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Abstract: Symmetry and fluid dynamics either advances the state-of-the-art of mathematical methods
and extends the limitations of existing methodologies to new contributions in fluid. Physical
scenario is modelled in terms of differential equations as mathematical models in fluid mechanics
to address current challenges. In this work a physical problem to examine the unsteady flow of
a third-grade non-Newtonian liquid induced through a permeable shrinking surface containing
nanoliquid is considered. The model of Buongiorno is utilized comprising the thermophoresis
and Brownian effects through nonlinear thermal radiation and convective condition. Based on the
flow symmetry, suitable similarity transformations are employed to alter the partial differential
equations into nonlinear ordinary differential equations and then these ordinary differential equations
are numerically executed via three-stage Lobatto IIIa formula. The flow symmetry is discussed
for interesting physical parameters and thus this work is concluded. More exactly, the impacts of
pertinent constraints on the concentration, temperature and velocity profiles along together drag force,
Sherwood and Nusselt numbers are explained through the aid of the tables and plots. The outcomes
reveal that the dual nature of solutions is gained for a specific amount of suction and flow in the
decelerating form A < 0. However, the unique result is obtained for flow in accelerating form A ≥ 0.
In addition, the non-linear parameter declines the liquid velocity and augments the concentration and
temperature fields in the first result, whereas the contrary behavior is scrutinized in the second result.

Keywords: Buongiorno model; unsteady flow; nanoliquid; special third-grade liquid; non-linear
thermal radiation

1. Introduction

In recent times, non-Newtonian liquids play an imperative role in industrial and engineering
processes due to their numerous applications. Here, blood, paints, clay coatings, molten plastics,
certain oils, artificial fibers, ketchup, etc., are a few examples. These liquids defy Newton′s law of
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viscosity due to their vital elastic properties. These kinds of liquids are found in an ample variety of
realistic problems, enclosing essential significance in polymer depolarization, composite processing,
boiling, bubble absorption, etc. Non-Newtonian liquids are scrutinized via three foremost classes,
for instance, the integral type, differential type, and rate type. A third-grade liquid is a subclass liquid
of the differential kind of model which can envisage the normal stresses along with the phenomena
of shear thickening and thinning. Keçebaş and Yürüsoy [1] discussed the time-dependent flow of a
special type of third-grade liquid and obtained the solution through similarity variables. Ellahi and
Riaz [2] obtained an analytical result of the magnetohydrodynamics (MHD) flow of a third-grade
liquid through erratic viscosity analysis. Sahoo and Do [3] explored the impact of the slip factor on a
magnetic field comprising a third-grade liquid induced through a stretched sheet. The slip impact on a
third-grade liquid from a stretched surface moving in exponential form was discussed by Sahoo and
Poncet [4]. Abbasbandy and Hayat [5] discussed the special third-grade liquid through a permeable
moving surface. Rahman et al. [6] inspected the mixed convective flow of a third-grade liquid close
to a stagnation position from an exponentially stretching surface. Hussain et al. [7] presented solar
radiation model for the magnetic field along with third-grade nanoliquid from a convectively heated
stretched surface. Naganthran et al. [8] scrutinized the time-dependent flow of a special third-grade
liquid through a porous stretched/shrinking surface. They observed the dual nature of results which
remained true for the shrinking and stretched surfaces, and they also executed stability analysis.
Recently, Reddy et al. [9] have inspected the time-dependent flow of a third-grade liquid through a
cylinder. They found that a significant impact of third-grade fluid can observed in the flow field as
compared to Newtonian fluid.

In recent times, the study of nanoliquids has gathered considerable curiosity, due to the field’s
assorted realistic applications, including use in pharmaceutical medicines, thermal systems, electronics,
nuclear reactors, chemical industry, etc. Nanoliquids are solid liquid particles which hold nanofiber
or nanometer sized particles, having sizes of 1–100 nm, which are scattered in liquids such as water,
lubricants, ethylene glycol, bio-fluids, oil, and polymer solutions. In recent times, it has been shown
that nanoliquids demonstrate enhanced properties, including an enhanced thermophysical behavior,
a modified viscosity, and enhanced thermal diffusivity, density, and thermal conductivity. A novel
category of liquid has been described by Choi [10], which has been acknowledged as a nanoliquid.
The phenomenon of the augmentation the thermal conductivity through dispersion of the nanomaterial
in the liquid was shown by Masuda et al. [11]. Later, Buongiorno [12] observed that the motion of
Brownian and thermophoretic diffusion of nanomaterials offers immense potential improvement in
liquid thermal conductivity. As a result of these impacts, he recommended variations in situations of
convective transport. This plays a significant role in several applications in various industries, like in
the collection of aerosols, the safety of nuclear reactors, and eradicating tiny particles from gas streams.
Khan and Pop [13] scrutinized flow involving a nanoliquid from a stretched surface using Buongiorno′s
model. Then, Rana and Bhargava [14] expanded this problem through the use of a different geometry,
namely, a non-linear stretched surface. The impact of the heat transport containing nanoliquid induced
through a heated stretching surface was inspected through Makinde and Aziz [15]. The results
revealed that the preserved thermal features were significantly distorted by escalating the impacts of
thermophoresis and Brownian movement. Recently, several researchers [16–20] have discussed the
importance of thermophoresis along with Brownian motion with different physical aspects.

