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Abstract: With the complexity of Near Infrared (NIR) spectral data, the selection of the optimal
number of Partial Least Squares (PLS) components in the fitted Partial Least Squares Regression
(PLSR) model is very important. Selecting a small number of PLS components leads to under fitting,
whereas selecting a large number of PLS components results in over fitting. Several methods exist
in the selection procedure, and each yields a different result. However, so far no one has been
able to determine the more superior method. In addition, the current methods are susceptible
to the presence of outliers and High Leverage Points (HLP) in a dataset. In this study, a new
automated fitting process method on PLSR model is introduced. The method is called the Robust
Reliable Weighted Average—PLS (RRWA-PLS), and it is less sensitive to the optimum number of
PLS components. The RRWA-PLS uses the weighted average strategy from multiple PLSR models
generated by the different complexities of the PLS components. The method assigns robust procedures
in the weighing schemes as an improvement to the existing Weighted Average—PLS (WA-PLS)
method. The weighing schemes in the proposed method are resistant to outliers and HLP and thus,
preserve the contribution of the most relevant variables in the fitted model. The evaluation was
done by utilizing artificial data with the Monte Carlo simulation and NIR spectral data of oil palm
(Elaeis guineensis Jacq.) fruit mesocarp. Based on the results, the method claims to have shown its
superiority in the improvement of the weight and variable selection procedures in the WA-PLS. It is
also resistant to the influence of outliers and HLP in the dataset. The RRWA-PLS method provides a
promising robust solution for the automated fitting process in the PLSR model as unlike the classical
PLS, it does not require the selection of an optimal number of PLS components.

Keywords: near infrared spectral data; robust; partial least squares regression; average-weighted;
number of components; reliability coefficients

1. Introduction

The Near Infrared Spectroscopy (NIRS) has recently been attracting a lot of attention as a secondary
analytical tool for quality control of agricultural products. In some applications (see [1–5]), it has
been proven that the NIRS offers a non-destructive, reliable, accurate, and rapid tool, particularly for
quantitative and qualitative assessments. Theoretically, NIRS is a type of vibrational spectroscopic that
produces rich information in a spectral dataset as a result of the interaction between optical light and
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the physical matter of the sample. This spectral is commonly presented in terms of spectral absorbance
using wide wavelengths that range from 350 nm to 2500 nm, primarily attributed to the overtone or
combination bands of C-H (fats, oil, hydrocarbons), O-H (water), and N-H (protein) [6]. The NIR
spectral data are classified as high dimension due to the large sample size and wide wavelength
collected as a dataset. In spectral processing, chemometric methods have been utilized as the standard
processing method (see [7–9]). The methods combine the mathematical and multivariate statistical
methods in order to pre-process, examine, and understand as much relevant information as possible
from the spectral data. Comparing some of the existing chemometric methods, the Partial Least Squares
Regression (PLSR) seems to be the most preferred one [10–12].

PLSR decomposes both the spectral and reference information (from wet chemistry analysis),
simultaneously. It has the ability to screen unwanted samples in a dataset as a result of experimental
error and instrumentation problem [13], distribution-free assumption [14,15], and handling the
multicollinearity in dataset [16]. However, despite having these benefits, several studies have reported
its weakness due to its robustness. The fitted model performs poorly when outliers and leverage
points are present in a dataset [17,18], as it fails to fit the nonlinear behavior in the input space [19,20].
In addition, the contamination of irrelevant variables involves during the fitting process [21–23]
is a popular topic in most discussions. However, so far, less attention has been paid to the basic
principles of PLSR in selecting the optimal number of Partial Least Squares (PLS) components which is
crucial [24]. Applying fewer number of components produced under fitting, while applying a large
number of components results in over fitting. Some methods available in the selection procedure are
the cross-validation with one-sigma heuristic [25], permutation approach [26], bootstrap [27], smoothed
PLS–PoLiSh [28], weight randomization test [29], and Monte Carlo resampling [30]. These different
methods suggest different optimal numbers of the PLS components and to date, there has been no
claim made as to which method is superior to the other. These methods suffer from the presence
outliers and High Leverage Points (HLP) in the dataset. Consequently, recalculation of the number of
PLS components used in the model is required each time the dataset is updated. This would result in
different accuracy achievements and sometimes, misleading interpretations. It has been observed that
there are only a few studies that have highlighted the robust process. As such, a robust PLSR with
less sensitivity to the selection of optimal number of PLS components is needed. This study provides
another perspective of applying a robust procedure in the PLSR model with regard to the selection
number of the factors used in the fitted model.

