
symmetryS S

Article

A New Filter Nonmonotone Adaptive Trust Region
Method for Unconstrained Optimization

Xinyi Wang 1, Xianfeng Ding 1,2,* and Quan Qu 1

1 School of Science, Southwest Petroleum University, Chengdu 610500, China;
201821000481@stu.swpu.edu.cn (X.W.); 201921000533@stu.swpu.edu.cn (Q.Q.)

2 School of Artificial Intelligence, Southwest Petroleum University, Chengdu 610500, China
* Correspondence: dingxianfeng@swpu.edu.cn; Tel.: +86-133-0823-8057

Received: 17 December 2019; Accepted: 21 January 2020; Published: 2 February 2020
����������
�������

Abstract: In this paper, a new filter nonmonotone adaptive trust region with fixed step length for
unconstrained optimization is proposed. The trust region radius adopts a new adaptive strategy to
overcome additional computational costs at each iteration. A new nonmonotone trust region ratio is
introduced. When a trial step is not successful, a multidimensional filter is employed to increase the
possibility of the trial step being accepted. If the trial step is still not accepted by the filter set, it is
possible to find a new iteration point along the trial step and the step length is computed by a fixed
formula. The positive definite symmetric matrix of the approximate Hessian matrix is updated using
the MBFGS method. The global convergence and superlinear convergence of the proposed algorithm
is proven by some classical assumptions. The efficiency of the algorithm is tested by numerical results.

Keywords: unconstrained optimization; adaptive trust region; nonmonotone; filter; convergence

1. Introduction

Consider the following unconstrained optimization problem:

min
x∈Rn

f (x), (1)

where f :Rn
→ R is a twice continuously differentiable function. The trust region method is one of the

prominent classes of iterative methods. At the iteration point xk, the trial step dk is obtained by the
following quadratic subproblem:

min
d∈Rn

mk(d) = gT
k d +

1
2

dTBkd, (2)

‖d‖ ≤ ∆k

where ‖.‖ is the Euclidean norm, fk = f (xk), gk = ∇ f (xk), Gk = ∇
2 f (xk), Bk is a symmetric

approximation of Gk, and ∆k is a trust region radius. The most ordinary ratio is defined as follows:

ρk =
fk − f (xk + d)

mk(0) −mk(dk)
, (3)

Generally, the numerator is referred to as the actual reduction and the denominator is known as
the predicted reduction.

The disadvantage of the traditional trust region method is that the subproblem needs to be solved
many times to achieve an acceptable trial step in one iteration. To overcome this drawback, Mo et
al. [1] first proposed a nonmonotone trust region algorithm with a fixed step length. When the trial

Symmetry 2020, 12, 208; doi:10.3390/sym12020208 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-0275-1292
http://dx.doi.org/10.3390/sym12020208
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/2/208?type=check_update&version=2

Symmetry 2020, 12, 208 2 of 13

step is not acceptable, we use a fixed step length to find a new iteration point instead of resolving the
subproblem. Based on this advantage, Ou, Hang, and Wang have proposed a trust region algorithm
with fixed step length in [2–4], respectively. The fixed step length is computed by

αk = −
δgT

k dk

dT
k Bkdk

, (4)

It is well known that the strategy of selecting a trust region radius has a significant impact on
the performance of the trust region methods. In 1997, Sartenaer [5] presented a strategy which can
automatically determine an initial trust region radius. This fact leads to an increase in the number
of subproblems to be solved in some problems, thereby reducing the efficiency of these methods. In
2002, Zhang et al. [6] provided another scheme to reduce the number of subproblems that need to
be solved, where the trust region radius uses: ∆k = cp

‖gk‖‖B̂−1
k ‖, B̂k = Bk + iI, where i ∈ N. Zhang’s

strategy requires an estimation of the inverse of the matrixes Bk and B̂−1
k in each iteration; however,

Li [4] has suggested another practically efficient adaptive trust region radius that uses ∆k =
‖dk−1‖
‖yk−1‖

‖gk‖.
The strategy requires not only the gradient value but also the function value. Inspired by these facts,
some modified versions of adaptive trust region methods have been proposed in [7–10].

As we all know, monotone techniques may slow down the rate of convergence, especially in the
presence of the narrow curved valley. The monotone techniques require the value of the function to be
decreased at each iteration. In order to overcome these disadvantages, Deng et al. [11] proposed a
nonmonotone trust region algorithm in 1993. The general nonmonotone term fl(k) is defined by

fl(k) = f (xl(k)) = max
0≤ j≤m(k)

{ fk− j}k = 0, 1, 2, . . . , (5)

where m(0) = 0, 0 ≤ m(k) ≤ min
{
N, m(k− 1) + 1

}
, and N ≥ 0 is an integer. Deng et al. [11] modified

the ratio (3) which evaluates the consistency between the quadratic model and the objective function
in trust region methods. The most common nonmonotone ratio is defined as follows:

ρ̃k =
fl(k) − f (xk + dk)

mk(0) −mk(dk)
(6)

The general nonmonotone term fl(k) suffers from various drawbacks, such as the fact that numerical
performance is highly dependent on the choice of N. In order to introduce a more suitable nonmonotone
strategy, Ahookhosh et al. [12] proposed a new nonmonotone ratio as follows.

ρ̂k =
Rk − f (xk + dk)

mk(0) −mk(dk)
, (7)

where
Rk = ηk fl(k) + (1− ηk) fk, (8)

in which ηk ∈ [ηmin, ηmax], with ηmin ∈ [0, 1), and ηmax ∈ [ηmin, 1]. We recommend that interested
readers refer to [13,14] for more details and progress on the nonmonotone trust region algorithm.