The impact of thermal radiation through convective boundary circumstances is involved in
numerous industrial and engineering processes, including gas turbines, the storage of thermal energy,
die forging, nuclear turbines, and chemical reactions. Aziz [21] looked at the flow of a flat surface by
employing a convective condition. Makinde and Aziz [22] scrutinized the magnetic impact of free and
forced convective flow on the characteristic of heat transfer in an erect plate in a convective condition in
a porous medium. The boundary layer flow provoked through a permeable stretched surface through
a convective condition was scrutinized by Ishak [23]. Yao et al. [24] investigated flow with a permeable
convectively heated shrinking and stretching wall and found an exact result. Rahman et al. [25] utilized
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the convective condition to find the solution numerically for mixed convective flow through an upright
flat plate in a convective condition. Mustafa et al. [26] analyzed Maxwell liquid and an exponential
stretched surface with a convective condition engrossed in a nanoliquid. Ibrahim and Haq [27]
explored electrically conducting flow involving a nanoliquid from a stretched sheet in a convective
condition. Makinde et al. [28] looked into the impact of MHD on flow comprising a nanoliquid through
a connectivity-heated stretched sheet through radiation and slip impacts. The influence of convective
condition on MHD flow with nonlinear radiation involving Carreau liquid induced by a stretched
sheet was examined by Khan et al. [29]. Recently, Mabood and Khan [30] considered the impact of
time-dependent flow with magnetic field from a stretched surface with convective condition.

However, time-dependent flow in the presence of a precise third-grade nanoliquid induced
by a shrinking surface through nonlinear thermal radiation and a convective condition has not yet
been explored. Although, the literature review has revealed that just a small amount of research
has been carried out in a two-phase model comprising nanofluids in non-Newtonian fluid. Second,
most researchers have found only one solution regarding the flow field. In addition, with a shrinking
surface, a boundary layer flow through a shrinking surface is not achievable because the vorticity
produced in this case is not confined inside the boundary layer. To maintain the structure of the
boundary layer, the flow requires a certain value of exterior suction at the permeable sheet. Thus,
we inspect the impact of nonlinear radiation on time-dependent flow through a shrinking surface
involving a special third-grade nanofluid and obtain the dual solutions. The significant technique
bvp4c (which is actually a finite difference technique which employs the 3-stage Lobatto IIIa formula)
is utilized to solve transmuted ordinary differential equations (ODE’s). It is estimated that this study
may be helpful for the examination of bundle and shrink wrappings, etc., and is a procedure through
which manufactured goods or a group of goods may be wrapped in a movable cover or wrapper
of plastic film, leading to the application of heat shrinkage and firmly conforming to the shape of
the enclosed contents. The important aspect of this procedure is shrinking film. Owing to its real
advantages, shrinking film has seen utilization in numerous industries at several stages of processes
relating to packaging.

2. Formulation of the Problem

An unsteady nonlinear radiative flow, together with mass and heat transport, containing a special
third-grade liquid induced through a permeable shrinking surface crammed by nanoliquids was
developed. It is supposed that the x and y axes denote alongside the sheet and normal to it, respectively.
The nanoliquid velocity of shrinking sheet is ax/(1− ct) + uw(x, t) = 0 with a > 0 and c showing
the unsteadiness of the problem. In addition, the sheet was convectively heated by temperature T f ,
which suggests a heat transport coefficient h f . The considerations of the physical flow problem for
third-grade liquids were considered as was considered by Fosdick and Rajagopal [31].