The automated fitting process on PLSR model using weighted average strategy has been introduced
in several papers (see [31–33]). The method is known as the Locally Weighted Average PLS [31,32]
or simply called the Local-WA-PLS. The Local-WA-PLS is an extension of the Locally Weighted
Regression [33] which is used to fit a local linear regression based on the classification of similarity
between the calibration and testing (or unknown) sample. This similarity is classified using the
famous Euclidean distance and Mahalanobis distance method. Although the Local-WA-PLS has been
widely used, it has been reported that the method works adequately only with a large spectral dataset
(see [34,35]). As an improvement, the modified method by Zhang et al. [35], the Weighted Average
PLS (WA-PLS), is suggested as it uses a different weighting scheme that is computationally simpler
and comparable to the Local-WA-PLS. However, both methods are not able to handle the problems
of outliers and HLP that may exist in the dataset from affecting their performances. In addition,
the Local-WA-PLS and WA-PLS do not take into consideration the influence of some irrelevant variables
in the model that might decrease their estimation accuracy. This has motivated the current study to
propose another improvement to robustify the existing WA-PLS procedure. Our strategies were to
employ the weighting schemes that are resistant to outliers and HLP and preserve the contribution of
the most relevant variables in the fitted model. The utilization of the robust PLSR [36] is incorporated
in the establishment of the proposed procedures.

The main objectives of this study are: (1) to establish an improved procedure for the automated
fitting process in the PLSR model known as the Robust Reliable Weighted Average PLS (RRWA-PLS).
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This proposed method is expected to be less sensitive to the selection of the optimal number of PLS
components; (2) to evaluate the performance of the proposed RRWA-PLS method with the classical
PLSR using optimal number of PLS components, WA-PLS, and a slight modification method in WA-PLS
using a robust weight procedure called MWA-PLS; (3) to apply the proposed method on the artificial
data and NIR spectra of oil palm (Elaeis guineensis Jacq.) fruit mesocarp (fresh and dried ground).
This study provides a significant contribution to the development of process control, particularly for
research methodology in the vibrational spectroscopy area.

2. Materials and Methods

2.1. Partial Least Squares Regression

The PLSR model [14] is an iterative procedure of the multivariate statistical method. The method
is used to derive m original predictor variables X that may have a multicollinearity problem into
smaller uncorrelated l new variables called components. The PLSR constructs a regression model
using the new components against its response variable y through covariance structure of these two
spaces. In chemometric analysis, the PLSR has been widely used for dimensional reduction of high
dimensionality problem in the NIR spectral dataset (see [37,38]). In this study, we limited the study
only in the case of n >> m, where n refers to the number of observations, and m represents the number
of predictor variables.

Let us define a multiple regression model which consists of two different sets of multiple predictor
X and a single response y,

y = X b + e (1)

where y, e are n × 1 vector; X is n ×m matrix; and b is m × 1 vector. Since the dataset contains high
dimension of m predictors, there will be an infinite number of solution for estimator b. Considering XTX
is singular, it does not meet the usual trivial theorem on rank in the classical regression. To overcome
this, new latent variables need to be produced by summarizing the covariance between predictor X
and response variable associating to the center values of these two sets [39].

Initializing a starting score vector of u from the single y; there exists an outer relation for predictor
X in Equation (1) as

X = VPT + E (2)

where V is a n × l (for l ≤ m) matrix of the n × 1 vector vg
{
vg =

(
X w j

)
/
(
w j

Tw j
)} l

g=1
; and vg is the

n × 1 column vector of scores x j in X. The P is a m × l matrix consisting column vector of loading{
pg =

(
XT vg

)
/
(
vg

Tvg
)}l

g=1
. The w j

{
w j =

(
XTu

)
/
(
uTu

)} m

j=1
is a m× 1 vector of weight for X and E is a

n×m matrix of residual in outer relation for X. In addition, there is a linear inner relation between the

X and y block scores, calculated as
{
u = bg vg, bg = uT vg/

(
vT

g vg

)}l

g=1
or written as

u = V binner + g (3)

with binner is a l× 1 vector of regression coefficient as the solution using Ordinary Least Square (OLS)
on the decomposition of vector u, and g is n× 1 vector of residual in the inner relation. Following the
Nonlinear Iterative Partial Least Squares (NIPALS) algorithm (see [14]), the mixed relation in the PLSR
model can be defined as

y = X bPLSR +
^
f (4)

where bPLSR = W (PTW)
−1a is m × 1 vector coefficient; a represents l × 1 vector coefficient which

is a = VTy; and
^
f denotes n × 1 vector of residual in mixed relation that has to be minimized.

The estimator for parameter bPLSR is given as

b̂PLSR = XTu (VTX XTu)
−1

VTy, b̂PLSR ∈ <
m×1 (5)
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with b̂PLSR denotes m dimensional vector of regression coefficient in PLSR.

