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Abstract: With the increasing popularity of artificial intelligence, deep learning has been applied
to various fields, especially in computer vision. Since artificial intelligence is migrating from cloud
to edge, deep learning nowadays should be edge-oriented and adaptive to complex environments.
Aiming at these goals, this paper proposes an ICONet (illumination condition optimized network).
Based on OTSU segmentation algorithm and fuzzy c-means clustering algorithm, the illumination
condition classification subnet increases the environmental adaptivity of our network. The reduced
time complexity and optimized size of our convolutional neural network (CNN) model enables the
implementation of ICONet on edge devices. In the field of fatigue driving, we test the performance
of ICONet on YawDD and self-collected datasets. Our network achieves a general accuracy of
98.56% and our models are about 590 kilobytes. Compared to other proposed networks, the ICONet
shows significant success and superiority. Applying ICONet to fatigue driving detection is helpful to
solve the symmetry of the needs of edge-oriented detection under complex illumination condition
environments and the scarcity of related approaches.

Keywords: edge-oriented; illumination condition classification; fatigue driving detection;
convolutional neural network

1. Introduction

Considering that 14–20% of traffic accidents are caused by fatigue driving [1], fatigue driving
detection is facing urgent needs and with high research significance. An effective fatigue driving
detection approach will significantly reduce the consequent traffic accidents.

At present, there are mainly three types of methods to monitor fatigue driving. The first type of
method is based on vehicle parameters. These methods focus on the rotation speed of the steering
wheel, the change of the offset angle, and the changing frequency of the pedal [2]. The second type
is based on physiological characteristics. These methods distinguish the driver’s mental state based
on the driver’s multiple physiological characteristics [3], including blood pressure, pulse, heart rate,
EMG (electromyography) signal, and EEG (electroencephalogram) signal. The involved algorithms
include logistic regression, support vector machine, the k-nearest neighbor classifier [4,5], and artificial
neural network [6]. The third type is based on computer vision. The driver’s driving behavior data
is collected by a camera installed in the vehicle. These methods are based on relevant algorithms to
comprehensively analyze the video data. They mainly focus on the eyes and mouth of the driver [7–9].

There are some noteworthy drawbacks to the first two types of methods. The methods based on
vehicle parameters require a lot of installed sensors, which increases the cost. Meanwhile, the sensing
and processing lag of related sensors may not provide a real-time result. The methods based on
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physiological characteristics require physical contact with the driver and the collected information is
private, which may be difficult to be widely utilized due to various individual reasons. Considering the
drawbacks of these two types of methods, most research nowadays focuses on the proper utilization of
computer vision.

Deep learning has recognized many advances in the past several decades. Artificial intelligence
is migrating from the cloud to the edge. Based on deep learning, future fatigue driving detection
methods should have high accuracy, great environmental adaptivity, and orient to edge devices.

The motivation of this paper is twofold. First, compared to fatigue detection approaches based on
vehicle parameters and physiological characteristics, as well as considering the recognized success
of deep learning, the deep learning-based approaches are with less cost and able to be widely
spread. Second, the current deep learning-based approaches do not consider both great environmental
adaptivity and edge-orientation. This is because most deep learning frameworks are too complicated
to be loaded on resource-limited edge devices [10].

In this paper, we propose a novel framework named ICONet (illumination condition optimized
network). The main contributions of our work are shown as follows:

1. We propose an illumination condition classification subnet based on the OTSU segmentation
algorithm and fuzzy c-means clustering algorithm. This subnet focuses on classifying input
pictures into three types, including normal daylight, weak daylight, and night.

2. We propose a convolutional neural network subnet based on Haar-like features, AdaBoost algorithm,
and the modified LeNet-5 network model. This subnet focuses on drivers’ face extraction and
behavior classification.

3. We design the two subnets in the ICONet with high modularity. Not limited to fatigue
driving detection, ICONet can be applied to other classification problems under various
illumination conditions.

The rest of this paper is organized as follows. Section 2 describes the related work. Section 3 introduces
the methods used in the ICONet. Section 4 describes the experimental results. Section 5 provides a
discussion. Section 6 concludes the whole paper.

2. Related Work

In this section, we explore the current research of fatigue driving detection in the field of deep
learning, with regard to the aspect of environmental adaptivity and edge-orientation.

