n+
T)¢}(0p — 01)?, then we get Breckner type of a higher-order strongly (7, s)-convex function.
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Corollary 16. For n,p € N,x > 0,0 > 0, and let there be a differentiable mapping ¥ : A — R such that
01,00 € Awith oy > o1 If¥W) € Li([o1,00]) and [¥P)|%1,8, > 1 is a Breckner type of a higher-order
strongly (1, s)-convex function on A, then

Y(p,n,8,1;01,00) ()]

3 (THx(p—1))+x
3

by " 2
< (51(§+K(p -1))+ K) {ZS(erl)W(p) CAIR

n(25+1 — ; n
+{ (Mo Pl + g [P e+ (F P ) ¥ )] )

_ 2np(or — 02)° %
(e+1)(e+2) '

(VIII) If we choose h(t) = 77° along with D(oy,07) = _(2'1)% m—1)0m+7)+(n—1)(n+

T)%}(0p — 01)¢, then we get Godunova-Levin type of a higher-order strongly (7, s)-convex function.

Corollary 17. For n,p € N,x > 0,0 > 0, and let there be a differentiable mapping ¥ : A — R such
that 01,00 € A with 0 > 07. If‘I’(F’) € Li([oq,02]) and [¥P)|%1, 6, > 1 is a Godunova—Levin type of a
higher-order strongly (1, s)-convex function on A, then

Y (p,n,8,1;,01,00) (F)]

an % 25,
) ; ¥ () |52
_(51(§+K(P—1))+K> Hl‘s| )

Sy 1-s n _ %
A [0 )l + (20 )|, 30 ) )] ) - M}

2n(2'~° —1 2
+{n(1_s)|11;(p)(0_1)|52 +- _”S [|\}f(l’) ()| 45 (P (02)|52,‘I’(”)(01)|52)]>

1

2np(o —0)? | 2
(e+1)(e+2) '

(IX) If we choose 1i(T) = 1 along with D(0y,07) = —(Zn)%{(n —1)0mn+1)+(n—1)(n+ 1)} (00 —
01)?, then we get higher-order strongly #-P-convex function.
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Corollary 18. For n,p € N,x > 0,0 > 0, and let there be a differentiable mapping ¥ : A — R such that
01,00 € Awith oy > 1. If¥P) € Li([o1, 0]) and [¥P)|%, 8, > 1 is a higher-order strongly n-P-convex
function on A, then

IY(p,n,¢,;01,02) ()]

0 (ZHx(p—1))+x

(Y (e
() A

[P @) (P ) ¥ ) )] ) -

IN

2np(oq — 02)° 5
(e+1)(e+2)

+{ ¥ )1+ (20 @)l (4P o) ¥ P o) )]

1
2np(or — ) | 2
(e+1)(e+2) [ |
Theorem 3. For n,p € N,x > 0, > 0, and let there be a differentiable mapping ¥ : A — R such that
01,00 € Awith oy > 1. IFYWP) € Ly([oq, 02]) and |¥P)|° is a predominating h-convex function on A, then

Y (p, 1,8, 1;01,02) (%)

< Hyi‘(éfn,K,p)I‘F(”)(Ol)VZ+37£‘(C,n,1<,p)[I‘I’(")(Ul)Vz+77( ¥ (02) 2,10 01) ) )

Ch(p=1)+x N\ 2=
KD((7110'2)1151(Z+ € ey 2
a(C+x(p—1)) +x

+{y;<é, % PP+ 3 () [P )40 (F0) (@)l 20 (00)])] )

1

9 (Hx(p=1))+x N 55
KD(o, 05)n R
51§ +x(p—1)) +x

4

where

91 (G+x(p=1)) —
(1’1—‘[)1 = h(n T)d’r

Vi nxp) = =

St~

and

§+Kp1> n+Tt
Y5 (g, n,x,p): /n—T h( . )dT.
0
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Proof. Since [¥(")|% is a predominating fi-convex function on A, utilizing Lemma 1 and the
well-known Hélder inequality, we have