2.2. Partial Robust M-Regression

An alternative robust version of PLSR introduced by Serneel et al. [36] is the partial robust
M-regression or simply known as PRM-Regression. The method assigns a generalized weight function
wi using a modified robust M-estimate [40]. This weight is obtained from the iterative reweighting
scheme (see [41]) to identify the outliers and HLP, both in each observation and score vector vi. Let us
consider the m regression in Equation (1), for 1 ≤ i ≤ n, the least square estimator of b is defined as

b̂LS = arg min
b

 n∑
i=1

(yi − xi b)2

 (6)

The least square is optimal if E (e) = 0 and Var (e) = 1 or where e ∼ N( 0 , 1 ); otherwise, it fails
to satisfy the normal assumption. When it does not satisfy this assumption, the least square losses its
optimality; hence, a robust estimator such as M-estimates results in a better solution.

In Serneels et al. [36], the robust M-estimates reestablish the squares term into u giving

b̂M = arg min
b

 n∑
i=1

θ(yi − xib)

 (7)

where θ (u) = u2, θ (yi − xib) = (yi − xi b)2 as θ (u) is defined to be loss function which is symmetric
and nondecreasing. Recall the e as residual n× 1 column vector

{
ei = yi − xi b

}n
i=1 related to Equation (7),

then b̂M = arg min
b

(
n∑

i=1
θ (ei)

)
. Using partial derivative and following the iterative reweighting scheme,

there exists a weight in each observation as wr
i = θ (ei)/ei

2, taking θ (ei) = wr
i ei

2, the Equation (7)
can be rewritten as

b̂M = arg min
b

 n∑
i=1

wr
i ei

2

 (8)

It is considered that the weight in Equation (8) is only sensitive to the vertical outlier as improvement
of another weight wx

i is added to identify the leverage points. The criteria wx
i ≈ 0 would be identified

as the leverage points. The modified final estimator in Equation (8) is given as

b̂RM = arg min
b

 n∑
i=1

wr
i wx

i ei
2

 (9)

where wi = wr
i wx

i is the generalized weight. Replacing the residual in Equation (9) with n× 1 vector of
residual in Equation (4), then giving the solution of the partial robust M-regression as

b̂PRM = arg min
b

 n∑
i=1

wr
i wx

i

^
f i

2

 (10)

with the weights wr
i and wx

i are given as

wr
i = f


^
f i
σ̂

, c

 (11)
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where σ̂ uses the robust MAD
(^

f 1, . . . ,
^
f n

)
= median

i
|

^
f i −median

^
f j|

j

, f (z, c) is the weight function

of iterative reweighting.

wx
i = f


∣∣∣∣∣∣vi −medL1(V)

∣∣∣∣∣∣
median

∣∣∣∣∣∣vi −medL1(V)
∣∣∣∣∣∣ , c

 (12)

||·|| is Euclidean norm; medL1(V) is a robust estimator of the center of the l dimensional score vectors;

and vi =
(
vi,1, . . . , vi,l

)T
is the vector of component score matrix V that needs to be estimated. The fair

weight function in f (z, c) is preferred instead of other weights.

2.3. Weighted Average PLS

The WA-PLS method was introduced by Zhang [35] to encounter the sensitivity of PLSR toward the
specific number of PLS components used. The method applies the averaging strategy to accommodate
the whole possible complexity of the model. This complexity means that some models were initiated
based on the increase from the rth to the sth number of PLS components used in the fitting model.
Instead of applying the same weight in each PLSR model, the WA-PLS proposes different weights wr

using variance weighting to each coefficient bPLSR = [b1, b2, . . . , bm] in the d PLSR model {d = s− r}
with the complexity of r.

wr =
1

RMSECVr
(13)

where the Root Mean Square Error Cross Validation (RMSECV) in each different number of rth PLS
components is calculated as

RMSECVr =

√√
1
n

n∑
i= 1

(
yi − ŷ\i,r

)2
(14)

where ŷ\i,r is the predicted value of the actual value of yi using the fitted model which is built without
sample i and is under the complexity of r. The WA-PLS formula using weight and average from rth to
the sth number of PLS components can then be written as

ŷWA−PLS (r, s) =
[wrb0,r+...+wsb0,s

wr+...+ws

]
+

[wrb1,r+...+wsb1,s
wr+...+ws

]
x1+[wrb2,r+...+wsb2,s

wr+...+ws

]
x2 + . . .+

[
wrbm,r+...+wsbm,s

wr+...+ws

]
xm

(15)