2.1. Deep Learning Approaches Considering Environmental Adaptivity

In the aspect of environmental adaptivity, the interference of changing illumination conditions
must be considered. Fatigue driving usually occurs at night or dusk when the illustration condition is
weak daylight or night.

Ma, Chau et al. [11] presented a convolutional three-stream network architecture, which integrated
current-infrared-frame-based spatial information and achieved an accuracy of 94.68%. Hao et al. [12]
presented a parallel convolutional neural network (CNN). The proposed method was based on the
different detection characteristics of the same image. CNN was used to automatically complete the
feature learning. It was claimed with high robustness to a complex environment. Villanueva et al. [13]
used a deep learning algorithm. The proposed system used images captured by the camera to detect
patterns in the driver’s facial features (eyes closed, nodding/head tilt, and yawning). A deep neural
network named SqueezeNet was used for faster model development and retraining. There existed
an alarm when drowsy driving was detected. Garcia et al. [14] presented a non-intrusive approach
including three stages. The first stage was face detection and normalization. The second stage
performed pupil position detection and characterization. The final stage calculated the percentage of
eyelid closure (PERCLOS) based on closed eyes information. Songkroh et al. [15] used both vehicle
speed and driver behavior to analyze and to determine the risk level of the driver. The proposed system
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included facial image preprocessing, facial feature detection, feature classification, and an analysis
module. The risk alert yielded an accuracy of 86.30% at any vehicle speed. Yu et al. [16] proposed a
condition-adaptive representation learning framework. The framework combined spatio-temporal
representation and estimated scene conditions were merged to enhance the discriminative power.
Spatio-temporal representation learning extracted features that could simultaneously describe motions
and appearances. Scene condition understanding classified the scene conditions related to various
situations. Memon et al. [17] built a non-intrusive constant checking framework based on OpenCV.
Ma et al. [18] presented a two-stream CNN structure focusing on the night situation and achieved an
accuracy of 91.57%.

Despite some good results in methods considering environmental adaptivity, these networks have
high computational complexity and cannot be applied to resource-limited edge devices.

2.2. Deep Learning Approaches Considering Edge-Orientation

In the aspect of edge-oriented methods, most previous works faced embedded systems including
Raspberry Pi and Android devices including smartphones.

On embedded systems, Gu et al. [19] proposed a convolutional neural network model with
multi-scale pooling (MSP-Net) and implemented it on an NVIDIA JETSON TX2 development board.
On Raspberry Pi, Sharan et al. [20] proposed a driver fatigue system based on eye states using a
convolutional neural network. Ghazal et al. [21] used CNN to perform embedded fatigue detection
and achieved an accuracy of 95%. Their proposed approach included video signal spatial processing
and deep convolutional neural network classification.

On Android devices including smartphones, Xu et al. [22] presented the Sober-Drive system based
on a neural network and achieved an accuracy of 90%. Dasgupta et al. [23] proposed a three-stage
drowsiness detection with an accuracy of 93.33%. The three stages included PERCLOS calculation,
the voiced to the unvoiced ratio, and touch response, which could generally detect drowsy driving and
subsequently raised an alarm. Galarza et al. [24] proposed a surveillance system for real-time driver
drowsiness detection and with an accuracy of 93.37%. Jabbar et al. [25] proposed a real-time driver
drowsiness detection system. Their saved CNN model was within 75 kilobytes and had an accuracy of
83%.

These edge-oriented methods and systems can effectively perform fatigue driving detection
and have been realized on edge devices. However, they are not adaptive to various environmental
conditions and have relatively low accuracy. Several seconds of fatigue driving may directly cause a
fatal traffic accident. An optimized method must detect fatigue driving with high accuracy in whatever
environmental condition.

3. Methods

The structure of the illumination condition optimized network is shown in Figure 1.
ICONet includes two subnets. The first subnet classifies illumination conditions, and the second
subnet classifies related behaviors based on a modified LeNet-5 CNN model. The final stage of
ICONet is a comprehensive judgement based on the output results of the two subnets. The whole
network is designed to aim at greater environmental adaptivity and implementation on edge devices.
For the first goal, our idea focuses on an effective classification. An optimized network is expected to
accurately classify images under different illumination conditions, then accordingly call the specific
pre-trained model. Each illumination condition type corresponds to a CNN model, which correlates
with the symmetry concept. Instead of involving image correction, directly calling the pre-trained
models under various conditions will reduce the real-time computing power, which is suitable for
edge devices. For the second goal, considering the limited resources on edge devices, we optimize
the CNN network structure, remove unnecessary layers, and reduce the convolutional kernel size.
The network parameters are carefully adjusted to guarantee high accuracy when applied to fatigue
driving detection.
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Figure 1. The schematic of the illumination condition optimized network (ICONet).