T1 + pI = µA1 + α1A2 + α2A2
1 + β

(
trA2

1

)
A1 (1)

where µ, T1, p, and I represent the viscosity, Cauchy stress tensor, pressure, and identity tensor,
respectively, and α1, α2, and β represent the material moduli. Following Fosdick and Rajagopal [31],
we imposed the following conditions:

0 ≤ µ, 0 ≤ β, 0 ≤ α1, (24µβ)0.5
≥ |α1 + α2| (2)

Through these statements, the leading equations that oversee the time-dependent flow are
presented as [4,8,26]:

∂v
∂y

= −
∂u
∂x

(3)
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∂u
∂t

+ v
∂u
∂y

+ u
∂u
∂x
− ν

∂2u
∂y2 − 6κ

(
∂u
∂y

)2
∂2u
∂y2 = 0 (4)

∂T
∂t

+ v
∂T
∂y

+ u
∂T
∂x
− α

∂2T
∂y2 = τ

(DT

T∞

)(
∂T
∂y

)2

+ DB
∂C
∂y
∂T
∂y

− 1(
ρcp

)
f

∂qr

∂y
(5)

∂C
∂t

+ v
∂C
∂y

+ u
∂C
∂x
−DB

∂2C
∂y2 =

(DT

T∞

)(
∂T2

∂y2

)
(6)

The boundary conditions are:

t < 0 : C = C∞, v = 0, u = 0, T = T∞ for all x, y,
t ≥ 0 : C = Cw, v + vw(t) = 0, u− uw(x, t) = 0, −k ∂T

∂y = h f (t)
(
T f − T

)
at y = 0,

u→ 0, C→ C∞, T→ T∞ as y→∞.
(7)

Here, (v, u) denotes the components of velocity in the y−, x− directions, respectively, α, ν and ρ
denote the thermal diffusivity, kinematic viscosity, and density, respectively, C, DB, DT and κ denote
the concentration of nanoparticles, the Brownian motion, thermophoresis diffusion coefficient, and the
non-Newtonian parameter, respectively, and τ =

(
ρcp

)
p
/
(
ρcp

)
f

is the ratio of capacity.

In Equation (3), qr (radiative heat-flux) is presented as was obtained by Khan et al. [29]:

qr = −
∂T4

∂y
4σ∗

3k∗
= −T3 ∂T

∂y
16σ∗

3k∗
, (8)

where (k∗, σ∗) denotes the mean-absorption and the Stefan–Boltzmann constants, respectively. Utilizing
Equation (8), Equation (5) became:

∂T
∂t

+ v
∂T
∂y

+ u
∂T
∂x
− τ

DB
∂C
∂y
∂T
∂y

+
(DT

T∞

)(
∂T
∂y

)2 =
∂
∂y


α+ 16σ∗T3

3(ρcp) f k∗

∂T
∂y

 (9)

Currently, we establish the similarity variables:

η = y
√

a
v(1− ct)

, ψ =

√
av

(1− ct)
x f (η), φ(η) =

C−C∞
Cw −C∞

, θ(η) =
T − T∞
T f − T∞

. (10)

Here η and ψ denote the similarity variable and the stream function, respectively, and we get
T = [T∞ + T∞(θw − 1)θ] through θw > 1, where θw = T f /T∞ is the ratio of temperature. For the

purpose of the similarity result, we presume that κ = κ0(1− ct)3/x2, with κ0 > 0 being a constant
(see Naganthran et al. in [8]), vw(t) = v0/

√
1− ct is the suction with v0 > 0, and h f = d(1− ct)−0.5

with d > 0 (see Mahapatra and Nandy in [32]).
Employing Equation (10), Equations (4)–(9) are transmuted into the ODE’s:(

1 + K f ′′ 2
)

f ′′′ + f f ′′ −A
(

f ′ +
1
2
η f ′′

)
− f ′2 = 0 (11)

θ′′ + Pr fθ′ +
4

3Rd

d
dη

[{
1 + (θw − 1)θ

}3θ′
]
−

1
2

PrAηθ′ + Pr
[
Nt(θ′)2 + Nbθ′φ′

]
= 0 (12)

φ′′ + Le fφ′ +
Nt
Nb
θ′′ −

1
2

PrLeAηφ′ = 0 (13)

Along with

f ′(0) = −1, f (0) = S, θ′(0) = −γ(1− θ(0)), φ(0) = 1,
φ(∞)→ 0, f ′(∞)→ 0, θ(∞)→ 0,

(14)
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K = 6κ0a3/ν2

Pr = ν/α

A = −c/a

Nt = τDT
(
T f − T∞

)
/T∞ν

γ = d
√
ν/a/k

Nb = τDB(Cw −C∞)/ν

S = v0/
√

aν > 0

Rd = kk∗/4σ∗T3
∞

Le = ν/DB.