3. Robust Reliable Weighted Average

Following Zhang’s et al. [35] weighted average calculation on each coefficient of d different
numbers of PLS components, a robust version of the modified weighted average is developed.
The method is called the Robust Reliable Weighted Average (RRWA) which accommodates two weights(
wr, c j

)
in the calculation of the PLSR model. It is expected that by assigning the weighted average

method in the PLSR model, the model becomes less sensitive to the number of PLS components used.
In the first weight wr, the calculation uses the Standard Error Prediction (SEP) which is done

iteratively based on the re-sampling procedure of k-fold cross validation by splitting a dataset into
k-subsets [42]. This procedure is the most used approach to retrieve a good estimate of error rate in the
model selection. Nonetheless, it is anticipated that 20% of the highest absolute values of residuals may
still be included in the calculation of wr. In order to remove those residuals, the trimmed version (20%)
SEP from the cross validation (trimmed SEPCVr) is applied. The assigned weight wr to each coefficient
of d different numbers of PLS components is calculated as

wr =
1

trimmed SEPCVr
(16)
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where the trimmed SEPCVr values are calculated using the collection of the SEPr from k-subsets starting
from rth to the sth number of PLS components. The calculation for SEPr is given as

SEPr =

√√
1

n− 1

n∑
i=1

(eir − er)
2 (17)

where eir is the residual from predicted value of ŷ\i,r and actual value of yi with the complexity of r,
and er is the arithmetic mean of the residuals. It corresponds to the MSEPr = SEP2

r + e2
r where the

bias is identically equal to 0, then the MSEPr is equals to SEP2
r . While the bias is identically (almost)

zero, the squared root of MSEPr which is

RMSEPr =

√√
1
n

n∑
i=1

eir2 (18)

is (almost) equal to the SEPr. This alternative weight could be called as a modified weight in WA-PLS,
and is simply denoted as the MWA-PLS method which is also included as an alternative proposed
method in this study.

In the classical WA-PLS, the number of possible irrelevant variables is still involved in the model.
Eliminating these irrelevant variables would result in under or over fitting. Here, a downgrading
procedure by assigning the second weight c j to each variable in terms of reliability values [21] is proposed.
The procedure is based on the PLSR coefficient that is applicable to increase the contribution of most
relevant variables in the model, and downgrade the irrelevant variables. The reliability of each variable
c j is obtained by

c j =
median

(
b j,r, . . . , b j,s

)
MAD

(
b j,r, . . . , b j,s

) (19)

where the calculation is based on the robust measure of central tendency and the robust measure of
variability on each jth WA-PLS coefficient from rth to the sth numbers of PLS components. The robust
weight wr in Equation (16) is preferred instead of the weight in Equation (13). In relation to the PLSR
model, this reliability value c j is converted into a diagonal matrix with size m×m. This diagonal matrix
Ω

{
Ω = diag(c1, c2, . . . , cm)

}
s where Ω ∈ < is then used to transform the original input X variables into

the scaled input variables X̃
{
X̃ = X Ω

}
for the RRWA-PLS model.

To prevent the influence of outliers and HLP that may exist in the NIR spectral dataset,
the calculation of trimmed SEPCVr and reliability values are based on the PRM regression coefficient
through a cross-validation procedure. The proposed modification of the WA-PLS known as the
RRWA-PLS can be rewritten as

ŷRRWA−PLS (r, s) =
[wrb′0,r+...+wsb′0,s

wr+...+ws

]
+

[wrb′1,r+...+wsb′1,s
wr+...+ws

]
~
x1+[wrb′2,r+...+wsb′2,s

wr+...+ws

]
~
x2 + . . .+

[
wrb′m,r+...+wsb′m,s

wr+...+ws

]
~
xm

(20)

where b′j is the RRWA-PLS coefficient using the scaled input variables
~
X.

4. Monte Carlo Simulation Study

To examine the performance of the proposed RRWA-PLS and to compare its performance with the
classical WA-PLS and MWA-PLS, a study using the Monte Carlo simulation was carried out. Following
a simulation study by Kim [43], an artificial dataset which contained added noise that follows the
Normal distribution was randomly generated using a Uniform distribution and included. This dataset
was then applied in the linear combination equation with different scenarios. Three sample sizes
(n = 60, 200, 400), three levels of numbers of predictor variables (m = 41, 101, 201), three levels of
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relevant variables (IV = 0.1, 0.3, 0.5), and three different levels of outliers and high leverage points
(α = 0.00, 0.05, 0.20) were considered. The 100(IV)% of the predictor variables were randomly selected
as relevant variables, and the remaining were considered as less relevant. The formulation of this
simulation can be defined as follows:

m = mo + me
c jo ∼ U (1, 10) ( jo = 1, 2, . . . , mo)
ce je ∼ U (5, 20) ( je = 1, 2, . . . , me)
e j ∼ N(0, 1) ( j = 0, 1, 2, . . . , m)

b ∼ U(0, 7)
iv =

{
iv1, iv2, . . . , iv100(IV)%∗m

}
X =

{
c jo , ce je

}
+ e j ( j = 1, 2, . . . , m; jo = 1, 2, . . . , mo; je = 1, 2, . . . , me)

y = X b + e0
(
i = 1, 2, . . . , n; j = iv1, iv2, . . . , iv100(IV)%∗m

)
(21)

where m is the total number of predictors used; mo is the number of observable variables; and the
me

{
me = (m− 100 (IV)% ∗m)/2

}
is the number of artificial noise variable. These artificial variables

are applied to evaluate the stability of the methods. The c jo follows the Uniform distribution (1,10)
with size n. The artificial noise variables ce je are added to the predictor and follow the Uniform
distribution (5,20) with size n. This ce je is classified as an irrelevant variable. The e j follows the
standard normal distribution with size n, and b represents a vector coefficient for selected relevant
variables which follows the Uniform distribution (0,7) with size m. The c jo , ce je and e j are independent
of each other. The iv is the set of selected relevant variables in mo, and e0 is the added error in the
linear combination of y. X and y are illustrated as observable variables. The high leverage points in
the X dimensions are created by generating c jo following the Uniform distribution (1,10) with size
n. Corresponding to the vertical outlier, if the observation is considered as an outlier, b follows the
Uniform distribution (0,2) with size 100 (IV)% ∗m; otherwise, it is considered as high leverage points
and b follows the Uniform distribution (1,7) with size 100 (IV)%∗m. The different ranges applied in
the uniform distribution are used to fit the different scenarios according to the added artificial noise,
vertical outliers, and high leverage points in the dataset. By default, the predictor and response variable
should be centered and scaled before the analysis. In the PLSR model, the selection on optimal number
of PLSR components used in the model fitting is very important to prevent the model from becoming
over- or under-prediction.

To assess the performance of the methods, several statistical measures such as desirability indices
are used: Root Mean Square Error (RMSE), Coefficient of Determination (R2), and Standard Error
(SE). The RMSE measures the absolute error of the predicted model; R2 is the proportion of variation
in the data summarized by the model and indicates the reliability of the goodness of fit for model;
and SE measures the uncertainty in the prediction. Here, the RPD parameter has no more used
because it is not different than R2 to classify the model is poor or not [44]. Using the classical PLSR,
the RMSECV which is the RMSE obtained through cross-validation, is calculated, along with the
increasing number of PLS components. The RMSEP value is the RMSE obtained using the fitted
model. In the simulation study, the maximum number of PLS components used was limited up to 20.
Some different scenarios were applied to see the stability of classical PLSR model based on sample
size, number of predictors, number of important variables, and the contamination of outlier and high
leverage points in the dataset. In Figure 1, with no contamination in the data it can be seen that using
small sample size (n = 60), small number of predictors (m = 41), and 10% relevant variable (IV = 10%)
the discrepancy between RMSECV and RMSEP is about two to five times. While using higher number
of predictors (m = 101) the discrepancy then become larger. Another scenario using bigger sample size
(n = 200), small number of predictors (m = 41), and 30% relevant variable (IV = 30%) the discrepancy
between RMSECV and RMSEP relatively smaller. While using higher number of predictors (m = 101)
the discrepancy increases about two times. This shows that the classical PLS become instable and loss
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it accuracy when the number of sample size is small and number of predictor higher than sample size.
In addition, with less number of relevant variable in the predictor variable also impacts to decrease the
model accuracy. Using bigger sample size (for example n = 200) as the number of PLS components
increases the discrepancy between RMSECV and RMSEP become smaller hence improve the model
accuracy and reliability. The rule is the gap between RMSEC and RMSEP values should very small
and close to 0. This condition guarantees the reliability of the calibrated model and prevent the model
becomes over-under fitting.
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Figure 1. The RMSECV and RMSEP of the classical PLSR on the simulated data with no contamination
of outlier and high leverage points.

The stability of the classical PLSR model then is evaluated by introducing the presence of outlier
and leverage points in the dataset (see Figure 2). According to the scenarios given, the classical PLSR
model failed to converge even using higher number of PLS components. This can be investigated
through RMSECV values which become large and fail to be minimum. In addition, the discrepancy
between both RMSECV and RMSEP values also large. This gives evidence that the presence of outlier
and HLP in the dataset will destroy the convergence and results to the poor model fitting.
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Figure 2. The RMSECV and RMSEP of the classical PLSR on the simulated data with contamination of
outlier and high leverage points.