In order to overcome the difficulties associated with using the penalty function, especially the
adjustment of the penalty parameter. The filter methods were recently presented by Fletcher and
Leyffer [15] for constrained nonlinear optimization. More recently, Gould et al. [16] explored a
new nonmonotone trust region algorithm for the unconstrained optimization problems with the
multidimensional filter technique in [17]. Compared with the standard nonmonotone algorithm, the
new algorithm dynamically determines iterations based on filter elements and increases the possibility
of the trial step being accepted. Therefore, this topic has received great attention in recent years
(see [18–21]).

Symmetry 2020, 12, 208 3 of 13

The remainder of this paper is organized as follows. In Section 2, we describe a new trust region
method. The global convergence is investigated in Section 3. In Section 4, we prove the superlinear
convergence of the algorithm. Numerical results are shown in Section 5. Finally, the paper ends with
some conclusions in Section 6.

2. The New Algorithm

In this section, we propose a trust region method by combining a new trust region radius and the
modified trust region ratio to effectively solve unconstrained optimization problems. In each iteration,
a trial step dk is generated by solving an adaptive trust region subproblem,

min
d∈Rn

mk(d) = gT
k d +

1
2

dTBkd, (9)

‖d‖ ≤ ∆k := ck‖gk‖
γ, (10)

where 0 < γ < 1 and ck is an adjustment parameter. Prompted by the adaptive technique, the proposed
method has the following effective properties: it is not necessary to calculate the matrix of the inverse
and the value of each iteration point, and the algorithm also reduces the related workload and
calculation time.

In fact, the matrix Bk is usually obtained by approximation, and the subproblems are only solved
roughly. In this case, it may be more reasonable to adjust the next trust radius ∆k+1, not only according
to ρ̂k, but also by considering the use of

{
ρ̂k−m, . . . , ρ̂k

}
. To improve the efficiency of the nonmonotone

trust region methods, we can define the modified ratio formula based on (7) as follows:

ρ̂′k =
min{k,m}∑

i=1

wkiρ̂k−i+1, (11)

where m is a positive integer and wki is the weight of ρ̂k−i+1, such that
min{k,m}∑

i=1
wki = 1.

More exactly, ρ̂k can be used to determine whether the trial step is acceptable. Adjusting the next
radius ∆k+1 depends on (11), thus ck is updated by

ck+1 =


min

{
β2ck, cmax

}
if ρ̂k

′
≥ µ2

ck if µ1 ≤ ρ̂k
′ < µ2

β1ck if ρ̂k
′ < µ1

, (12)

In what follows, we refer to ∇ f (xk) by gk = g(xk). When an i− th component of gk is needed, we
denote it using gi(xk). Based on this filter, we say that an iterate point x1 dominates x2 if, and only if∣∣∣gi(x1)

∣∣∣ ≤ ∣∣∣gi(x2)
∣∣∣ ∀i = 1, 2, . . . , n. (13)

A multidimensional filter F is a list of n-tuples of the form (g1(xk), g2(xk), . . . , gn(xk)), such that∣∣∣g j(xk)
∣∣∣ ≤ ∣∣∣g j(xl)

∣∣∣ j ∈ {1, 2, 3, . . . , n}, (14)

where gk, gl belong to F.
For all g(xl) ∈ F, a new trial point is acceptable if there exists j ∈ {1, 2, 3, . . . , n}, such that∣∣∣g j(xk)

∣∣∣ ≤ ∣∣∣g j(xl)
∣∣∣− γg‖g(xl)‖ γg ∈ (0,

1
√

n
) , (15)

If the iterate point x+k is acceptable, we add g
(
x+k

)
to the filter. Meanwhile, we remove all the

points which are dominated by x+k from the filter. In the general filter trust region algorithm, for the

Symmetry 2020, 12, 208 4 of 13

trial point x+k satisfying ρ̂k < µ1, we verify whether it is accepted by filter F. In our algorithm, it is the
trial point x+k that satisfies 0 < ρ̂k < µ1, and verifies whether or not it is accepted by the filter F.

Our discussion can be summarized as the following Algorithm 1.

Algorithm 1. A new filter nonmonotone adaptive trust region method.

Step 0. (Initialization) An initial point x0 ∈ Rn and a symmetric matrix B0 ∈ Rn
×Rn are given. The constants

0 < µ1 < µ2 < 1, 0 < ηmin ≤ ηmax < 1, τ > 0, N > 0, ε > 0, ηmin ∈ [0, 1) and ηmax ∈ [ηmin, 1) are also given.
Step 1. If ‖gk‖ ≤ ε, then stop.
Step 2. Solve the subproblem (2) to find the trial step dk.

Step 3. Choose wki ∈ [0, 1], which satisfies
min{k,m}∑

i=1
wki = 1. Compute Rk, ρ̂k, and ρ̂k

′, respectively.

Step 4. Test the trial step.
If ρ̂k ≥ µ1, then set xk+1 = x+k .
Otherwise compute g+k = ∇ f (x+k);

if x+k is acceptable by the filter F, then xk+1 = x+k , add g+k = ∇ f (x+k) into the filter F.
Otherwise, find the step length αk satisfying (4), set xk+1 = xk + αkdk.
end(if)

end(If)
Step 5. Update the trust region radius by ∆k+1 = ck+1‖gk+1‖

γ, where ck+1 is updated by (12).
Step 6. Compute the new Hessian approximation Bk+1 by a modified BFGS method formula. Set k = k + 1,
and return to Step 1.