Y(p,n,,x;01,0)(F)]
1 n \®
< J . / 2n 2n

Loz (n—1)

1 % f s n+Tt n—rt % %
+</d1’) /(n — )8+ 1g(p) ( o+ 02> dt

J n J 2n 2n

n
_ e G- (5 (P =T g (0) () (6
< {O/< ) (h( ) ) (o)
S E+K(p=1)+x \ 5
n+t (p) & (») & wip) 5 kD (o1, 02)n x 2
(g ) [P @01 (20 02) 2, X0 00) )| e+ 5B

r iy, n—t
+{/(n+r)51(x+r) 1) (h<2n)|qf(p)(al)5z
0

n—t kD(c a)n(sl(gﬂ(ﬁ_l)w &
+h ("o )[|‘P<P><al>|52+n(‘P<”><az>|‘52,‘f<'”<al>|‘52>})dr+ RS } ]

{m, % DY 002 4 35, p) [P )2 40 (F0) (@) 20 (0)]%)] )

L r(p-1)+x \
KD(Ul,(TZ)ﬂ% %)
0 +x(p—1)) +x

+{y; (€ DY @)% 4 V7 () YO o0 4 0 (F P 2) 2, 4P 00) )] )

. B o L
KIDD((TL(Tz)nOl(g+ (f ey 5
o(C+x(p—1)) +x

4

the required result. O

Remark 2. The similar cases can be obtained easily from Theorem 3 by adopting the same technique as we
have done for Theorem 1 and Theorem 2 by utilizing the assumptions of predominating hi-convex functions and
suitable choices of function h(.).

6. New Generalizations for Predominating Quasiconvex Functions for pth-Order
Differentiable Function

In this section, we discuss the main results of predominating quasiconvex functions via pth-order
differentiability by employing Definitions 7, 9, and Lemma 1.

Theorem 4. For n,p € N,x > 0, > 0, and let there be a differentiable mapping ¥ : A — R such that
01,00 € Awith oy > 01 If¥P) € Ly([oq, 0]) and [¥P)| is a predominating quasiconvex function on A, then

1Y (p,n,g,1;01,00)(Y)|

Cxp

<25 ) | max { ), [P o) + (¥ (02,140 (01))] + Dler, )|
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Proof. Since [¥()|is a predominating quasiconvex function on A, utilizing Lemma 1 and the modulus
property, we have

Y (p, 1,8, 5;00,02) (F)]
n n
< O/(n L 12 (n;Tm + nz_nTUz> dt+ O/(n — 1)k trly() <n2_nT01 + H;Tm) dt

< [or=o8r [max {90 @), [0 @)+ 1 (¥ P 0), 19 @2)] | + Dlen, )
0

+ /(n s [max { ¥ ()], [[¥P)(02)] + 1 (1FP) (1), [¥P) (02))] } + D(Ul,az)} dt
0

=255 ) | max {40 @l 190 @)+ 1 (¥ (00, 119 (e2)]} + Do)

the requuired result. O

Some special cases of Theorem 4 can be discussed as follows.
(I) If we choose D(cq,0%) = —(271)%{(11 —1)°m+71)+ (n—1)(n+ 1)} (02 — 07)?, then we get
higher-order strongly #-quasiconvex function.

Corollary 19. Forn,p € N,x > 0,7 > 0, and let there be a differentiable mapping ¥ : A — R such that
01,07 € Awith oy > 01. If¥P) € Ly([oy,02]) and [¥P)| is a higher-order strongly y-quasiconvex function
on A\, then

\Y(p,n,gé,K;Ullaz)(‘F)l
ﬂ
<2(2) [max { £ @) (¥ e2)| + (170 e1), 140 ()]
C+x(p+o+1)
2, x({+x 209 & CHr(ptotl) K 1
~ e (”Z_Ul)g{ oy + @ By(RRE )’QH)}"
(II) 1f we choose D(07,0%) = —W{(n —1)n+71)+ (n—1)(n + 1)} (02 — 07)? along with

1(¥ (), ¥(01)) = ¥(02) — ¥(01), then we get higher-order strongly quasiconvex function.