In the proposed RRWA-PLS, the 20% trimmed SEP was used to calculate the weight by removing
the 20% highest absolute residual. This procedure is suggested to produce the robust weight instead
of using the whole residual. In the calculation of trimmed SEP in each PLS component, using the
cross validation procedure the median is preferred. In general, using different dataset scenarios with
contamination of outlier and HLP (see Figure 3) the proposed robust trimmed SEP median succeed to
remove the influence by removing 20% highest absolute residual. The SEP mean is suffered both with
small (n = 60) and bigger (n = 200) sample size due to the contamination. This results in the SEP values
of SEP mean becomes two to four times greater than trimmed SEP median. The SEP median lost its
advantage when bigger sample size (n = 200) is used. This results in the SEP values of SEP median
becomes four times greater than trimmed SEP median. The SEP values using trimmed SEP median
is lower than trimmed SEP mean thus improves model accuracy. This proves the robustness of the
trimmed SEP median in weight calculation which irrespective of sample size, number of important
variables, and percentage of contamination of outlier and HLP in the dataset.
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Figure 3. SEP values in the RRWA-PLS using different approach on the simulated data with
contamination of outlier and HLP.

It is very important to compare the weighting schemes between the WA-PLS and RRWA-PLS.
This weight provides the contribution of predictors based on the aggregation of the PLS components
used in the model. In Figure 4, the mean weights of the methods are also shown to illustrate two
conditions: no contamination and with contamination of outlier and high leverage points. For no
contamination, the weights in both WA-PLS and RRWA-PLS methods increase as the number of PLS
component increases. The weight of RRWA-PLS is relatively smaller than that of the WA-PLS. In cases
where the number of PLS components are greater than 10, the weight in both methods are not so much
affected by the increasing number of PLS used in the model. On the other hand, when contaminated
with outlier and HLP, the weights in both WA-PLS and RRWA-PLS methods decrease as the number of
PLS component increases. Based on these scenarios, the WA-PLS still produces higher RMSE than
RRWA-PLS. In general, according to the less weight value used in the model, the RRWA-PLS method
is still superior and more efficient than the WA-PLS.
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contamination of outlier and HLP.

In Figure 5, the prediction accuracy of the methods is evaluated through their RMSEP values.
To get a better illustration, the maximum number of PLS components was limited to 15 components.
With no contamination of outlier and HLP in the dataset, in the first 6 number of PLS components,
the RRWA-PLS is less efficient than the classical PLS and WA-PLS. However, as the number of
PLS component increases up to 15, the RRWA-PLS is comparable to the classical PLS and WA-PLS.
The proposed RRWA-PLS shows its robustness when the contaminations of outlier and HLP exist in
the dataset. It has succeeded to prevent the influence of the outlier and HLP during model fitting.
On the other hand, the classical PLS and WA-PLS suffer from the influence of outlier and HLP both in
low and high level percentage of contamination, resulting in poor accuracy.

To further evaluate the methods, the Monte Carlo simulation was run 10,000 times on different
dataset scenarios. The results, based on the average of statistical measures, are shown in Table 1.
As mentioned earlier, in the fitting process, the number of PLS components used in the proposed
methods was limited to 15. We use the term “PLS with opt.” to refer to the classical PLS with optimal
number of PLS component selected through the “onesigma” approach and cross-validation. We also
include a weight improvement procedure in the WA-PLS known as MWA-PLS. The MWA-PLS uses
the robust weight version in the RRWA-PLS to replace the non-robust weight in WA-PLS. Based on
the results, with no outliers and HLP in the dataset, the non-robust PLSR coupled with optimal
components and WA-PLS are comparable to the MWA-PLS and RRWA-PLS. On the other hand,
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in the presence of outliers and HLP, the proposed RRWA-PLS method is superior to the classical PLS,
WA-PLS, and MWA-PLS. Replacing the weight in the WA-PLS with the weight of the robust version
improves the model accuracy with lower SE and better R2 values. The classical PLS fails to find the
optimal number of PLS components due to the influence of 5–10% contamination of outliers and
HLP during the fitting process. The WA-PLS also fails to fit the predicted model due to the impact
of the contamination. The proposed RRWA-PLS consistently has the lowest RMSE, SE, and better
R2 compared to the other methods, irrespective of the sample sizes, number of important variables,
and percentages of contamination of outliers and HLP in the dataset.
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and without contamination of outlier and HLP.