3.1. Illumination Condition Classification Subnet

This subnet is based on OTSU segmentation algorithm and fuzzy c-means clustering algorithm.

3.1.1. OTSU Segmentation Algorithm

The OTSU segmentation algorithm [26] is used to determine the image binary segmentation
threshold value. Based on the one-dimensional histogram of the gray image, it selects the best threshold
value and uses this threshold value to divide the entire image into two parts, including the target and
the background. The optimal threshold value can maximize the variance between the two parts of the
image. The detail of the OTSU segmentation algorithm is described as follows.

Consider a threshold gray value Thre splits the pixels in an image into two groups: C1 (with pixel
gray value < Thre) and C2 (with pixel gray value < Thre). The average gray values of C1, C2 pixels are
m1, m2. The average global gray value of the image is mG. The probabilities of a pixel classified as
C1 or C2 are p1 and p2.

p1 =
Thre∑
i=0

pi (1)

p2 =
255∑

i=Thre+1

pi (2)

pi =
ni
n

(3)
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where ni is the number of pixels with gray value i.

m1 =
1
p1

Thre∑
i=0

ipi (4)

m2 =
1
p2

255∑
i=Thre+1

ipi (5)

mG =
255∑
i=0

ipi (6)

with constraints in Equations (7) and (8).

p1m1 + p2m2 = mG (7)

p1 + p2 = 1 (8)

The variance between these two classes is

σ2 = p1(m1 −mG)
2 + p2(m2 −mG)

2 (9)

By substituting, we have
σ2 = p1p2(m1 −m2)

2 (10)

The optimized threshold value will obtain a maximum variance σ2 among all the 256 gray
values. The whole process of the OTSU segmentation algorithm is described in Algorithm 1.

Algorithm 1 OTSU segmentation algorithm

4. Initial: Thre = 0, σ2
Thre = 0

5. for i = 0 to 255
6. Calculate p1, p2, m1, m2, mG
7. Calculate σ2

i
8. if σ2

i > σ
2
Thre

9. σ2
Thre = σ2

i
10. Thre = i
11. end if
12. end for
13. return Thre, σ2

Thre

3.1.2. Fuzzy C-Means Clustering Algorithm

The fuzzy c-means clustering algorithm [27] introduces the fuzzy theory to provide more flexible
clustering results than normal hard clustering. The algorithm assigns a weight to each object and each
cluster. It indicates the degree to which the object belongs to the cluster. Pixels in the image are divided
into many disjoint sets based on the characteristic distance of each pixel. This distance reflects the
similarity among all the pixels. Consider X = {x1, . . . , xn} as a set of n objects, and V = {v1, . . . , vk} is
the set of centers of the k clusters. U is a k× n partition matrix, where ui j is the membership degree of a
sample x j to the cluster center vi. All cluster centers and the membership of the pixels can be obtained
by minimizing the target function. The target function is

J(U, V) =
k∑

i=1

n∑
j=1

um
ij d

2
i j =

k∑
i=1

n∑
j=1

um
ij ‖x j − vi‖

2 (11)
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k∑
j=1

ui j = 1, 0 ≤ ui j ≤ 1 (12)

where n represents the number of samples, k represents the number of clusters, fuzzy weight index
m ∈ (1, +∞). m usually equals to 2. di j = ‖x j − vi‖ is the spatial Euclidean distance from the pixel x j to
the cluster center vi.

vi =

∑n
j=1 um

ij x j∑n
j=1 um

ij
, 1 ≤ i ≤ k (13)

ui j =
1∑k

p=1

(
di j
dpj

) 2
m−1

, 1 ≤ i ≤ k, 1 ≤ j ≤ n (14)

The membership degrees are initially randomly assigned. The cluster center and membership in
each following iteration are calculated based on Equations (13) and (14). The iterative process will stop
if and only if ∣∣∣U(t)

−U(t−1)
∣∣∣ = max

{∣∣∣∣u(t)
i j − u(t−1)

i j

∣∣∣∣} > ε, 1 ≤ i ≤ k, 1 ≤ j ≤ n (15)

where ε > 0 and is preassigned. The whole process of fuzzy c-means clustering is described in
Algorithm 2.