Corollary 20. For n,p € N,x > 0,7 > 0, and let there be a differentiable mapping ¥ : A — R such that
01,00 € Awith oy > 0q. IF¥P) € Ly ([0, 02]) and [¥\P)| is a higher-order strongly quasiconvex function on

A, then
‘Y(p, n, gr K; UlrUZ) (T)|

Ctrp

<2(e5 ) [{ 10 @)l + 180 @)

gtx(pto+l)
_ 2 _ K(C+x(ptot2))n & trlprotl)
et (72 ‘71)g{ Crprer Grtpray T (1) B

1
2

(S g+ 1) }
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Theorem 5. Forn,p € N,x >0, > 0,6, > 1, and let there be a differentiable mapping ¥ : A — R such
that 01,05 € A with oy > o1. If¥P) € Ly ([0, 02]) and [¥P)|%2 is a predominating quasiconvex function on
A, then

Y(p,n,C,1;01,02) ()|

L » 1 (T+x(p=1)+K) q
(C+x(p—1)+x)

1

x <max {|‘F(p)(f72)|52/ [P (0)|% + 5 (129 (01)[2, [¥9) (0) )] } 4 D(al,m) B

Proof. Since |[¥(P)|% is a predominating quasiconvex function on A, utilizing Lemma 1 and the
well-known Hélder inequality, we have

‘Y(p/n/ng;Ullo-Z)(TH
n n
[ n+T n—T [ n—T n+T
< _ )etr—1ly(p) / _ )etr—1y(p)
_/(n T) b4 o o1+ " o )dt+ [(n—1) Y 7 o1+ o oy | dt
0 0
" -
< 2(/(n _7)51(§+p1)d7) !
0

1

x (/ <max{|‘1’(p)((72)|‘52, [|‘P(”)((72)]‘52+17(|‘I’(”)((71)|‘52,|‘I’(”)((72)|52)]}+]D>((71,(72)>d7> i

0
0 (T+x(p=1)+K) 1

252( Kn 3 )%
VY (R Yy

x (max {I‘I’(”)(Uz)VZ/ (W) (02) 1+ (1FW) (1) |, ¥ (02)[2)] } + D(UL@)) g

the required result. [

Some special cases of Theorem 6 can be discussed as follows.
(I) If we choose D(0y,07) = —(Zn)%{(n —1)°m+71)+ (n—1)(n+ 1)} (02 — 07)%, then we get
higher-order strongly #-quasiconvex function.

Corollary 21. Forn,p € N,x > 0,{ > 0,0, > 1, and let there be a differentiable mapping ¥ : A — R such
that 01,07 € A with oy > 01. [f¥P) € Ly([0q,03]) and [¥P)|%2 is a higher-order strongly y-quasiconvex
function on A, then

1Y(p,n, ¢ x;01,02)(F)]

L 51(§+K(p71)+1<>
S n K
<2n® (

51(C+K(p—1>+K)>

x ( max { [¥7 (@)% [1¥17)(c2) |2+ 1 (%17 (o), [ 1) )] )] |

_Anp(on —1)° g
(e+1)(e+2)
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(II) If we choose D(01,02) = —t{(n —1)%(n+ ) + (n — T)(n + 7)?} (02 — 1) along with

(2n)ett

1(¥(02),¥(01)) = ¥(02) — ¥(071), then we get higher-order strongly quasiconvex function.