The prediction ability of the methods using the contamination data was evaluated by plotting
the predicted values against the actual values (see Figure 6). The classical PLS and WA-PLS suffered
from the contamination of outliers and HLP in the dataset, which resulted in a poor prediction. This is
because the PLSR estimator is not resistant to the contamination hence, biasing the estimated model.
The MWA-PLS and proposed RRWA-PLS are completely free from the impact of outliers and HLP in
the dataset. The influential observations are removed far from the fitting line, while good observations
are closed to the fitted regression line. The prediction ability in RRWA-PLS is better than the MWA-PLS;
the method ensures the best prediction capabilities with better accuracy than the other methods.
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The RRWA-PLS shows its robustness which is not affected by the inclusion of model with the number
of PLS component used and is resistant to the influence of outliers and HLP.

Table 1. The RMSE, R2, and SE in the weighted methods using the Monte Carlo Simulation with
different dataset scenarios.

Outlier and HLP n m IV Methods nPLS RMSE R2 SE

No outlier and
HLP

60 41 10% PLS with opt. 9 2.752 0.980 2.776
WA-PLS 15 2.496 0.984 2.517
MWA-PLS 15 3.318 0.972 3.305
RRWA-PLS 15 2.495 0.983 2.497

60 101 10% PLS with opt. 3 9.348 0.903 9.427
WA-PLS 15 2.759 0.993 2.782
MWA-PLS 15 8.181 0.931 8.250
RRWA-PLS 15 2.702 0.960 2.708

60 201 10% PLS with opt. 1 18.717 0.859 18.875
WA-PLS 15 2.333 0.998 2.352
MWA-PLS 15 5.542 0.908 5.543
RRWA-PLS 15 2.460 0.984 2.480

200 41 30% PLS with opt. 6 6.707 0.969 6.723
WA-PLS 15 6.532 0.970 6.548
MWA-PLS 15 6.799 0.968 6.816
RRWA-PLS 15 6.594 0.970 6.610

200 101 30% PLS with opt. 10 7.926 0.980 7.946
WA-PLS 15 7.915 0.981 7.935
MWA-PLS 15 12.621 0.951 12.653
RRWA-PLS 15 7.860 0.988 7.862

200 201 30% PLS with opt. 9 12.995 0.973 13.028
WA-PLS 15 9.237 0.988 9.260
MWA-PLS 15 15.163 0.965 15.201
RRWA-PLS 15 9.582 0.985 9.601

400 41 50% PLS with opt. 4 9.213 0.967 9.224
WA-PLS 15 9.062 0.968 9.073
MWA-PLS 15 9.522 0.965 9.534
RRWA-PLS 15 9.108 0.968 9.109

400 101 50% PLS with opt. 7 12.727 0.972 12.733
WA-PLS 15 12.611 0.973 12.627
MWA-PLS 15 18.812 0.939 18.836
RRWA-PLS 15 12.787 0.972 12.803

400 201 50% PLS with opt. 10 14.244 0.981 14.262
WA-PLS 15 14.343 0.981 14.361
MWA-PLS 15 31.060 0.910 31.099
RRWA-PLS 15 14.153 0.983 14.172
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Table 1. Cont.

Outlier and HLP n m IV Methods nPLS RMSE R2 SE

With outlier and
HLP (5%)

60 41 10% PLS with opt. 0 N/A N/A N/A
WA-PLS 15 24.139 0.869 24.343
MWA-PLS 15 3.160 0.975 3.188
RRWA-PLS 15 3.042 0.976 3.069

60 101 10% PLS with opt. 0 N/A N/A N/A
WA-PLS 15 16.559 0.892 16.699
MWA-PLS 15 9.156 0.931 9.241
RRWA-PLS 15 5.068 0.984 5.116

60 201 10% PLS with opt. 0 N/A N/A N/A
WA-PLS 15 15.156 0.998 15.284
MWA-PLS 15 9.500 0.936 9.591
RRWA-PLS 15 8.580 0.973 8.662

200 41 30% PLS with opt. 1 151.317 0.494 151.697
WA-PLS 15 175.959 0.603 176.400
MWA-PLS 15 6.441 0.970 6.458
RRWA-PLS 15 6.267 0.971 6.284

200 101 30% PLS with opt. 2 331.650 0.734 332.482
WA-PLS 15 258.614 0.835 259.263
MWA-PLS 15 10.679 0.960 10.707
RRWA-PLS 15 8.195 0.976 8.217

200 201 30% PLS with opt. 1 462.150 0.855 462.307
WA-PLS 15 226.599 0.969 227.167
MWA-PLS 15 17.791 0.952 17.839
RRWA-PLS 15 11.602 0.979 11.634