In order to obtain convergence results, we use the following notation:
D =

{
k|ρ̂k ≥ µ1

}
, A =

{
k|0 < ρ̂k < µ1 and x+k is accepted by the filter F

}
, S =

{
k|xk+1 = xk + dk

}
.

Then, we have S =
{
k|ρ̂k ≥ µ1 or x+k is accepted by the filter F

}
. When k < S, we have xk+1 = xk + αkdk.

3. Convergence Analysis

To establish the convergence of Algorithm 1, we make the following common assumption.

Assumption 1. H1. The level set L(x0) =
{
x ∈ Rn

| f (x) ≤ f (x0)
}
⊂ Ω, where Ω ∈ Rn is bounded f (x) is

continuously differentiable on the level set L(x0).
H2. The matrix Bk is uniformly bounded, i.e., there exists a constant M1 > 0 such that ‖Bk‖ ≤M1.
H3. There exists constant v such that v‖d‖2 ≤ dTBkd, for all k ∈ N ∪ {0}.

Remark 1. In order to analyze the convergence of the new algorithm, it should be seen to that the trial step dk
satisfies the following conditions:

mk(0) −mk(dk) ≥ τ‖gk‖min
{

∆k,
‖gk‖

‖Bk‖

}
, (16)

gT
k dk ≤ −τ‖gk‖min

{
∆k,
‖gk‖

‖Bk‖

}
, (17)

where the constant τ ∈ (0, 1).

Remark 2. If f is a twice continuously differentiable function, then H1 means that there is a positive constant L
such that

‖∇ f (x) −∇ f (y)‖ ≤ L‖x− y‖∀x, y ∈ Ω , (18)

Lemma 1. For all k, we can obtain that∣∣∣ fk − f (xk + dk) − (mk(0) −mk(dk))
∣∣∣ ≤ O

(
‖dk‖

2
)
, (19)

Symmetry 2020, 12, 208 5 of 13

Proof. The proof is given by using Taylor’s expansion and H3. �

Lemma 2. Suppose that H1-H3 hold, the sequence {xk} is generated by Algorithm 1. Moreover, assume that
there exists a constant 0 < ε < 1 such that ‖gk‖ > ε, for all k. Then, for every k, there exists a nonnegative
integer p, so that xk+p+1 is a successful iteration point, i.e., ρ̂k+p ≥ µ1.

Proof. We are able to prove this by using contradiction; we assume that there exists an iteration k, and
that xk+p+1 is an unsuccessful iteration point for all nonnegative integer p, i.e.,

ρ̂k+p < µ1p = 0, 1, 2, (20)

It follows from (11) that ρ̂k+p
′ < µ1p = 0, 1, 2, Thus, using (10) and (12), we show

∆k+p+1 ≤ β
p+1
1 ck‖gk+p‖

γ
≤ β

p+1
1 cmax‖gk‖

γ. (21)

As a matter of fact, in the unsuccessful iterations, we have xk+p = xk. Thus, according to 0 < β1 < 1
and (21), we have

lim
p→∞

∆k+p+1 = 0. (22)

Now, using Lemma 1 and (16) we get∣∣∣∣∣ f(xk+p)− f(xk+p+dk+p)
mk+p(0)−mk+p(dk+p)

− 1
∣∣∣∣∣ =

∣∣∣∣∣ f(xk+p)− f(xk+p+dk+p)−(mk+p(0)−mk+p(dk+p))
mk+p(0)−mk+p(dk+p)

∣∣∣∣∣
≤

O(‖dk+p‖
2)

τ‖gk+p‖min
{

∆k+p,
‖gk+p‖

‖Bk+p‖

}
≤

O(‖dk+p‖
2)

τεmin
{
∆k+p, ε

M1

}
≤

O(∆k+p
2)

O(∆k+p)
→ 0(p→∞)

According to the definition of Rk, we get Rk ≥ ηk fk + (1− ηk) fk = fk. Thus, for sufficiently large p
we have,

ρ̂k+p =
Rk+p − f (xk+p + dk+p)

mk+p(0) −mk+p(dk+p)
≥

fk+p − f (xk+p + dk+p)

mk+p(0) −mk+p(dk+p)
→ 1, (23)

which contradicts (20). This completes the proof of Lemma 2. �

Lemma 3. Suppose that H1–H3 hold and the sequence {xk} is generated by Algorithm 1. Set δ ∈
(
0, min

{
1, v

L

})
.

For k < S, we have

fk+1 −Rk ≤
δ
2

(
1−

Lδ
v

)
gT

k dk ≤ 0, (24)

Proof. According to the definition of Rk, for all k, we have fk ≤ Rk. Using the differential mean value
theorem, we get

fk+1 −Rk ≤ fk+1 − fk = g(ξ)T(xk+1 − xk), (25)

where ξ ∈ [xk, xk+1]. For k < S and (18), we obtain

Symmetry 2020, 12, 208 6 of 13

g(ξ)T(xk+1 − xk) = gT
k (xk+1 − xk) + (g(ξ) − gk)

T(xk+1 − xk)

≤ gT
k (xk+1 − xk) + ‖g(ξ) − gk‖‖xk+1 − xk‖

≤ gT
k (xk+1 − xk) + L‖xk+1 − xk‖

2

= gT
k αkdk + Lαk

2
‖dk‖

2

= (1− Lδ‖dk‖
2/dT

k Bkdk)αkgT
k dk

≤ (1− Lδ/v)αkgT
k dk

(26)

Note that (4) and (16) imply that αk ≥
δ
2 for all. Setting δ ∈

(
0, min

{
1, v

L

})
means that 1− Lδ/v > 0.