Algorithm 2 Fuzzy C-Means Clustering algorithm

1. Initial: m, ε, k
2. Randomly initialize the partition matrix U
3. while

∣∣∣U(t)
−U(t−1)

∣∣∣ < ε do
4. Calculate vi, 1 ≤ i ≤ k
5. Calculate ui j, 1 ≤ i ≤ k, 1 ≤ j ≤ n
6. end while

After performing a lot of tests, we observed that the OTSU threshold value, the ratio of OTSU
threshold and average gray value, and the minimum of the target function reflects the illumination
condition of an image.

3.2. Convolutional Neural Network Classification Subnet

When applied in the field of fatigue driving detection, this subnet involves face detection and the
extraction of the region of interest at the beginning. Face detection in our model is based on Haar-like
features and the AdaBoost algorithm [28]. The Haar-like feature is a simple rectangular feature in the
face detection system. It is defined as the difference of the pixel’s global gray value in adjacent areas of
an image. The rectangular feature can reflect the gray changes of the local features of the detected
object. The introduction of the integral images accelerates the feature acquisition speed of the detector.
The basic idea of the AdaBoost algorithm is to superpose lots of weak classifiers to be a strong classifier
with strong classification ability. Then, several strong classifiers are connected in series to complete
image retrieval.

We modified the traditional LeNet-5 model, and the structure of the proposed CNN is shown
in Figure 2. For the input image, our model uses thirty-two convolution kernels with 5 × 5 size,
one pooling layer with 2 × 2 size, sixteen convolution kernels with 5 × 5 size, one pooling layer with
2 × 2 size, and three full connection layers.
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There is a SoftMax layer after the last full connection layer. The SoftMax function is defined in
Equation (16).

S(z)i =
ezi∑ j

j=1 ez j
, i = 1, 2, . . . , j (16)

The loss function based on SoftMax cross-entropy is defined in Equation (17).

Loss = −
∑

i

yilnsi (17)

where yi represents the label, and si represents the predicted probability.
We performed regularization in loss function to improve the generalization ability of the model

and avoid over-fitting problems [29]. Indicators that can reflect the complexity of the model are added
to the loss function. If the loss function used to describe the performance of the model on training
data is J(θ), then the optimized target function is J(θ) + λR(w). R(w) represents the complexity of the
model, and λ represents the proportion of the model’s complexity loss in the total loss. θ represents
all the parameters in a neural network, including the weight w and the bias term b. The L2-norm
regularization formula [30] used in this paper is shown in Equation (18).

R(w) = ||w||22 =
∑

i

∣∣∣w2
i

∣∣∣ (18)

The time complexity (floating-point operations per second) of convolutional layers in a CNN
model is defined in Equation (19).

FLOPsCONV = O(
D∑

l=1

M2
l K2

l Cl−1Cl) (19)

where D is the depth of the network; l is the lth convolution layer; M is the length of the feature map
belonged to each convolution kernel; K is the size of convolution kernel; Cl is the number of output
channels of the lth convolution layer.

As for a fully connected layer, consider the dimension of input data is (N, D), the weight
dimension of a hidden layer is (D, out), and the dimension of output data is (N, out). Then, the time
complexity (FLOPs) of a fully connected layer in a CNN model is defined in Equation (20). We compare
the time complexity of ICONet with other approaches in Section 4.3.2.

FLOPsFC = (2D− 1) ·out (20)
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3.3. Comprehensive Judgement

Applying in the field of fatigue driving detection, the comprehensive judgement stage in ICONet
is about fatigue judgement. Fatigue is closely related to the frequency of eyes and mouth closing.

