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Abstract: This paper studied the single-valued neutrosophic linguistic distance measures based on the
induced aggregation method. Firstly, we proposed a single-valued neutrosophic linguistic-induced
ordered weighted averaging distance (SVNLIOWAD) measure, which is a new extension of the
existing distance measures based on the induced aggregation view. Then, based on the proposed
SVNLIOWAD, a novel induced distance for single-valued neutrosophic linguistic sets, namely
the single-valued neutrosophic linguistic weighted induced ordered weighted averaging distance
(SVNLWIOWAD), was developed to eliminate the defects of the existing methods. The relationship
between the two proposed distance measures was also explored. A multiple attribute group decision
making (MAGDM) model was further presented based on the proposed SVNLWIOWAD measure.
Finally, a numerical example concerning an investment selection problem was provided to demonstrate
the usefulness of the proposed method under a single-valued neutrosophic linguistic environment
and, then, a comparison analysis was carried out to verify the flexibility and effectiveness of the
proposed work.

Keywords: single-valued neutrosophic linguistic set; distance measure; weighted induced
aggregation; MAGDM; investment selection

1. Introduction

The growing uncertainties and complexities in multiple attribute decision making (MADM) make
it increasingly difficult for people to judge their attributes accurately. Accordingly, how to measure
such complex and uncertain information effectively has become a key issue during the process of
decision making. Several tools, such as fuzzy set [1], intuitionistic fuzzy set (IFS) [2], picture fuzzy
set [3,4], linguistic term [5], and neutrosophic set [6], have been introduced to deal with inaccurate
and uncertain information. The single-valued neutrosophic linguistic set (SVNLS), introduced by
Ye [7], is an up-to-date tool to measure uncertainty or inaccuracy of information by combining the
advantages of single-valued neutrosophic set [8] and linguistic terms [5]. The basic element of the
SVNLS is the single-valued neutrosophic linguistic number (SVNLN), which makes it more suitable for
solving uncertain and imprecise information than the existing tools. Ye [7] extended the conventional
the technique for order preference by similarity to ideal solutions (TOPSIS) [9] approach to SVNLS
environment and explored its application in investment selection problems. Wang et al. [10] studied the
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operational laws for SVNLS and presented the SVNL Maclaurin symmetric mean aggregation operator.
Chen et al. [11] studied the ordered weighted distance measure between SVNLSs. Wu et al. [12] studied
the application of the SVNLS in a 2-tuple MADM environment. Kazimieras et al. [13] presented a
weighted aggregated sum product assessment approach for SVN decision making problems. Garg and
Nancy [14] proposed some SVNLS aggregation operators based on the prioritized method to solve the
attributes’ priority in MADM problems. Cao et al. [15] studied the SVNL decision making approach
based on a combination of ordered and weighted distances measures.

Distance measure is one of the most popular tools to express the deviation degree between two sets
or variables. Consequently, many types of distance measures have been investigated and proposed in
the existing literature, such as the weighted distance (WD) measure [16], ordered weighted averaging
distance (OWAD) measure [17], combined weighted distance (CWD) measure [18], and induced OWAD
(IOWAD) measure [19]. Among them, the IOWAD measure is a widely used one, recently proposed by
Merigó and Casanovas [19]. The key advantage of the IOWAD is that it summarizes the minimun
and maximum distance measures and can use induced-ordering variables to depict the intricate
attitudinal characteristics. Now, the IOWAD operator has been widely used in MADM problems and
extended to accommodate several fuzzy environments, such as fuzzy IOWAD (FIOWAD) [20], fuzzy
linguistic IOWAD [21], intuitionistic fuzzy IOWAD (IFIOWAD) [22], and 2-tuple linguistic IOWAD
(2LIOWAD) [23].

However, as far as we know, there is no research on the application of the SVNLS with the IOWAD
method. In accordance with the previous analysis, the SVNLS is an excellent method to describe fuzzy
and uncertain information, while the IOWAD is a new tool that can be well integrated into the complex
attitudes of decision makers. In order to develop and enrich the measure theory of SVNLS, this study
explored the usefulness of the IOWAD measure in SVNL environments. For this purpose, the rest of
the article is set out as follows: in Section 2, we briefly introduce some basic concepts. Section 3 firstly
develops the single-valued neutrosophic linguistic induced ordered weighted averaging distance
(SVNLIOWAD) operator, which is the extension of the IOWAD operator with SVNL information.
Furthermore, the single-valued neutrosophic linguistic weighted induced ordered weighted averaging
distance (SVNLWIOWAD) is then introduced to overcome the defects of the SVNLIOWAD operator
and other existing induced aggregation distances. In Section 4, a MAGDM model based on the
SVNLWIOWAD operator is formulated and a financial decision making problem is also provided to
demonstrate the usefulness of the proposed method. Finally, Section 5 gives a conclusion for the paper.