Corollary 22. For n,p € N,x > 0,0 > 0,0, > 1, and let there be a differentiable mapping ¥ : A — R
such that oy, 05 € A with 0y > 0. If‘I’(F’) € Li([oq, 02)) and [¥(P)|%2 is a higher-order strongly quasiconvex
function on A, then

|Y(p/ n, g/ K; 0110'2) (T)l

81 (G +x(p—1)+x)
K

<2 (579

1
_ 0\ %2
Xow@waﬁ+wwka%—Mw@zaﬂ> |

(e+1)(e+2)

Theorem 6. Forn,p € N,x > 0, > 0,06, > 1, and let there be a differentiable mapping ¥ : A — R such
that 0y, 05 € A with oy > 1. IfYP) € Li([oq, o)) and |¥P)|% is a predominating quasiconvex function on
A, then

Y(p,n,C,1;01,02)(F)|

0 (THx(p—1)+K) 1
3

SM%(&@+Mp—n+m)ﬁ

x (max {I‘I’(”)(Uz)VZ/ (W) (02) | + 5 (1W) (1) |, €7 (0)[2)] } + D(UL@)) )

Proof. Since |¥(P)|%2 is a predominating quasiconvex function on A, utilizing Lemma 1 and the the
well-known Hélder inequality, we have

1Y(p, 1,8 % 01,02) ()]
n n
< [(n- T)%“’*l‘Y(F’) (5o + 5 fon) dT + [(n — T)%“’*l‘}’“’) (%Eor + 50 dT
0 0
1

n -5
<2 ( [(n— r)<§ﬂ’*1)dr) K
0

1

x (f (1 — 7)1 (max{|v<P> (02)|%, [ (@) + 1 ([P (07) |, [P (0) )] } +D<al,az>)dr) §
0

ThRp \ 1— 5
—ofxn ¥ 5
( CHrp >

1
)

x (maX{I‘Y“’)(Uz)‘SZ, [[¥0) (2) |+ (1¥ W) (01) |2, [¥P)(0)[2) ] } + D(Ulﬂz)) ,

the required result. [

Some special cases of Theorem 6 can be discussed as follows.

(I) If we choose D(0q,0%) = —W (n—1)°n+1)+ (n—1)(n+1)%} (02 — 07)¢, then we get

higher-order strongly #-quasiconvex function.
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Corollary 23. Forn,p € N,x > 0, > 0,0, > 1, and let there be a differentiable mapping ¥ : A — R such
that 01,0 € A with oy > o1. If¥P) € Ly([o,0]) and [¥P)|%2 is a higher-order strongly y-quasiconvex
function on A, then

[Y(p,n, ¢, K 00,0)(F)]

z;+xp )
kn e \1-5 N
<€+ - 5 (max P) ()%, [[¥P) (02) |2 + 57 (JEP) (01)]%2, ¥ P) (‘72)|‘52)}}
1
dnp(oy —1)? )
(e+1)(e+2)
(II) If we choose D(0q,0%) = _(an)lﬁ{(n —1)°(n+1)+ (n—1)(n+7)°} (02 — 07)? along with

1(¥(02),¥(01)) = ¥(02) — ¥(07), then we get higher-order strongly quasiconvex function.

Corollary 24. For n,p € N,x > 0, > 0,0, > 1, and let there be a differentiable mapping ¥ : A — R
such that 01,09 € A with oy > 07. f ¥P) € Ly ([0, 02]) and [¥P)|%2 is a higher-order strongly quasiconvex
function on A, then

‘Y(p/n/g/K;U_LUZ)(TH
GHkp 1 (%
kn x N\ dnp(oy —07)? | 2
2 2 | |g(p) & 4 [y(p) oy _ A —01)" ) T
=) <' I+ ) = G e +2)

7. Conclusions

A new concept of predominating #i-convex function with respect to # with different kinds of
convexities is presented. Meanwhile, we established an auxiliary result for pth-order differentiable
functions. Moreover, we established numerous novel outcomes for predominating 7-convex function
for pth-order differentiability and predominating quasiconvex functions. Here, we accentuate that all
the determined results in the present paper endured preserving for higher-order strongly #-convex
functions that can be perceived by the one of a kind estimations of ¢ and u. The newly introduced
numerical approximation will use to solve for parallelogram law in Banach space. We expect that
these innovative techniques of this article will stimulate the specialists studying in functional analysis
(uniform smoothness of norms in Banach space) in [43—45]. This is a new path for futuristic research.
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