PERCLOS [31] calculates the ratio of the eye closure frames within a certain period and then infers
the driver’s eye closure frequency. PERCLOS can be calculated by:

fPERCLOS =
nclose

nclose + nopen
× 100% (21)

Similar to PERCLOS, FOM (frequency of mouth) [32] calculates the ratio of mouth open within a
certain period and then infers the driver’s yawn frequency. FOM is calculated by:

fFOM =
nopen

nclose + nopen
× 100% (22)

For an input video, a certain frequency range is required for accurately calculating fatigue
parameters. After a certain frame is detected by ICONet, according to the first-in-first-out principle,
the latest result is added to the first place of the queue and the last value of the queue is removed.
The total number of frames in the queue remains constant. In Figure 3, “1” represents a closed mouth
or eye, and “0” represents an opened mouth or eye.
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Combining the frequency queue with PERCLOS and FOM parameters, we can judge whether a
driver is fatigued driving.

4. Experimental Results

All experiments were conducted on a computer with Intel(R) Core™ i7-10750H CPU @2.6GHz,
16.0GB RAM, NVIDIA GeForce RTX 2060, and Windows 10. The algorithms were developed in Python
3.6 via OpenCV 3.3.1 and TensorFlow 1.13.1.

4.1. Dataset

4.1.1. YawDD Dataset

YawDD dataset [33] includes two video datasets of car drivers’ behaviors in the car. Fatigue driving
behaviors are involved. These drivers include males and females, with and without glasses, and from
different races. In the 322 videos of the first video set, the camera is installed under the front mirror of
the car. In the 29 videos of the second video set, the camera is installed on the dashboard.
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4.1.2. CEW (Closed Eyes in the Wild) Dataset

The CEW dataset [34] is about eye state detection under normal daylight. It includes
2423 volunteers and 1192 of them are with eyes closed. There are 2462 images with open eyes
and 2384 images with closed eyes.

4.1.3. Self-Collected Dataset

Our network focuses on environments with complex illumination conditions, however, YawDD
and CEW datasets are about various driving behaviors under normal daylight. There are
currently no open-access datasets focusing on environments with different illumination conditions.
Thus, we collected our dataset by an infrared camera including fatigue driving behaviors under weak
daylight and night.

The self-collected data includes 15 drivers. Each driver has 1 or 2 videos, depending on whether
they wear glasses or not. Normal driving and yawning behaviors are involved in each video. The video
is captured at 30 frames per second, and the frame height and width are 1920 × 1080.

4.2. Illumination Condition Classification Subnet

We have mentioned in Section 3.1 that four threshold values can represent the illumination
condition of a picture. The four threshold values include the OTSU threshold value, average gray
value, the ratio of OTSU threshold value and average gray value, and a minimum of target function
in fuzzy c-means clustering. We classified the illumination condition types of pictures into normal
daylight, weak daylight, and night. Based on YawDD and the self-collected dataset, we captured the
videos according to a certain frame rate. We randomly picked 70% of the pictures to calculate the
threshold ranges. The remaining 30% were used to verify the accuracy. The distribution of related
parameters in the set of pictures used for calculation is shown in Figure 4.
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Figure 4 indicates that under three types of illumination condition, the related parameters
are within a certain range. After comparing the distribution of related parameters, we can obtain
that the condition for normal daylight is Average Gray value ∈ [70, 150] && OTSU Threshold value ∈
[100, 160] && ratio ∈ [0.8, 1.6] && Minimum o f target f unction ∈ [0, 150], the condition for weak
daylight is Average Gray value ∈ [25, 70] && Minimum o f target f unction ∈ [200, 550], the condition for
the night is Average Gray value ∈ [0, 25] && OTSU Threshold value ∈ [40, 90] && ratio ∈ [2, 20]. To test
the accuracy of the method, we performed this method on the test datasets mentioned in Section 4.1.
The results are shown in Table 1.

Table 1. The accuracy of illumination condition classification.

Illumination Condition Accuracy General Accuracy

Normal daylight 98.55%
98.31%Weak daylight 96.61%

Night 99.76%

According to Table 1, the proposed illumination condition classification subnet achieves a general
accuracy of 98.31% when classifying the various illumination conditions. This subnet works as a
pre-classification stage and leads to a well-directed behavior classification in the next subnet.

4.3. Convolutional Neural Network Classification Subnet

4.3.1. Experimental Results

In the CNN classification subnet, we first performed face detection and region of interest extraction
based on the AdaBoost algorithm and Haar-like feature. The process is shown in Figure 5. In the
classification process, the related CNN models are pre-trained. We used CEW and self-collected
datasets to train eye and mouth models based on the proposed CNN model. The ratio of the training
set and testing set was 70% to 30%.
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Figure 5. Face detection and extraction of the region of interest.