2. Preliminaries

In this section, we mainly recap some basic concepts of the SVNLS and the IOWAD operator.

2.1. The Single-Valued Neutrosophic Set (SVNS)

Definition 1 [24]. Let u be an element in a finite set U. A single-valued neutrosophic set (SVNS) A in U can
be defined as in (1):

A =
{ 〈

u, TA(u), IA(u), FA(u)
〉∣∣∣u ∈ U

}
, (1)

where TA(u), IA(u), and FA(u) are called the truth-membership function, indeterminacy-membership function,
and falsity-membership function, respectively, which satisfy the following conditions:

0 ≤ TA(u), IA(u), FA(u) ≤ 1, 0 ≤ TA(u) + IA(u) + FA(u) ≤ 3. (2)

A single-valued neutrosophic number (SVNN) is expressed as (TA(u), IA(u), FA(u)) and is simply
termed as u = (Tu, Iu, Fu). The mathematical operational laws between SVNNs u = (Tu, Iu, Fu) and
v = (Tv, Iv, Fv) are defined as follows:

(1) u⊕ v = (Tu + Tv − Tu ∗ Tv, Iu ∗ Tv, Fu ∗ Fv);
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(2) λu = (1− (1− Tu)
λ, (Iu)

λ, (Fu)
λ), λ > 0;

(3) uλ = ((Tu)
λ, 1− (1− Iu)

λ, 1− (1− Fu)
λ), λ > 0.

2.2. The Linguistic Set

Let S = {sα|α = 1, . . . , l } be a finite and totally ordered discrete term set, where sα indicates a
possible value for a linguistic variable (LV) and l is an odd value. For instance, given l = 7, then a
linguistic term set S could be specified S = {s1, s2, s3, s4, s5, s6, s7} = {extremely poor, very poor, poor, fair,
good, very good, extremely good}. Then, for any two LVs, si and s j in S, should satisfy rules (1)–(4) [24]:

(1) si ≤ s j ⇔ i ≤ j ;
(2) Neg(si) = s−i;
(3) max(si, s j) = s j, if i ≤ j;
(4) min(si, s j) = si, if i ≤ j.

The discrete term set S is also extended to a continuous set S = { sα|α ∈ R} for reducing the loss
of information during the operational process. The operational rules for LVs sα, sβ ∈ S are defined as
follows [25]:

(1) sα ⊕ sβ = sα+β;
(2) µsα = sµα, µ ≥ 0.

2.3. The Single-Valued Neutrosophic Linguistic Set (SVNLS)

Definition 2 [7]. Let U be a finite universe set and S be a continuous linguistic set, a SVNLS B in U is defined
as in (3):

B =
{〈

u, [sθ(u), (TB(u), IB(u), FB(u))]
〉∣∣∣∣u ∈ U

}
, (3)

where sθ(u) ∈ S, the truth-membership function TB(u), the indeterminacy-membership function IB(u), and the
falsity-membership function FB(u) satisfy condition (4):

0 ≤ TB(u), IB(u), FB(u) ≤ 1, 0 ≤ TB(u) + IB(u) + FB(u) ≤ 3. (4)

For an SVNLS B in U, the SVNLN
〈
sθ(u), (TB(u), IB(u), FB(u))

〉
is simply termed as u =〈

sθ(u), (Tu, Iu, Fu)
〉
. The operational rules for SVNLNs ui =

〈
sθ(ui)

, (Tui , Iui , Fui)
〉
(i = 1, 2) are defined

as follows:

(1) u1 ⊕ u2 =
〈
sθ(u1)+θ(u2), (Tu1 + Tu2 − Tu1 ∗ Tu2 , Iu1 ∗ Tu2 , Fu1 ∗ Fu2)

〉
;

(2) λu1 =
〈
sλθ(u1), (1− (1− Tu1)

λ, (Iu1)
λ, (Fu1)

λ)
〉
, λ > 0;

(3) uλ1 =
〈
sθλ(u1)

, ((Tu1)
λ, 1− (1− Iu1)

λ, 1− (1− Fu1)
λ)

〉
, λ > 0.