According to (17), (25), and (26), we can conclude that (24) holds. �

Lemma 4. Suppose that the sequence {xk} is generated by Algorithm 1. Then, we have {xk} ⊂ L(x0).

Proof. We can proceed by induction. When k = 0, apparently x0 ∈ L(x0).
Assuming that xk ∈ L(x0)(k ≥ 0) holds, we would obtain fk ≤ f0. Then, we can prove that

xk+1 ∈ L(x0).
(a) When k ∈ S, consider two cases:
Case 1: k ∈ D. According to (7) and (16), we obtain Rk − fk+1 ≥ µ1(mk(0) −mk(dk)) ≥ 0. Thus, we have
Rk ≥ fk+1. Following the definition of Rk and fl(k), we obtain

Rk = ηk fl(k) + (1− ηk) fk ≤ ηk fl(k) + (1− ηk) fl(k) = fl(k). (27)

The above two inequalities show that

fk+1 ≤ Rk ≤ fl(k) ≤ f0. (28)

Case 2: k ∈ A. According to 0 < ρ̂k < µ1, we have Rk − f (xk + dk) > 0. Thus, we get fk+1 ≤ Rk ≤ fl(k) ≤ f0.
(b) When k < S. Using Lemma 3 and (27), we obtain fk+1 ≤ Rk ≤ fl(k) ≤ f0.

Now, we can conclude that {xk} ⊂ L(x0). �

Lemma 5. Suppose that H1–H3 hold, and the sequence {xk} is generated by Algorithm 1. This would mean that{
fl(k)

}
is a not a monotonically increasing sequence, nor is it convergent.

Proof. Now, we can prove that the sequence
{

fl(k)
}

is not a monotonically increasing sequence. Thus,
we consider two cases:
Case 1: For k < N, it is clear that m(k) = k. Since, for any k, we have fk ≤ f0. Thus, we get fl(k) = f0.
Case 2: For k ≥ N, we obtain m(k + 1) = m(k) + 1. Thus, using the definition of fl(k+1) and (5), we
observe that

fl(k+1) = max
0≤ j≤m(k+1)

{
fk+1− j

}
≤ max

0≤ j≤m(k)+1

{
fk+1− j

}
= max

{
fl(k), fk+1

}
≤ fl(k), (29)

{
fl(k)

}
is not a monotonically increasing sequence. This fact, along with H1, implies that

∃λ, s.t.∀n ∈ N ∪ {0}:λ ≤ fk+n ≤ fl(k+n) ≤ . . . ≤ fl(k+1) ≤ fl(k). (30)

This shows that the sequence
{

fl(k)
}

is convergent. �

Lemma 6. Suppose that H1–H3 hold, and there exists ε > 0 such that ‖gk‖ ≥ ε, for all k. Then, there is a
constant β > 0, and we have

∆k ≥
β

Mk
, (31)

Symmetry 2020, 12, 208 7 of 13

where Mk = max
0≤i≤k
‖Bi‖+ 1.

Proof. Set σ =
τε(1−µ1)

2L . We proceed by induction; set

β =
{
∆0M0, β1σM0, (1− µ1)β1τε, β1ε

}
, (32)

When k = 0, we can see that ∆0 ≥
β

M0
. Then, assume that (31) holds for k. Note that {Mk} is an

increasing sequence. Thus, we prove that

∆k+1 ≥
β

Mk
, k = 0, 1, . . . , (33)

(a) When k ∈ D, i.e., ρ̂k ≥ µ1. Using (11) and (7), we deduce that ρ̂k
′
≥ µ1. From (12), we get ∆k+1 = λ∆k,

where λ > 1 is a constant. Thus, the inequality ∆k ≥
β

Mk
implies that ∆k+1 ≥

β
Mk

.
(b) When k ∈ A, i.e., 0 < ρ̂k < µ1. Supposing that ‖dk‖ ≥ σ, we have

∆k+1 = β1∆k ≥ β1‖dk‖ ≥ β1σ ≥
β1σM0

Mk
≥

β

Mk
(34)

Then, assuming that ‖dk‖ < σ, we have

fk − f (xk + dk)

mk(0) −mk(dk)
≤

Rk − f (xk + dk)

mk(0) −mk(dk)
< µ1

Thus,

f (xk + dk) − fk > −µ1(mk(0) −mk(dk)) = µ1(gT
k dk +

1
2

dT
k Bkdk). (35)

Using Taylor’s formula and H1–H3, it is easy to show that

f (xk + dk) − fk ≤ g(η)Tdk = gT
k dk + (g(η) − gk)

Tdk

≤ gT
k dk + L‖dk‖

2

≤ gT
k dk +

τ(1−µ1)ε‖dk‖
2

(36)

where η ∈ [xk, xk + dk]. When combining (35) with (36), we discover that

(1− µ)
(
gT

k dk +
τε‖dk‖

2

)
>
µdT

k Bkdk

2
. (37)

Moreover, the inequality (16), together with ‖gk‖ ≥ ε, imply that

− gT
k dk −

1
2

dT
k Bkdk ≥ τεmin

{
∆k,

ε
‖Bk‖

}
. (38)