In above, K is the dimensionless non-Newtonian constraint, Pr is the Prandtl number, A is the
unsteady constant, Nt is the thermophoresis, γ is the convective parameter, Nb is the Brownian motion,
S is the suction, Rd id the thermal radiation and Le is the Lewis parameter.

The imperative engineering quantities of interest are the friction factor, heat, and mass transfer,
which are presented as follows:

C f x =
τw

ρu2
w

, Nux = −
xqw

k(T f − Tw)
, Shx =

xmw

DB(Cw −C∞)
, (15)

where qw, mw, and τw denote the shear stress, mass flux and heat flux, respectively, and are shown as
follows:

τw = µ

(
∂u
∂y

)
y = 0

, mw = −DB

(
∂C
∂y

)
y = 0

, qw = −k
(
∂T
∂y

)
w
+ (qr)w, (16)

Utilizing (10), we obtain:

Re0.5
x C f = f ′′ (0), Re−0.5

x Shx = −φ′(0),
Re−0.5

x Nux = −
[
1 + 4

3Rd

{
1 + (θw − 1)θ(0)

}3
]
θ′(0).

(17)

where Rex = x̂ûw(x̂)/ν is the Reynolds number.

3. Numerical Procedure

The nonlinear ordinary differential Equations (11)–(13) with the boundary restriction shown in
Equation (11) are tackled by bvp4c, based on the finite difference technique, which implements a
3-stage Lobatto formula. This formula is also known as a collocation technique with fourth order
accuracy. Here, we re-write the ODE’s shown in Equations (11)–(13) by translating them as an initial
value problem (IVP). Further, it is supportive to give a fixed value to η→∞ , known as η∞. The above
ODE’s are converted into a system of first order as follows:

f ′ = y1, (18)

y1
′ = y2, (19)

y2
′ =

1(
1 + Ky2

2

) [y2
1 − f y2 + A

(
y1 +

1
2
ηy2

)]
, (20)

θ′ = z, (21)

z′ =
1[

1 + 4
3Rd

{
1 + (θw − 1)θ

}3
]  −Pr f z− 4

Rd

{
1 + (θw − 1)θ

}2(θw − 1)z2 + 1
2 PrAηz

−Pr
(
Nt z2 + Nb zp

) , (22)
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φ′ = p, (23)

p′ = −Le f p +
Nt
Nb

z′ +
1
2

PrAηp, (24)

where
f (0) = S, y1(0) = −1, z(0) = −γ[1− θ(0)], φ(0) = 1,
φ(η∞) = 0, y1(η∞) = 0, θ(η∞) = 0.

(25)

We have now a set of ‘partial’ initial conditions:

f (0) = S, y1(0) = −1, y2(0) = β1, θ(0) = β2,
z(0) = −γ[1− β2], φ(0) = 1, p(0) = β3.

(26)

Holding the system of Equations (18)–(26) as an IVP numerically, we need the value for y2(0), θ(0),
and p(0), i.e., β1, β2, and β3, respectively. However, these values are not mentioned in Equation (25).
The initial estimated values for y2(0), θ(0), and p(0) are speculated and bvp4c was obtained via the
MATLAB software to achieve accurate results. It is noted that this was carried out by setting different
initial guesses to obtain multiple solutions. Afterward, the considered values of f ′(η), θ(η) and φ(η) at
η∞ (=10) were appraised through the boundary conditions f ′(η∞) = 0, θ(η∞) = 0 and φ(η∞) = 0,
in which the estimated values of f ′′ (0), θ(0) and φ′(0) were controlled by the Secant technique to get
a better conjecture for the results. The step-size was taken as ∆η = 0.01. The process was repeated
iteratively until required results with an acceptable level of accuracy (i.e., up to 10−5) were acquired, in
order to fulfill the convergence criterion.

4. Results and Discussion

The distorted nonlinear ODE’s shown in Equations (11)–(13), together with the boundary
conditions shown in Equation (14), were worked out via the bvp4c solver. The numerically-obtained
outcomes for the Nusselt number, skin factor, and Sherwood number, along with the liquid velocity,
temperature distribution, and concentration were plotted for distinct values of the pertinent parameters
encountered in the problem.