Definition 3 [7]. Given two SVNLNs ui =
〈
sθ(ui)

, (Tui , Iui , Fui)
〉
(i = 1, 2), their distance measure is defined

using the following formula:

d(u1, u2) =
[∣∣∣θ(u1)Tu1 − θ(u2)Tu2

∣∣∣l + ∣∣∣θ(u1)Iu1 − θ(u2)Iu2

∣∣∣l + ∣∣∣θ(u1)Fu1 − θ(u2)Fu2

∣∣∣l]1/l
, (5)

where l ∈ (0,+∞). If we consider different weights associated with individual distances of SVNLVs, then we
can get the single-valued neutrosophic linguistic weighted distance (SVNLWD) measure [10].
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Definition 4. Let u j, u′j( j = 1, 2, . . . , n) be the two collections of SVNLNs, a single-valued neutrosophic
linguistic weighted distance measure is defined as following formula:

SVNLWD
(
(u1, u′1), . . . , (un, u′n)

)
=

n∑
j=1

w jd(u j, u′j), (6)

where the associated weighting vector w j satisfies w j ∈ [0, 1] and
n∑

j=1
w j = 1.

2.4. The Single-Valued Neutrosophic Linguistic Set (SVNLS)

Motivated by the induced ordered weighted averaging (IOWA) operator [26], Merigó and
Casanovas [19] developed the IOWAD operator. For two crisp sets X = (x1, . . . , xn) and Y = (y1, . . . , yn),
the IOWAD operator be easily obtained as follows:

Definition 5. An IOWAD operator is defined by a weight vector W = (w1, . . . , wn)
T with 0 ≤ w j ≤ 1 and

n∑
j=1

w j = 1 and an order-inducing vector T = (t1, . . . , tn), such that:

IOWAD(
〈
t1, x1, y1

〉
, . . . ,

〈
tn, xn, yn

〉
) =

n∑
j=1

w jD j, (7)

where (D1, . . . , Dn) is recorded (d1, . . . , dn), induced by the decreasing order of (t1, . . . , tn), and di = d(xi, yi) =∣∣∣xi − yi
∣∣∣ is the distance between xi and yi.

3. Single-Valued Neutrosophic Linguistic-Induced Aggregation Distance Measures

3.1. SVNLIOWAD Measure

Previous analysis has shown that the IOWAD is a very practical tool to measure deviation in many
fields, such as clustering analysis and decision making. In this section, we explore the application of
the IOWAD operator in an SVNL situation and develop the SVNLIOWAD operator.

Definition 6. Let u j, u′j( j = 1, 2, . . . , n) be two sets of SVNLNs, then the SVNLIOWAD operator is defined

by a weight vector W = (w1, . . . , wn)
T with 0 ≤ w j ≤ 1 and

n∑
j=1

w j = 1 and an order-inducing vector

T = (t1, . . . , tn), such that:

SVNLIOWAD
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
=

n∑
j=1

w jD j, (8)

where (D1, . . . , Dn) is recorded (d1, . . . , dn), induced by the decreasing order of (t1, . . . , tn), di = d(ui, u′i ) =∣∣∣ui − u′i
∣∣∣ is the distance between SVNLNs, defined in Equation (5).

Using a similar analysis with the IOWAD operator [18,19,27,28], it is easy to derive the following
useful properties for the SVNLIOWAD operator:

Theorem 1 (Idempotency). If di = d(ui, u′i ) =
∣∣∣ui − u′i

∣∣∣ = d for all i, then

SVNLIOWAD
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
= d. (9)
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Theorem 2 (Boundedness). Let min
i
(
∣∣∣ui − u′i

∣∣∣) = x and max
i

(
∣∣∣ui − u′i

∣∣∣) = y, then

x ≤ SVNLIOWAD
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
≤ y. (10)

Theorem 3 (Monotonicity). If
∣∣∣ui − u′i

∣∣∣ ≥ ∣∣∣vi − v′i
∣∣∣ for all i, then

SVNLIOWAD
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
≥ SVNLIOWAD

(〈
t1, v1, v′1

〉
, . . . ,

〈
tn, vn, v′n

〉)
. (11)

Theorem 4 (Commutativity-IOWA operator aggregation). Let
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
(i = 1, 2, . . . , n)

be any possible permutation of the argument vector
(〈

t1, v1, v′1
〉
, . . . ,

〈
tn, vn, v′n

〉)
, then

SVNLIOWAD
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
= SVNLIOWAD

(〈
t1, v1, v′1

〉
, . . . ,

〈
tn, vn, v′n

〉)
. (12)