Multiply the two sides of inequality (38) by (1− µ), such that

− (1− µ)(gT
k dk + dT

k Bkdk/2) ≥ (1− µ1)τεmin
{
‖∆k‖,

ε
‖Bk‖

}
. (39)

On the other hand, from H3, (37), and (39), we have

∆k‖Bk‖ ≥ τ(1− µ1)εmin
{

1,
2ε
‖Bk‖∆k

− 1
}

. (40)

Symmetry 2020, 12, 208 8 of 13

If ∆k‖Bk‖ ≤ ε, we have ∆k‖Bk‖ > (1− µ)τε. Otherwise, we obtain ∆k‖Bk‖ > ε. Now, following (40)
we obtain

∆k‖Bk‖ ≥ min
{
(1− µ1)τε, ε

}
Thus,

∆k+1 = β1∆k ≥
min

{
(1− µ1)β1τε, β1ε

}
‖Bk‖

≥
β

Mk
(41)

The proof is completed. �

Based on the analyses and lemmas above, we obtain the global convergence of Algorithm 1
as follows:

Theorem 1. (Global Convergence) Suppose that H1–H3 hold, and the sequence {xk} is generated by Algorithm
1. Then,

lim
k→∞

inf‖gk‖ = 0 (42)

Proof. Consider the following two cases:
Case 1: The number of successful iterations and many filter iterations are infinite, e.g., |S| = +∞,
|A| = +∞.

We proceed from this proof with a contradiction. Suppose that (42) is not true, then there exists a
positive constant ε such that ‖gk‖ > ε. From H1, we can see that

{
‖gk‖

}
is bounded. Set in the index

of set A is the sequence {ki}. Thus, there exists a subsequence {kt} ⊆ {ki}, which satisfies lim
t→∞

gkt = g∞,

g∞ ≥ ε, ∃ j ∈ {1, 2, . . . , n} and we have ∣∣∣∣g j
kt

∣∣∣∣− ∣∣∣∣g j
kt−1

∣∣∣∣ ≤ −γg‖gkt−1‖. (43)

Using (43), as t is sufficiently large, we have

0←
∣∣∣∣g j

kt

∣∣∣∣− ∣∣∣∣g j
kt−1

∣∣∣∣ ≤ −γgε < 0. (44)

As this is a contradiction, the proof is completed.
Case 2: The number of successful iterations is infinite, and the number of filter iterations is finite, e.g.,
|S| = +∞, |A| < +∞.

Assume for a moment that there exists an integer constant k1, such that k > k1. This implies that
k ∈ D, and we therefore have ρ̂k ≥ µ1. Hence, from (16) and (27), we find that

fl(k) − fk+1 ≥ Rk − fk+1 ≥ µ1τ‖gk‖min
{

∆k,
‖gk‖

‖Bk‖

}
≥ 0. (45)

We proceed from this proof with a contradiction. Suppose that there exist constants ε > 0 and
k2 > k1, such that ‖gk‖ ≥ ε, ∀k ≥ k2. Based on Lemma 6 and (45), we write

fl(k) − fk+1 ≥ Rk − fk+1 ≥ µ1τεmin
{
β

Mk
,
ε

Mk

}
= µ1τε

min
{
β, ε

}
Mk

. (46)

Set a = µ1τεmin
{
β, ε

}
, thus,

fl(k) − fk+1 ≥
a

Mk
. (47)

Symmetry 2020, 12, 208 9 of 13

According to (47) and {Mk}, this is an increasing sequence, as we have

fl(k) ≥ fk+1 + a/Mk ≥ fk+1 + a/Mk+M+1

fl(k+1) ≥ fk+2 + a/Mk+1 ≥ fk+2 + a/Mk+M+1
...

...
...

...
...

fl(k+M) ≥ fk+M+1 + a/Mk+M ≥ fk+M+1 + a/Mk+M+1

(48)

We then take the maximum value of both sides of (48), along with Lemma 5, to imply that

fl(k) ≥ max
{
fk+1, fk+2, . . . , fk+M+1

}
+ a/Mk+M+1 ∀k ≥ k2. (49)

According to (5), we have

fl(k+M+1) ≤ max
{
fk+1, fk+2, . . . , fk+M+1

}
. (50)

Thus, we get
fl(k) − fl(k+M+1) ≥ a/Mk+M+1. (51)

Now, using (51), we deduce that∑
k≥k2

1
Mk+M+1

≤
1
a

∑
k≥k2

(fl(k) − fl(k+M+1))

= 1
a

∑
k≥k2

M∑
s=0

(fl(k+s) − fl(k+s+1))

= 1
a

∑
k≥k2

(fl(k) − fl(k+1)) < +∞

(52)

which contradicts
∞∑

k=1

1
Mk

= +∞. This completes the proof of Theorem 1. �

4. Local Convergence

In this section, we will demonstrate the superlinear convergence of Algorithm 1 under
appropriate conditions.