In the training process, our model first resizes the input picture to 24 × 24, then optimizes the
model based on the stochastic gradient descent (SGD) method and updates the parameters of the
neural network. The batch size of the neural network is 120 and the learning rate is 0.001. Based on the
CEW dataset, we trained the eye models under different illumination conditions. The mouth models
were trained based on YawDD and self-collected datasets. The models’ loss and accuracy of training
and testing are shown in Figures 6 and 7.
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Besides, we mixed the dataset under different illumination conditions and trained a hybrid model.
The involvement of this hybrid model works as an ablation study. We expected to earn a higher
accuracy of our subnet than the hybrid model. It will demonstrate the necessity and effectiveness of
the involvement of the illumination condition classification subnet.

Under the circumstances of inputting pictures captured from a video, we compared the accuracy
of this hybrid model with models involving illumination condition classification. The result is shown
in Table 2.
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Table 2. Accuracy comparison of the hybrid model and models under different illumination conditions.

Illumination Condition Eyes Classification
Accuracy

Mouth Classification
Accuracy General Accuracy

Normal daylight 97.43% 99.65%
98.56%Weak daylight 98.21% 98.57%

Night 98.93% 98.67%

Hybrid 94.24% 92.45% 93.33%

According to Table 2, the classification of illumination conditions earns a 5.23% superiority of
accuracy. In other words, the involvement of the first subnet can guarantee at least one more correct
behavior classification in every twenty detections. It should be noted that an accident may occur only
after several seconds of fatigue driving. A more accurate driving behavior classification will result
in an earlier notification if the proposed model is implemented on the vehicular devices, which will
reduce the possibility of a tragic accident.

4.3.2. Comparison with Other Approaches

Additional to the ablation study, we performed comparisons between the proposed ICONet
and other approaches. Since the training of all the models involves a self-collected dataset, we first
performed a comparison of the eye models on the public CEW dataset, in order to strengthen the
persuasiveness and demonstrate the superior ability of our proposed network. As is introduced in
Section 4.1.2, the CEW dataset only includes eye images under normal daylight. The comparative
results are shown in Figure 8 and Table 3.Symmetry 2020, 12, 2119 12 of 17 
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Table 3. Accuracy comparison of testing on the CEW dataset.

Author or Network Year Accuracy

Sharma [35] 2018 97.80%
Sharan [20] 2019 96.56%

ICONet 2020 98.30%

We reproduced the network proposed by Sharma [35] and Sharan [20]. According to Figure 8 and
Table 3, our network earns a superior accuracy of at least 0.5%. The results indicate that regardless
of the illumination condition classification, simply utilizing the second subnet of our network can
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comparatively obtain a better result. This proves that our improvements to the traditional LeNet-5
framework are effective and essential.

In the literature [12,13], the authors noted that their networks could be applied under different
illumination conditions. To prove the superiority of the proposed ICONet, we reproduced several
models in the two pieces of literature and compared them with ICONet. The results are shown
in Figure 9.
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Figure 9 compares the changing of test and train accuracies among the three networks. It can be
observed that previous approaches are with high training cost, while ICONet requires approximately
100 steps to reach a stable accuracy. When comparing the final stable accuracy, the results demonstrate
that although previous approaches can be utilized in various illumination conditions, they are not
designed with superior environmental adaptivity compared to ICONet.

Verification of the proposed network with high accuracy on a computer or a server is not the final
step. Instead, the resources-limited vehicular devices are closer to a driver in a real scenario. Aiming at
the network implementation on edge devices, we compare the model size and time complexity (FLOPs)
of ICONet with other approaches. A network with lower time complexity and smaller model size can
perform better on edge devices and comparatively without serious lag. The time complexity (FLOPs)
is calculated based on Equations (19) and (20). The results are shown in Table 4.

Table 4. Time complexity and model size comparison.