We can also illustrate the property of commutativity by considering the distance measure:

SVNLIOWAD
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
= SVNLIOWAD

(〈
t1, u′1, u1

〉
, . . . ,

〈
tn, u′n, un

〉)
. (13)

By considering different cases of the weighted vector in the SVNLIOWAD operator, we can get
several special distance measures. For example:

• If w1 = · · · = wn = 1
n , we obtain the SVNLWD;

• If the ordering of weight w j is same as the order-inducing t j for all j, then the SVNLIOWAD
reduces to the SVNLOWAD measure [15];

• If T = (t, 0, · · · , 0), then

SVNLIOWAD
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
= D1. (14)

Next, a numerical example is given to show the aggregation process of the SVNLIOWAD operator.

Example 1. Assuming that:

U = (u1, u2, u3, u4, u5)

= (
〈
s2, (0.5, 0.3, 0.4)

〉
,
〈
s5, (0.3, 0.3, 0.6)

〉
,
〈
s5, (0.5, 0.2, 0.2)

〉
,
〈
s7, (0.5, 0.8, 0.2)

〉
,
〈
s2, (0.1, 0.4, 0.6)

〉
)

and

V = (v1, v2, v3, v4, v5)

= (
〈
s3, (0.7, 0.8, 0)

〉
,
〈
s5, (0.4, 0.4, 0.5)

〉
,
〈
s3, (0.5, 0.7, 0.2)

〉
,
〈
s3, (0.4, 0.2, 0.6)

〉
,
〈
s4, (0.5, 0.7, 0.2)

〉
),

are two SVNLNs defined in linguist term set S = {s1, s2, s3, s4, s5, s6, s7} and suppose w =

(0.20, 0.30, 0.15, 0.10, 0.25)T and T = (5, 8, 4, 2, 7) are the weight vector and order-inducing variable vector
of the SVNLIOWAD operator, respectively. Then, the calculation steps of the SVNLIOWAD are displayed as
follows:

(1) Calculate the individual distances d(ui, vi) (i = 1, 2, . . . , 5) (let λ = 1) according to Equation (5):

d(u1, v1) = |2× 0.5− 3× 0.7|+ |2× 0.3− 3× 0.8|+ |2× 0.4− 3× 0| = 3.7.



Symmetry 2020, 12, 207 6 of 13

Similarly, we get

d(u2, v2) = 1.5, d(u3, v3) = 2.4, d(u4, v4) = 7.7, d(u5, v5) = 3.2;

(2) Sort the d(ui, vi) (i = 1, 2, . . . , 5) according to the decreasing order of the order-inducing variable:

D1 = d(u2, v2) = 1.5, D2 = d(u5, v5) = 3.2, D3 = d(u1, v1) = 3.7,
D4 = d(u3, v3) = 2.4, d(u4, v4) = 7.7;

(3) Utilize the SVNLIOWAD operator defined in Equation (8) to perform the following aggregation:

SVNLIOWAD(U, V)

= 0.20× 1.5 + 0.30× 3.2 + 0.15× 3.7 + 0.10× 2.4 + 0.25× 7.7 = 3.71.

From the aggregation process of the SVNLIOWAD operator, as well as the existing other induced
aggregation distances, we see that the order-inducing variables are not really infused in the aggregation
results, which fail to express the variation caused by the change of order-inducing variables. Thus, we
needed to develop a new induced aggregation distance operator for SVNLSs to overcome this defect.

3.2. SVNLWIOWAD Measure

The special feature of the SVNLWIOWAD operator is that its induced ordering-variables play a
dual role in the aggregation process. One role is, as the previous SVNLIOWAD operator, to induce
the order of the arguments and the other is to adjust the associated weights. Thus it can better reflect
the influence of the induced variables on the ensemble results. The SVNLWIOWAD operator can be
defined as follows.