Theorem 2. (Superlinear Convergence) Suppose that H1–H3 hold, and the sequence {xk} generated by Algorithm
1 converges to x∗. Moreover, assume that ∇2 f (x∗) is a positive definite, and ∇2 f (x) is Lipschitz continuous in a
neighborhood of x∗. If ‖dk‖ ≤ ∆k, where dk = −B−1

k gk, and

lim
k→∞

‖(Bk −∇
2 f (x∗)dk‖

‖dk‖
= 0 (53)

Then, the sequence {xk} converges to x∗ superlinearly, that is,

‖xk+1 − x∗‖ = o(‖xk − x∗‖) (54)

Proof. Following Lemmas 1 and 2, it is obvious that ρ̂k ≥ µ1 for sufficiently large k. This shows that
Algorithm 1 has been simplified to the superlinear convergence standard quasi-Newton methods [22].
Thus, the superlinear convergence of this algorithm can be proven to be similar to Theorem 5.5.1 in [22].
We omit it for convenience. �

Symmetry 2020, 12, 208 10 of 13

5. Preliminary Numerical Experiments

In this section, we perform numerical experiments on Algorithm 1, and compare it with Mo [1]
and Hang [4]. A set of unconstrained test problems (of variable dimension) are selected from [23]. The
simulation experiment uses MATLAB 9.4 and the processor uses Intel (R) Core (TM), 2.00 GHz, 6 GB
RAM. Take exactly the same value for the public parameters of these algorithms: µ1 = 0.25, µ2 = 0.75,
β1 = 0.25, β2 = 1.5, M = 5. In our experiments, algorithms are being stopped when ‖gk‖ ≤ 10−6

‖g0‖ or
the number of iterations exceeds 10,000. We denote the running time via CPU. n f and ni denoted the
total number of gradient evaluations, and the total number of function evaluations, respectively. The
matrix Bk is updated using a MBFGS formula [24]:

Bk+1 =

 Bk +
zkzT

k
zT

k dk
−

BkdkdT
k Bk

dT
k Bkdk

, yT
k dk > 0

Bk, yT
k dk ≤ 0

where dk = xk+1 − xk, yk = gk+1 − gk, zk = yk + tk‖gk‖dk, tk = 1 + max
{
−

yT
k dk

‖gk‖‖dk‖
, 0

}
.

To facilitate this, we used the following notations to represent the algorithms:
ANTRFS: A Nonmonotone Trust Region Method with Fixed Step length [1];
FSNATR: On a Fixed Step length Nonmonotone Adaptive Trust Region Method [4];
From Table 1, there are some variable dimension problems, which select the dimension in the

range [4,1000]. We know that the new algorithm is generally better than NTRFS and FSNATR in
terms of the total number of gradient evaluations and function evaluations. The new algorithm solves
all the test functions in Table 1. The performance profiles given by Dolan and Moré [25] are used
to compare the efficiency of the three algorithms. Figures 1–3 give the performance profiles of the
three algorithms for running time, the number of gradient evaluations, and the number of function
evaluations, respectively. The figures show that Algorithm 1 performs well when compared with the
other algorithms, at least on the test problems considered, which are mostly of small dimension. It can
be observed that Algorithm 1 increases faster than the other algorithms, especially in contrast to NTRFS.
Therefore, we can deduce that the new algorithm is more efficient and robust than the other considered
trust region algorithms for solving small and medium-scale unconstrained optimization problems.Symmetry 2020, 12, x FOR PEER REVIEW 13 of 15

Figure 1. CPU performance profile for the three algorithms.

Figure 2. Performance profile for the number of gradient evaluations (in).

Figure 3. Performance profile for the number of function evaluations (fn).

6. Conclusions

In this paper, the authors proposed a new nonmonotone trust region method and also put
forward the following innovations:

(1) a new adaptive radius strategy to reduce the number of calculations;

Figure 1. CPU performance profile for the three algorithms.

Symmetry 2020, 12, 208 11 of 13

Table 1. Numerical comparisons on a subset of test problems.

Problem n nf/ni

ANTRFS [9] CPU FSNATR [20] CPU Algorithm 1 CPU

Ext.Rose 4 755/382 2.755795 168/88 0.322036 87/58 0.104316
Ext. Beale 4 25/13 0.008651 41/21 0.069185 18/16 0.028946
Penalty i 2 18/10 0.087532 18/10 0.067020 17/14 0.032533

Pert.Quad 6 28/25 0.058921 25/13 0.058700 18/17 0.035631
Raydan 1 8 18/10 0.015109 38/20 0.105928 39/20 0.070292
Raydan 2 4 21/11 0.015356 13/8 0.012729 11/6 0.017449

Diagonal 1 10 13/8 0.009493 35/18 0.070199 27/26 0.064282
Diagonal 2 10 56/29 0.017841 58/30 0.119385 57/29 0.083905
Diagonal 3 50 200/101 1.926143 182/92 1.232287 127/126 1.849887

Hager 10 27/14 0.049037 27/14 0.048247 33/17 0.071906
Gen. Trid 1 20 967/484 3.536055 50/26 0.432577 47/24 0.217367
Ext.Trid 1 10 27/14 0.013890 29/15 0.128696 18/12 0.071580
Ext. TET 50 13/7 0.203093 16/9 0.031416 17/9 0.119907

Diadonal 4 100 7/4 0.035933 9/5 0.343849 5/4 0.146901
Ext.Him 100 29/15 0.147102 25/13 0.208976 29/28 0.409463

Gen. White 50 785/576 10.47342 771/429 9.940880 443/228 5.741535
Ext. Powell 16 1567/787 7.266044 794/404 2.148929 496/337 1.208253

Full Hessian FH3 100 11/6 0.053598 11/6 0.084726 8/7 0.088831
Ext.BD1 100 51/27 0.210790 50/28 0.739621 21/15 0.261978

Pert. Quad 200 91/66 2.547689 87/44 2.421596 57/56 2.405979
Extended Hiebert 16 1821/1000 9.819290 175/143 2.456780 135/68 0.527388