Approach or
Network

Involved Dataset Time Complexity
FLOPsCONV

(Convolutional Layers)

Time Complexity
FLOPsFC

(Fully Connected Layers)

Model Size
(Kilobytes)

CEW YawDD and
Self-Collected

Sharma [35] 3 3,888,000 1,801,498 3624.96
Sharan [20] 3 15,206,400 1,704,958 14,725.12

Hao [12] 3 1,525,678,080 26,210,044 65,873.92
Villanueva [13] 3 835,794,912 / 4915.20

ICONet 3 3 3,225,600 270,498 592.72

According to Table 4, ICONet has superiority in convolutional layer time complexity of at least
17.04%, and a fully connected layer time complexity of at least 84.13%. Working as a lightweight
network, ICONet is capable to be loaded on edge devices.
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4.4. Comprehensive Judgement

The illumination condition classification subnet and the convolutional neural network subnet
can only provide the classification results of mouth and eyes behavior under various illuminations.
The comprehensive judgement stage is designed to combine these classification results and determine
whether a driver is in fatigue driving. This determination is based on the PERCLOS and FOM threshold
values. The process is shown in Figure 10.

Symmetry 2020, 12, 2119 13 of 17 

 

100 steps to reach a stable accuracy. When comparing the final stable accuracy, the results 

demonstrate that although previous approaches can be utilized in various illumination conditions, 

they are not designed with superior environmental adaptivity compared to ICONet. 

Verification of the proposed network with high accuracy on a computer or a server is not the 

final step. Instead, the resources-limited vehicular devices are closer to a driver in a real scenario. 

Aiming at the network implementation on edge devices, we compare the model size and time 

complexity (FLOPs) of ICONet with other approaches. A network with lower time complexity and 

smaller model size can perform better on edge devices and comparatively without serious lag. The 

time complexity (FLOPs) is calculated based on Equations (19) and (20). The results are shown in 

Table 4. 

Table 4. Time complexity and model size comparison. 

Approach or 

Network 

Involved Dataset Time Complexity 
𝑭𝑳𝑶𝑷𝒔𝑪𝑶𝑵𝑽 

(Convolutional 

Layers) 

Time Complexity 
𝑭𝑳𝑶𝑷𝒔𝑭𝑪 

(Fully Connected 

Layers) 

Model Size 

(Kilobytes) CEW 
YawDD and 

Self-Collected 

Sharma [35]   3,888,000 1,801,498 3624.96 

Sharan [20]   15,206,400 1,704,958 14,725.12 

Hao [12]   1,525,678,080 26,210,044 65,873.92 

Villanueva [13]   835,794,912 / 4915.20 

ICONet   3,225,600 270,498 592.72 

According to Table 4, ICONet has superiority in convolutional layer time complexity of at least 

17.04%, and a fully connected layer time complexity of at least 84.13%. Working as a lightweight 

network, ICONet is capable to be loaded on edge devices. 

4.4. Comprehensive Judgement 

The illumination condition classification subnet and the convolutional neural network subnet 

can only provide the classification results of mouth and eyes behavior under various illuminations. 

The comprehensive judgement stage is designed to combine these classification results and 

determine whether a driver is in fatigue driving. This determination is based on the PERCLOS and 

FOM threshold values. The process is shown in Figure 10. 

 

Figure 10. The comprehensive judgement of fatigue driving. 

In the process of fatigue driving detection, only focusing on one characteristic is inaccurate. For 

example, a driver may blink with high frequency or close eyes for a long time under intense 

illumination. Our approach combines the characteristics of both eyes and mouth. 

Figure 11 shows the eye and mouth results during yawning, where “1” represents eye or mouth 

closing, and “0” represents eye or mouth opening. From the 30th captured frame to the 50th captured 

frame, the driver can be considered to be fatigue driving. According to related literature [23] and 

experiments, we set the threshold value as 𝑓𝑃𝐸𝑅𝐶𝐿𝑂𝑆_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.25, 𝑓𝐹𝑂𝑀_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.2. A driver can 

be considered fatigue driving if 𝑓𝑃𝐸𝑅𝐶𝐿𝑂𝑆 ≥ 0.25 or 𝑓𝐹𝑂𝑀 ≥ 0.2, i.e., in 100 continuously captured 

frames, there are at least 25 frames closing eyes or 20 frames opening mouth. Based on the threshold 

Figure 10. The comprehensive judgement of fatigue driving.

In the process of fatigue driving detection, only focusing on one characteristic is inaccurate.
For example, a driver may blink with high frequency or close eyes for a long time under intense
illumination. Our approach combines the characteristics of both eyes and mouth.