Definition 7. Let u j, u′j( j = 1, 2, . . . , n) be two sets of SVNLNs, the SVNLWIOWAD operator is defined

by a weight vector W = (w1, . . . , wn)
T with 0 ≤ w j ≤ 1 and

n∑
j=1

w j = 1; and an order-inducing vector

T = (t1, . . . , tn), such that:

SVNLWIOWAD
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
=

n∑
j=1

$ jD j, (15)

where (D1, . . . , Dn) is recorded (d1, . . . , dn) induced by the decreasing order of (t1, . . . , tn), di =
∣∣∣ui − u′i

∣∣∣ is the
distance between SVNLNs, defined in Equation (5). $ j( j = 1, 2, . . . , n) is a moderated weight that is relatively
determined by the weight w j ∈W and order-inducing variable t j ∈ T:

$ j =
w jtσ( j)

n∑
j=1

w jtσ( j)

, (16)

where (σ(1), . . . , σ(n)) is a permutation of (1, . . . , n) such that tσ( j−1) ≥ tσ( j) for all j > 1. Example 2 illustrates
the performance of the SVNLWIOWAD operator.
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Example 2 (Example 1 continuation). To utilize the SVNLWIOWAD operator, we calculated the moderated
weight $ j defined in Equation (16):

$1 =
w1tσ(1)
5∑

j=1
w jtσ( j)

=
0.20× 8

0.20× 8 + 0.30× 7 + 0.15× 5 + 0.10× 4 + 0.25× 4
= 0.274.

Similarly,
$2 = 0.359,$3 = 0.128,$4 = 0.068,$5 = 0.171.

Thus, based on the results of Example 1, we can get the aggregation result of the SVNLWIOWAD operator:

SVNLWIOWAD(U, V)

= 0.274× 1.5 + 0.359× 3.2 + 0.128× 3.7 + 0.068× 2.4 + 0.171× 7.7 = 3.462

Obviously, we got a different result compared with the SVNLIOWAD operator in Example 1.
The main reason for the difference is that the order-inducing variables in the SVNLIOWAD operator
(including the existing IOWAD and its numerous extensions) only act as inducers for the arguments,
and do not participate in the actual calculation process. However, the SVNLWIOWAD’s order-inducing
variables can not only act as the inducer, but also participate in the actual calculation progress by
adjusting the associated weights. Therefore, it can measure the effect of order-inducing variables on the
aggregation results. Consequently, the SVNLWIOWAD can achieve a more reasonable and scientific
measurement over the SVNLIOWAD operator.

The following theorems show some useful properties of the SVNLWIOWAD operator:

Theorem 5 (Idempotency). Let Q be the SVNLWIOWAD operator, if all di =
∣∣∣ui − u′i

∣∣∣ = d for all i, then:

Q
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
= d. (17)

Proof. Because di =
∣∣∣ui − u′i

∣∣∣ = d, then D j = d for j = 1, 2, . . . , n, and we have:

Q
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
=

n∑
j=1

$ jD j = d
n∑

j=1

$ j.

Note that
n∑

j=1
$ j = 1, thus we obtain Q

(〈
t1, u1, u′1

〉
, . . . ,

〈
tn, un, u′n

〉)
= d

n∑
j=1

$ j = d. �

Theorem 6 (Boundedness). Let min
i
(
∣∣∣ui − u′i

∣∣∣) = x and max
i

(
∣∣∣ui − u′i

∣∣∣) = y, then:

x ≤ Q
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
≤ y. (18)

Proof. Because $ j ∈ [0, 1] and
n∑

j=1
$ j = 1, then:

Q
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
=

n∑
j=1

$ jD j ≤

n∑
j=1

$ jy = y
n∑

j=1

$ j = y.
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Similarly,

Q
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
=

n∑
j=1

$ jD j ≥

n∑
j=1

$ jx = x
n∑

j=1

$ j = x.

Thus, we get
x ≤ Q

(〈
t1, u1, u′1

〉
, . . . ,

〈
tn, un, u′n

〉)
≤ y

�

Theorem 7 (Monotonicity). If
∣∣∣ui − u′i

∣∣∣ ≥ ∣∣∣vi − v′i
∣∣∣ for all i, then:

Q
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
≥ Q

(〈
t1, v1, v′1

〉
, . . . ,

〈
tn, vn, v′n

〉)
. (19)

Proof. Let

Q
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
=

n∑
j=1

$ jD j,

Q
(〈

t1, v1, v′1
〉
, . . . ,

〈
tn, vn, v′n

〉)
=

n∑
j=1

$ jD′ j.