Quadratic QF1 4 15/8 0.007903 17/9 0.017025 11/10 0.010983
FLETCHCR34 36 210/123 1.847519 150/91 0.950314 165/83 1.786160
ARWHEAD 200 297/150 37.928050 29/15 0.317976 15/12 0.317976

NONDIA 50 75/39 0.368280 92/47 0.544079 51/35 0.307129
DQDRTIC 50 67/38 0.51243 53/28 0.341435 32/30 0.318596

EG2 200 32/17 0.319954 28/16 0.373764 49/35 2.633184
Bro.Tridiagonal 200 2797/1504 441.453385 744/398 119.570838 69/35 1.539657

A.Per.Quad 16 73/47 0.144890 63/32 0.132644 45/26 0.128349
Pert.Trid.Quad 100 330/166 10.985321 325/163 9.663929 289/156 8.521700
Ext.DENSCH 100 37/19 0.190549 43/22 0.398777 128/82 5.638770

SINCOS 100 4303/2152 198.717544 1303/952 142.543185 65/36 1.122092
BIGGSB1 10 1949/1042 8.466655 329/195 0.676394 275/185 0.376394

ENGVAL1 200 788/487 139.949938 643/406 99.088596 474/472 88.401960
EDENSCH 100 474/238 25.639664 45/26 0.407574 37/23 0.930150

CUBE 100 430/220 21.53234 357/198 20.93564 280/147 13.946540
BDEXP 100 476/369 34.54797 452/356 24.569196 22/21 0.550708

GENHUMPS 100 532/321 3.27453 412/213 0.475453 1014/537 1.235720
QUARTC 100 57/32 1.035734 43/22 0.443325 18/17 0.326680
Gen. PSC1 500 198/212 10.457624 51/54 9.562354 51/54 8.539801
Ext. PSC1 500 15/15 1.254327 15/15 1.0983452 13/13 1.562763

Variably dim. 500 41/27 2.9578243 21/16 1.4536982 17/15 1.093456
DIXMAANA 1000 21/21 1.457893 21/21 1.237642 20/20 1.025372

SINQUAD 1000 1582/1063 187.563723 1995/1215 135.872354 912/579 100.458723
DIXMAANJ 1000 2415/2398 431.253485 2320/2311 410.253485 2246/2132 397.256732

Symmetry 2020, 12, x FOR PEER REVIEW 13 of 15

Figure 1. CPU performance profile for the three algorithms.

Figure 2. Performance profile for the number of gradient evaluations (in).

Figure 3. Performance profile for the number of function evaluations (fn).

6. Conclusions

In this paper, the authors proposed a new nonmonotone trust region method and also put
forward the following innovations:

(1) a new adaptive radius strategy to reduce the number of calculations;

Figure 2. Performance profile for the number of gradient evaluations (ni).

Symmetry 2020, 12, 208 12 of 13

Symmetry 2020, 12, x FOR PEER REVIEW 13 of 15

Figure 1. CPU performance profile for the three algorithms.

Figure 2. Performance profile for the number of gradient evaluations (in).

Figure 3. Performance profile for the number of function evaluations (fn).

6. Conclusions

In this paper, the authors proposed a new nonmonotone trust region method and also put
forward the following innovations:

(1) a new adaptive radius strategy to reduce the number of calculations;

Figure 3. Performance profile for the number of function evaluations (n f).

6. Conclusions

In this paper, the authors proposed a new nonmonotone trust region method and also put forward
the following innovations:

(1) a new adaptive radius strategy to reduce the number of calculations;
(2) a modified trust region ratio to solve effectively unconstrained optimization problems. The

filter technology is also important. Theorems 1 and 2 show that the proposed algorithm can preserve
global convergence and superlinear convergence, respectively. According to preliminary numerical
experiments, we can conclude that the new algorithm is very effective for unconstrained optimization,
and the nonmonotone technology is very helpful for many optimization problems. In the future,
we will have more ideas for solving many optimization problems, such as combining the modified
conjugate gradient algorithm with a modified trust region method. We can also use the new algorithm
for solving constrained optimization problems.

Author Contributions: Conceptualization, X.W. and Q.Q.; methodology, X.W.; software, X.W.; validation, X.W.,
Q.Q. and X.D.; formal analysis, X.D.; investigation, Q.Q.; resources, X.D.; data curation, Q.Q.; writing—original
draft preparation, X.W.; writing—review and editing, X.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: At the point of finishing this paper, I’d like to express my sincere thanks to all those who
have lent me a hand over the course of my writing this paper. First of all, I would like to take this opportunity
to show my sincere gratitude to my supervisor, Xianfeng Ding, who has given me so much useful advice on
my writing and has tried his best to improve my paper. Secondly, I would like to express my gratitude to my
classmates, who offered me references and information on time. Without their help, it would have been much
harder for me to finish this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mo, J.T.; Zhang, K.C.; Wei, Z.X. A nonmonotone trust region method for unconstrained optimization. Appl.
Math. Comput. 2005, 171, 371–384. [CrossRef]

2. Ou, Y.G.; Zhou, Q.; Lin, H.C. An ODE-based trust region method for unconstrained optimization problems.
J. Comput. Appl. Math. 2009, 232, 318–326. [CrossRef]

3. Wang, X.Y.; Tong, J. A Nonmonotone Adaptive Trust Region Algorithm with Fixed Stepsize for Unconstrained
Optimization Problems. Math. Appl. 2009, 3, 496–500.