Figure 11 shows the eye and mouth results during yawning, where “1” represents eye or mouth
closing, and “0” represents eye or mouth opening. From the 30th captured frame to the 50th captured
frame, the driver can be considered to be fatigue driving. According to related literature [23] and
experiments, we set the threshold value as fPERCLOS_Threshold = 0.25, fFOM_Threshold = 0.2. A driver can
be considered fatigue driving if fPERCLOS ≥ 0.25 or fFOM ≥ 0.2, i.e., in 100 continuously captured frames,
there are at least 25 frames closing eyes or 20 frames opening mouth. Based on the threshold value
range, we performed tests on YawDD and self-collected datasets. The result is shown in Figure 12.
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(b) the changing mouth result.
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Figure 12. Fatigue driving detection under normal daylight.

Figure 12 demonstrates that under the high accuracy of the previous two subnets, ICONet can
effectively judge fatigue driving.

5. Discussion

In the field of deep learning-based fatigue driving detection, previous works have achieved
some significant success. However, with the migration of artificial intelligence from the cloud to the
edge, fatigue driving detection is required to be effectively loaded on edge devices and have high
accuracy under various environments. Most previous works mainly focus on one aspect and perform
undesirably when being applied to other aspects.

Aiming at a greater environmental adaptivity, some pieces of literature design complicated
network structures [12,13], while other approaches attempt to obtain a desirable result based on a
large training set. The proposed illumination condition classification subnet in this paper is based
on traditional image processing algorithms. The experimental results prove the effectiveness of
our framework.

Aiming at the implementation on edge devices, we modified the LeNet-5 model, which is the
most lightweight framework among all the CNN frameworks. The convolutional layers and kernels
are optimized to obtain a lower time complexity. The experimental results comparatively demonstrate
the compactness of ICONet.

Additional to the presented results, it should be noted that ICONet is designed to be a universal
network, which works as a general solution towards classification problems in various illumination
condition environments. Besides fatigue driving detection, it has the potential to be applied to other
fields including but not limited to traffic classification, human activity classification, and classification
problems in medical science and agriculture.

By comparing with other proposed networks [14,36–38], ICONet has several limitations,
which guides the direction of our future study.

In the illumination condition classification subnet, we focused on the natural illumination
conditions and classified the input pictures into normal daylight, weak daylight, and night.
However, the complex illumination conditions may also include different luminance and location of
the light source. Especially at night, the suddenly exerted intense light may affect the classification
result. When considering these factors, the subnet may fail to classify well. In future work, we will
focus on the classification of unnatural illumination conditions.

In the convolutional neural network classification subnet, the model focuses on a single person,
which is the driver. However, there may exist more than one person in real scenarios, including the
copilot, passengers, and people outside the vehicle. The subnet may fail to correctly detect the driver’s
face under these circumstances. We will involve additional image processing algorithms in our
future work.
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Despite the mentioned limitations, ICONet provides a reference for designing a multi-subnet
framework. With the sharp increase of edge devices, ICONet works as an attempt towards the future
development of edge-oriented deep learning.

6. Conclusions

Artificial intelligence is migrating from cloud to edge, and deep learning is required to be
edge-oriented and adaptive to complex environments. In this paper, we proposed an illumination
condition optimized network (ICONet) and applied it to fatigue driving detection. Based on the
OTSU segmentation algorithm and fuzzy c-means clustering algorithm, the illumination condition
classification subnet classifies pictures under normal daylight, weak daylight, and night. After the
face detection and the extraction of the region of interest, the CNN classification subnet provides the
classification results of eyes and mouth based on the modified LeNet-5 model. According to indicators
including PERCLOS and FOM, ICONet can comprehensively judge fatigue driving. ICONet achieves a
general accuracy of 98.56% and time complexity is reduced by at least 17.04% compared to the previous
work. The size of all the CNN models is about 590 kilobytes. Experimental results demonstrate
the feasibility of applying ICONet on edge devices under various illumination conditions in fatigue
driving detection.

In our future work, besides solving the mentioned limitations, we will transplant the ICONet to
the Android platform and test it on onboard devices. Additionally, we will add more driving behaviors
and further optimize our model to improve its environmental adaptivity.
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