As
∣∣∣ui − u′i

∣∣∣ ≥ ∣∣∣vi − v′i
∣∣∣ for all i, it follows D j ≥ D′j for all j, therefore

Q
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
=

n∑
j=1

$ jD j ≥

n∑
j=1

$ jD′j = Q
(〈

t1, v1, v′1
〉
, . . . ,

〈
tn, vn, v′n

〉)
�

Theorem 8 (Commutativity-IOWA operator aggregation). Let
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
(i = 1, 2, . . . , n)

be any possible permutation of the argument vector
(〈

t1, v1, v′1
〉
, . . . ,

〈
tn, vn, v′n

〉)
, then:

Q
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
= Q

(〈
t1, v1, v′1

〉
, . . . ,

〈
tn, vn, v′n

〉)
. (20)

Proof. The permutation between
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
and

(〈
t1, v1, v′1

〉
, . . . ,

〈
tn, vn, v′n

〉)
(i =

1, 2, . . . , n) follows that the corresponding rearranged arguments D j = D′j for all j, therefore

Q
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
=

n∑
j=1

$ jD j =
n∑

j=1

$ jD′j = Q
(〈

t1, v1, v′1
〉
, . . . ,

〈
tn, vn, v′n

〉)
We can also illustrate the property of commutativity by considering the distance measure:

Q
(〈

t1, u1, u′1
〉
, . . . ,

〈
tn, un, u′n

〉)
= Q

(〈
t1, u′1, u1

〉
, . . . ,

〈
tn, u′n, un

〉)
. (21)

Note that
∣∣∣ui − u′i

∣∣∣ = ∣∣∣u′i − ui
∣∣∣ for all i, thus the Equation (20) is easy to prove. �

In light of the similar analysis methods in [29–34], some particular cases of the SVNLWIOWAD
operator can be achieved by exploring the weight vector and order-inducing values.
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4. A New MAGDM Approach Based on the SVNLWIOWAD Operator

4.1. Steps of the MAGDM Method Based on the SVNWIOWAD Operator

On the basis of the analysis reviewed in the Introduction, it is customary for decision makers
to express their opinions on alternatives over attributes by SVNLNs because of their cognition with
uncertainty and vagueness. Therefore, it is well worth investigating the application of the proposed
SVNLWIOWAD under the SVNL framework. For an MAGDM problem with n alternatives A =

{A1, A2, . . . , An} assessed by decision makers with respect to m schemes (attributes) C = {C1, C2, . . . , Cm},
the decision steps based on the SVNLWIOWAD are listed as follows:

Step 1: Each expert dk(k = 1, 2, . . . , l) (whose weight is εk, meeting εk ≥ 0 and
l∑

k=1
εk = 1) provides

his or her performance of attributes by the SVNLNs. Afterwards, the individual decision matrix

Uk =
(
u(k)

i j

)
m×n

is obtained, where u(k)
i j is the k-th expert’s evaluation of the alternative A j with respect

to the attribute Ci;
Step 2: Aggregate all performances of the individual experts into a collective one and then form

the group decision matrix:

U =
(
ui j

)
m×n

=


u11 · · · u1n

...
. . .

...
um1 · · · umn

, (22)

where ui j =
l∑

k=1
εku(k)

i j ;

Step 3: Find the ideal levels for each attribute to construct the ideal scheme, listed in the Table 1;

Table 1. Ideal scheme.

C1 C2 · · · Cn

I I1 I2 . . . In

Step 4: Utilize Equation (15) to calculate the distance SVNLWIOWAD(Ai, I) between different
alternatives Ai(i = 1, 2, . . . , m) and the ideal scheme I;

Step 5: Rank the alternatives and identify the best one(s) according to SVNLWIOWAD(Ai, I),
where the smaller the value of SVNLWIOWAD(Ai, I), the better the alternative Ai(i = 1, 2, . . . , m).

4.2. An Illustrative Example: Investment Selection

We explored the application of the proposed approach in an investment selection problem
where three decision makers were invited to assess a suitable strategy. There were four companies
(alternatives) considered as potential investment options, chemical company (A1), food company (A2),
car company (A3) and furniture company (A4), according to following possible situations (attributes)
for the next year: C1 was the risk, C2 was the growth, C3 was the environmental impact, and C4 was
other impacts. The evaluation presented by the decision makers with respect to the four attributes
formed individual SVNL decision matrices under the linguistic term set S = {s1 = extremely poor,
s2 = very poor, s3 = poor, s4 = fair, s5 = good, s6 = very good, and s7 = extremely good}, as shown in
Tables 2–4.
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Table 2. Single-valued neutrosophic linguistic (SVNL) decision matrix U1.