4. Hang, D.; Liu, M. On a Fixed Stepsize Nonmonotonic Self-Adaptive Trust Region Algorithm. J. Southwest
China Norm. Univ. 2013, 38. [CrossRef]

http://dx.doi.org/10.1016/j.amc.2005.01.048
http://dx.doi.org/10.1016/j.cam.2009.06.012
http://dx.doi.org/10.13718/j.cnki.xsxb.2013.11.024

Symmetry 2020, 12, 208 13 of 13

5. Sartenaer, A. Automatic determination of an initial trust region in nonlinear programming. SIAM J. Sci.
Comput. 1997, 18, 1788–1803. [CrossRef]

6. Zhang, X.S.; Zhang, J.L.; Liao, L.Z. An adaptive trust region method and its convergence. Sci. China 2002, 45,
620–631. [CrossRef]

7. Shi, Z.J.; Guo, J.H. A new trust region methods for unconstrained optimization. Comput. Appl. Math. 2008,
213, 509–520. [CrossRef]

8. Kimiaei, M. A new class of nonmonotone adaptive trust-region methods for nonlinear equations with box
constraints. Calcolo 2017, 54, 769–812. [CrossRef]

9. Amini, K.; Shiker Mushtak, A.K.; Kimiaei, M. A line search trust-region algorithm with nonmonotone
adaptive radius for a system of nonlinear equations. Q. J. Oper. Res. 2016, 4, 132–152. [CrossRef]

10. Peyghami, M.R.; Tarzanagh, D.A. A relaxed nonmonotone adaptive trust region method for solving
unconstrained optimization problems. Comput. Optim. Appl. 2015, 61, 321–341. [CrossRef]

11. Deng, N.Y.; Xiao, Y.; Zhou, F.J. Nonmonotone Trust Region Algorithm. J. Optim. Theory Appl. 1993, 76,
259–285. [CrossRef]

12. Ahookhoosh, M.; Amini, K.; Peyghami, M. A nonmonotone trust region line search method for large scale
unconstrained optimization. Appl. Math. Model. 2012, 36, 478–487. [CrossRef]

13. Zhang, H.C.; Hager, W.W. A nonmonotone line search technique and its application to unconstrained
optimization. SIAM J. Optim. 2004, 14, 1043–1056. [CrossRef]

14. Gu, N.Z.; Mo, J.T. Incorporating nonmonotone strategies into the trust region for unconstrained optimization.
Comput. Math. Appl. 2008, 55, 2158–2172. [CrossRef]

15. Fletcher, R.; Leyffer, S. Nonlinear programming without a penalty function. Math. Program. 2002, 91, 239–269.
[CrossRef]

16. Gould, N.I.; Sainvitu, C.; Toint, P.L. A filter-trust-region method for unconstrained optimization. SIAM J.
Optim. 2005, 16, 341–357. [CrossRef]

17. Gould, N.I.; Leyffer, S.; Toint, P.L. A multidimensional filter algorithm for nonlinear equations and nonlinear
least-squares. SIAM J. Optim. 2004, 15, 17–38. [CrossRef]

18. Wächter, A.; Biegler, L.T. Line search filter methods for nonlinear programming and global convergence.
SIAM J. Optim. 2005, 16, 1–31. [CrossRef]

19. Miao, W.H.; Sun, W. A filter trust-region method for unconstrained optimization. Numer. Math. J. Chin. Univ.
2007, 19, 88–96.

20. Zhang, Y.; Sun, W.; Qi, L. A nonmonotone filter Barzilai-Borwein method for optimization. Asia Pac. J. Oper.
Res. 2010, 27, 55–69. [CrossRef]

21. Fatemi, M.; Mahdavi-Amiri, N. A filter trust-region algorithm for unconstrained optimization with strong
global convergence properties. Comput. Optim. Appl. 2012, 52, 239–266. [CrossRef]

22. Nocedal, J.; Wright, S.J. Numerical Optimization; Springer: New York, NY, USA, 2006.
23. Andrei, N. An unconstrained optimization test functions collection. Environ. Sci. Technol. 2008, 10, 6552–6558.
24. Pang, S.; Chen, L. A new family of nonmonotone trust region algorithm. Math. Pract. Theory. 2011, 10,

211–218.
25. Dolan, E.D.; Moŕe, J.J. Benchmarking optimization software with performance profiles. Math. Program. 2002,

91, 201–213. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1137/S1064827595286955
http://dx.doi.org/10.1016/S0898-1221(03)00130-5
http://dx.doi.org/10.1016/j.cam.2007.01.027
http://dx.doi.org/10.1007/s10092-016-0208-x
http://dx.doi.org/10.1007/s10288-016-0305-3
http://dx.doi.org/10.1007/s10589-015-9726-8
http://dx.doi.org/10.1007/BF00939608
http://dx.doi.org/10.1016/j.apm.2011.07.021
http://dx.doi.org/10.1137/S1052623403428208
http://dx.doi.org/10.1016/j.camwa.2007.08.038
http://dx.doi.org/10.1007/s101070100244
http://dx.doi.org/10.1137/040603851
http://dx.doi.org/10.1137/S1052623403422637
http://dx.doi.org/10.1137/S1052623403426556
http://dx.doi.org/10.1142/S0217595910002582
http://dx.doi.org/10.1007/s10589-011-9411-5
http://dx.doi.org/10.1007/s101070100263
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The New Algorithm
	Convergence Analysis
	Local Convergence
	Preliminary Numerical Experiments
	Conclusions
	References