Figures 1–3 show the deviation of time-dependent constraint A on the fluid velocity, temperature
distribution and concentration profile. From Figure 1, it can be seen that the velocity profile increases
when augmenting A in the first result, and, thus, the thickness of the velocity boundary layer reduces,
whilst for the second solution, a tendency to repel can be observed. Also, it can be seen through the
figure that the velocity of liquid initially increasing when growing η in the first result and then it starting
to decrease after η = 1. The unsteady impact is significant in the second solution. Physically, the
impact of the unsteadiness parameter resists the motion of liquid flow, and, consequently, reduces the
liquid velocity. Figures 2 and 3 explain the temperature and concentration fields, respectively, which
increase due to the increase in A in both results. Therefore, the thicknesses of the temperature and
concentration boundary layers rise in both results. Physically, an increase in the unsteadiness parameter
enhances the heat and mass of the nanoliquid, leading to an increase in the temperature as well as the
concentration and its related boundary layer thicknesses. In addition, these sketches gratify the border
conditions asymptotically and the survival of the dual nature of the results, sustaining the justification
of our achieved numerical solutions. Figures 4–6 have been prepared to inspect the influence of
non-Newtonian constraint K on the fluid velocity, temperature distribution, and concentration profile.
Figure 4 shows that the fluid velocity declines due to K in the first result and enhances in the second
result. Consequently, the thickness of the velocity boundary layer expands in the first result and
shrinks in the second solution. K = 0 signifies a Newtonian fluid. A rise in K implies an increase in the
behavior of non-Newtonian behavior. Thus, the non-Newtonian parameter widens the thickness of the
boundary layer. Alternatively, the temperature and concentration profile enhance when introducing K
in the first result, as portrayed in Figures 5 and 6, whereas, the contrary behavior is scrutinized in the
second result. These figures also suggest that the profiles are superior for special third-grade liquid,
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in contrast to the Newtonian liquid. The impact of the Brownian parameter Nb on the temperature and
concentration fields is depicted in Figures 7 and 8, respectively. Figure 7 shows that the temperature
distribution increases due to Nb in both solutions. In contrast, the concentration of the nanoliquid
moves in the opposite direction to Nb in both solutions, as depicted in Figure 8. Therefore, the thickness
of concentration boundary layer shrinks and the thickness of the thermal boundary layer expands.
Physically, the nanoparticles of kinetic energy increase with the chaotic motion strength, increasing
the temperature of liquid. Also, the Brownian motion at both the molecular and nanoscale levels is
an imperative mechanism which governs the thermal behavior. In systems with nanoliquids, the
Brownian motion occurs due to the nanoparticle size, which can alter the heat transport properties.
As the material size moves toward a nanosized level, Brownian activity and its effect on the liquids
is significantly responsibility for the features of heat transport. Figures 9 and 10 show the impact
of Nt on the liquid temperature and nanoliquid concentration. These outcomes suggest that the
profiles of the temperature and concentration increase when increasing Nt in both solutions. Physically,
diffusion produces a profound effect in the liquid due to the increasing Nt, which grounds the widening
of the thermal and concentration boundary layers. Figures 11–14 have been created to depict the
impacts of the convective radiation, γ, and thermal radiation, Rd, on the temperature of the liquid
and concentration. Figure 11 shows that the temperature gradient of sheet rises when increasing γ.
This influences deeper thermal piercing into the sluggish liquid. Thus, the thickness and temperature
rise with rising values of γ in both results. It is claimed that the constant wall temperature θ(0) = 1
will be able to recover by capturing a sufficiently large amount of γ. In addition, γ = 0 communicates
an insulated surface. Figure 12 explains the concentration, along with the boundary thickness, with a
large amount of γ in both results. Figures 13 and 14 confirm that the temperature distribution and
nanofluid concentration decline as Rd increases in both results. Consequently, the thicknesses of the
concentration and thermal boundary layers become slimmer in both solution forms. Physically, a
huge amount of Rd denotes the supremacy of conduction, and, as a result, the thicknesses of the
concentration and the thermal boundary layers shrink. As expected, the influence of radiation is
more prominent on the temperature in contrast to concentration. The impact of the time-dependent
constraint A on the friction factor, C f Re1/2

x , the heat transfer rate, NuxRe−1/2
x , and the mass transfer

rate, ShxRe−1/2
x , against S is demonstrated in Figures 15–17 and in Table 1. Figure 15 shows that the