C1 C2 C3 C4

A1

〈
s(1)4 , (0.3, 0.2, 0.3)

〉 〈
s(1)3 , (0.5, 0.3, 0.1)

〉 〈
s(1)4 , (0.5, 0.2, 0.3)

〉 〈
s(1)5 , (0.3, 0.5, 0.2)

〉
A2

〈
s(1)6 , (0.6, 0.1, 0.2)

〉 〈
s(1)4 , (0.5, 0.2, 0.2)

〉 〈
s(1)5 , (0.6, 0.1, 0.2)

〉 〈
s(1)3 , (0.6, 0.2, 0.4)

〉
A3

〈
s(1)5 , (0.7, 0.0, 0.1)

〉 〈
s(1)3 , (0.3, 0.1, 0.2)

〉 〈
s(1)4 , (0.6, 0.1, 0.2)

〉 〈
s(1)6 , (0.6, 0.1, 0.2)

〉
A4

〈
s(1)5 , (0.4, 0.2, 0.3)

〉 〈
s(1)3 , (0.3, 0.2, 0.5)

〉 〈
s(1)5 , (0.4, 0.2, 0.3)

〉 〈
s(1)4 , (0.5, 0.3, 0.3)

〉
Table 3. SVNL decision matrix U2.

C1 C2 C3 C4

A1

〈
s(2)6 , (0.4, 0.2, 0.4)

〉 〈
s(2)4 , (0.6, 0.1, 0.3)

〉 〈
s(2)6 , (0.6, 0.3, 0.4)

〉 〈
s(2)5 , (0.4, 0.4, 0.1)

〉
A2

〈
s(2)6 , (0.7, 0.2, 0.3)

〉 〈
s(2)5 , (0.6, 0.2, 0.2)

〉 〈
s(2)6 , (0.7, 0.2, 0.3)

〉 〈
s(2)4 , (0.5, 0.4, 0.2)

〉
A3

〈
s(2)4 , (0.8, 0.1, 0.2)

〉 〈
s(2)4 , (0.4, 0.2, 0.2)

〉 〈
s(2)5 , (0.7, 0.2, 0.3)

〉 〈
s(2)6 , (0.6, 0.3, 0.3)

〉
A4

〈
s(2)5 , (0.4, 0.3, 0.4)

〉 〈
s(2)5 , (0.3, 0.1, 0.6)

〉 〈
s(2)6 , (0.5, 0.1, 0.2)

〉 〈
s(2)3 , (0.7, 0.1, 0.1)

〉
Table 4. SVNL decision matrix U3.

C1 C2 C3 C4

A1

〈
s(3)6 , (0.5, 0.1, 0.3)

〉 〈
s(3)4 , (0.6, 0.2, 0.1)

〉 〈
s(3)5 , (0.6, 0.1, 0.3)

〉 〈
s(3)4 , (0.3, 0.6, 0.2)

〉
A2

〈
s(3)5 , (0.5, 0.2, 0.3)

〉 〈
s(3)5 , (0.7, 0.2, 0.1)

〉 〈
s(3)4 , (0.7, 0.2, 0.2)

〉 〈
s(3)6 , (0.4, 0.6, 0.2)

〉
A3

〈
s(3)4 , (0.6, 0.1, 0.2)

〉 〈
s(3)3 , (0.4, 0.1, 0.1)

〉 〈
s(3)4 , (0.5, 0.2, 0.2)

〉 〈
s(3)5 , (0.7, 0.2, 0.1)

〉
A4

〈
s(3)6 , (0.5, 0.2, 0.3)

〉 〈
s(3)5 , (0.2, 0.1, 0.6)

〉 〈
s(3)6 , (0.6, 0.2, 0.4)

〉 〈
s(3)4 , (0.5, 0.2, 0.3)

〉

Assuming that the weights of the experts were ε1 = 0.30, ε2 = 0.37, and ε3 = 0.33, respectively,
then the group SVNL decision matrix could be obtained through aggregating the three individual
decision matrices. The results are listed in the Table 5.

Table 5. Group SVNL decision matrix U.

C1 C2 C3 C4

A1
〈
s5.26, (0.399, 0.163, 0.330)

〉 〈
s3.37, (0.566, 0.185, 0.144)

〉 〈
s4.96, (0.566, 0.186, 0.330)

〉 〈
s4.70, (0.335, 0.491, 0.159)

〉
A2

〈
s5.70, (0.611, 0.155, 0.258)

〉 〈
s2.37, (0.602, 0.200, 0.162)

〉 〈
s4.70, (0.666, 0.155, 0.229)

〉 〈
s4.23, (0.514, 0.350, 0.258)

〉
A3

〈
s4.37, (0.714, 0.000, 0.155)

〉 〈
s3.67, (0.365, 0.128, 0.163)

〉 〈
s4.33, (0.611, 0.155, 0.229)

〉 〈
s5.70, (0.633, 0.180, 0.186)

〉
A4

〈
s5.30, (0.432, 0.229, 0.330)

〉 〈
s2.37, (0.271, 0.129, 0.561)

〉 〈
s5.63, (0.450, 0.159, 0.286)

〉 〈
s3.67, (0.578, 0.185, 0.209)

〉
.
The ideal scheme (Table 6) determined by experts represents the optimal results that a supplier

should satisfy, which further serves as a reference point in the aggregation process.

Table 6. Ideal scheme.

C1 C2 C3 C4

I
〈
s7, (0.9, 0, 0)

〉 〈
s7, (0.9, 0, 0.1)

〉 〈
s7, (1, 0, 0.1)

〉 〈
s6, (0.9, 0.1, 0)

〉
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We assumed that the weight and the order-inducing vectors of the SVNLWIOWAD were w =

(0.2, 0.15, 0.3, 0.35)T and T = (5, 9, 7, 4), respectively. Based on the available information, we utilized
the SVNLWIOWAD to calculate the distances between the alternative Ai and the ideal scheme I:

SVNLWIOWAD(A1, I) = 6.440, SVNLWIOWAD(A2, I) = 5.713,
SVNLWIOWAD(A3, I) = 5.323, SVNLWIOWAD(A4, I) = 6.810.

Therefore, the ordering of the alternatives through the values of SVNLWIOWAD(Ai, I)(i =

1, 2, 3, 4) was A3 � A2 � A1 � A4, which implies that the optimal company A3 is the best choice
for investment.

To conduct a comparative analysis with the existing methods, in this example we utilized the
SVNLWD, SVNLOWAD, and SVNLIOWAD to measure the relative performance of all alternatives to
the ideal scheme, and the aggregation results are listed in the Table 7.

Table 7. Aggregation results.

A1 A2 A3 A4 Ranking

SVNLWD(Ai, I) 6.828 5.836 5.048 6.444 A3 � A2 � A4 � A1

SVNLOWAD(Ai, I) 6.466 5.652 4.802 6.460 A3 � A2 � A4 � A1

SVNLIOWAD(Ai, I) 6.770 5.788 4.833 6.460 A3 � A2 � A1 � A4

From the Table 7, it is easy to see that the most desirable alternative was A3 for the different
distance measures used, which was the same as the result obtained from the SVNLWIOWAD operator.
We also found that the ranking of alternatives may change for the different distance measures used
because the different operators include different information. The SVNLWD uses the importance of
attributes and the SVNLOWD focuses on the ordered location of the arguments. The SVNLIOWAD
considers the attitudinal character of the decision-makers, while the SVNLIOWAD operator includes
more information than the SVNLIOWAD as its design function of the order-induced variables. It is
worth pointing out that the SVNLWIOWAD operator not only combines the advantages of the existing
methods, but also overcomes some of their shortcomings, so that it can achieve a more scientific and
reasonable result.

5. Conclusions

With the help of SVNLNs, decision makers may easily evaluate alternatives by linguistic terms
as well as uncertainty degrees, which is very close to human cognition. In order to highlight the
theory and application of SVNLS, in this paper, we explored some distance measures for SVNLSs
from an induced aggregation point of view. Firstly, we put forward the SVNLIOWAD operator, which
is a useful extension of the existing IOWAD operator. Then, a novel induced aggregation distance,
namely the single valued neutrosophic linguistic weighted IOWAD (SVNLWIOWAD) operator, was
developed to overcome the defects of the existing methods. The key feature of the SVNLWIOWAD
is that it extends the functions of the order-inducing variables, which not only induce the order of
arguments, but also moderate the associated weights. Compared with the existing methods, wherein
the order-inducing variables just play the induced function, this dual role enables the SVNLWIOWAD
operator to effectively measure the intrinsic variation of the induced variables on the integration results.
Therefore, it can consider the complex attitudinal characteristics as well as reflect the influence of the
induced variables on the aggregation results by moderating the associated weights. An MAGDM
method, based on the SVNLWIOWAD operator, was further presented, which turned out to be a very
powerful approach to handle decision making problems under SVNL situation. Finally, a numerical
example on investment selection and comparative analysis were utilized to demonstrate the feasibility
and effectiveness of the proposed method.
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For future research, we will consider some methodological extensions and application of
the proposed method with other decision making approaches, such as moving averaging and
probability information.
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