friction factor increases when increasing A in both forms of the solution. However, the heat and mass
transport rates diminish when increasing A in both solutions, as illustrated in Figures 16 and 17. Also,
the trend of these solutions can be inspected through Table 1. Multiple results are attained when Sc ≤ S
and no result is obtained for Sc > S. Here, Sc is identified as a critical value. Moreover, the influence
of A towards the critical values is depicted in Table 2. The superior features of the time-dependent
constraint reduce critical point value. Therefore, the time-dependent parameter influences boundary
layer separation. Finally, the behavior of the friction factor and heat and mass transfer for distinct
values of K against A are portrayed in Figures 18–20. These results suggest that the dual nature of the
solutions of the ODE’s shown in Equations (11)–(13), with respect to the boundary condition shown in
Equation (14), are available only with decelerating (A ≥ 0) flow (see Mahapatra and Nandy in [32]),
whilst the solution is single for accelerating (A < 0) flow. The multiple results are attained when
A ≤ Ac and no result is found when A > Ac, where Ac signifies the critical value. Here, it is interesting
to observe that for Newtonian liquid (K = 0), the point of critical appears far, thus, we terminated
calculations at A = 10. The result is consistent with the existing literature [33,34]. However, the
multiple outcomes survive for K = 1 in the range of A, i.e., A ≤ 4.2080, and no result survives when
A > 4.2080. It is noteworthy that an additional quantity of K results in a notable decline of (|Ac|) in
the domain of the solution. For K = 2, the result survives when A ≤ 2.6890 and no result exists
for A > 2.6890. So, the critical values, (|Ac|), reduce when the non-Newtonian constraint increases,
which interrupts separation. Moreover, the friction factor and heat and mass transfer rate shrink in the
first solution and increase in the second solution due to the rising K, as illustrated in Figures 18–20.
It should be observed that the calculations have been executed awaiting the point where the result
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does not converge, and the computations were stopped at that position. According to the previous
studies [35–38], the first solution (upper branch solution) is stable and physically appropriate, while
the second solution (lower branch solution) is unstable and physically not relevant. However, these
results are denied of physical meaning, where these solutions are still of interest as far as the differential
equations are concerned. Similar results may occur in other conditions where the consequent solutions
have more practical meaning [39].
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Table 1. Values of skin friction, Nusselt number, and Sherwood number versus S for different values of
A when K = 1, Nb = 1, Nt = 1.5, Le = 1, Qw = 1.5, Rd = 2, γ = 0.3 are fixed.

S A
CfRe1/2

x NuxRe−1/2
x ShxRe−1/2

x

First Solution Second Solution First Solution Second Solution First Solution Second Solution

2.8

−3 0.9627 −1.7424 1.0894 1.0855 2.7589 2.5893

−2 1.1099 −1.5024 1.0863 1.0804 2.6085 2.4075

−1 1.2370 −1.1420 1.0816 1.0713 2.1800 2.0495

2.6

−3 0.7457 −1.4673 1.0867 1.0831 2.5777 2.4429

−2 0.9505 −1.2430 1.0828 1.0770 2.4220 2.2570

−1 1.1154 −0.8527 1.0766 1.0659 2.2332 2.0209

2.4

−3 0.3372 −1.0314 1.0831 1.0807 2.3910 2.3136

−2 0.7068 −0.8738 1.0782 1.0735 2.2324 2.1203

−1 0.9524 −0.4982 1.0699 1.0602 2.0347 1.8766

Table 2. Critical values of Sc for different values of A when K = 1, Nb = 1, Nt = 1.5, Le = 1,
Qw = 1.5, Rd = 2, γ = 0.3 are fixed.

A Sc

−3 2.3079

−2 2.2338

−1 2.1665

5. Conclusions

In the current study we have discussed the time-dependent flow of a nanoliquid involving a
special third-grade fluid induced through a heated shrinking surface through non-linear radiation.
The transmuted ODE’s were numerically calculated via a bvp4c solver for distinct values of the
substantial constraints that appeared in the problem. This investigation reveals the following
significant finding:

• Multiple results have been obtained for decelerating flow only, and for precise values of S.
• The liquid velocity declines in the first result and increases in the second due to K. The concentration

and temperature fields rise in the first result and diminish in the second result.
• The thicknesses of the concentration and thermal boundary layers increase due to γ in both results.
• The liquid temperature and nanomaterial concentration decrease due to thermal radiation in

both results.
• The nanoparticles distribution can be controlled through the mechanism of Brownian motion and

the thermophoresis effect.
• The time-dependent and non-Newtonian parameters delay the separation of the boundary.
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