400 41 50% PLS with opt. 2 304.843 0.516 305.225
WA-PLS 15 336.519 0.533 336.941
MWA-PLS 15 8.841 0.964 8.853
RRWA-PLS 15 8.383 0.968 8.394

400 101 50% PLS with opt. 2 569.727 0.718 570.441
WA-PLS 15 537.184 0.776 537.857
MWA-PLS 15 17.678 0.941 17.702
RRWA-PLS 15 12.664 0.970 12.681

400 201 50% PLS with opt. 2 808.964 0.836 809.977
WA-PLS 15 620.385 0.899 621.161
MWA-PLS 15 29.338 0.920 29.377
RRWA-PLS 15 17.163 0.973 17.186

With outlier and
HLP (20%)

60 41 10% PLS with opt. 2 94.896 0.718 95.697
WA-PLS 15 72.625 0.903 73.238
MWA-PLS 15 9.731 0.878 9.825
RRWA-PLS 15 8.689 0.897 8.774

60 101 10% PLS with opt. 2 121.598 0.872 122.624
WA-PLS 15 29.488 0.905 29.737
MWA-PLS 15 12.795 0.932 12.924
RRWA-PLS 15 10.488 0.934 10.596

60 201 10% PLS with opt. 2 209.076 0.721 210.841
WA-PLS 15 26.243 0.899 26.464
MWA-PLS 15 27.206 0.791 27.496
RRWA-PLS 15 25.145 0.878 25.204
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Table 1. Cont.

Outlier and HLP n m IV Methods nPLS RMSE R2 SE

200 41 30% PLS with opt. 1 254.290 0.719 254.928
WA-PLS 15 237.919 0.783 238.516
MWA-PLS 15 7.848 0.956 7.872
RRWA-PLS 15 7.383 0.961 7.406

200 101 30% PLS with opt. 1 438.504 0.855 439.604
WA-PLS 15 353.163 0.928 354.049
MWA-PLS 15 16.810 0.911 16.863
RRWA-PLS 15 16.105 0.924 16.155

200 201 30% PLS with opt. 2 692.302 0.792 693.037
WA-PLS 15 294.979 0.799 295.719
MWA-PLS 15 121.881 0.740 122.262
RRWA-PLS 15 34.982 0.891 35.091

400 41 50% PLS with opt. 1 443.979 0.740 444.535
WA-PLS 15 396.425 0.767 396.921
MWA-PLS 15 10.339 0.957 10.356
RRWA-PLS 15 10.059 0.958 10.074

400 101 50% PLS with opt. 1 773.558 0.865 774.527
WA-PLS 15 655.858 0.903 656.679
MWA-PLS 15 23.244 0.912 23.281
RRWA-PLS 15 23.066 0.913 23.102

400 201 50% PLS with opt. 1 944.986 0.792 945.425
WA-PLS 15 803.520 0.796 804.526
MWA-PLS 15 40.656 0.859 40.720
RRWA-PLS 15 35.121 0.894 35.176

Note: nPLS is the number of optimal PLS components used in the PLSR model; PLS with opt. is the classical PLS
with optimal number of PLS components.
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5. NIR Spectral Dataset

NIR spectral data from oil palm fruit mesocarp were collected to evaluate the methods. The spectral
data use light absorbance in each j wavelength bands adopted from Beer-Lambert Law [6], and the
data are presented in m× 1 column vector x j using the log base 10. The spectral measurement was
performed by scanning (in contact) the fruit mesocarp using a Portable Handheld NIR spectrometer,
QualitySpec Trek, from Analytical Spectral Devices (ASD Inc., Boulder, Colorado (CO), USA). A total
of 80 fruit bunches were harvested from the site of breeding trial in Palapa Estate, PT. Ivomas
Tunggal, Riau Province, Indonesia. There were 12 fruit mesocarp samples in a bunch collected from
different sampling positions. The sampling positions comprised the vertical and horizontal lines in
a bunch (see [23]): bottom-front, bottom-left, bottom-back, bottom-right, equator-front, equator-left,
equator-back, equator-right, top-front, top-left, top-back, and top-right. Right after collection, the fruit
mesocarp samples were sent immediately to the laboratory for spectral measurement and wet chemistry
analysis. The source of variability such as planting materials (Dami Mas, Clone, Benin, Cameroon,
Angola, Colombia), planting year (2010, 2011, 2012) and ripeness level (unripe, under ripe, ripe,
over ripe) were also considered to cover the different sources of variation in the palm population as
much as possible.

Two sets of NIR spectral data with different sample properties, the fresh fruit mesocarp and
dried ground mesocarp, were used in the study. The average of three spectra measurement on each
fruit sample mesocarp was used in the computation. The fresh fruit mesocarp was used to estimate
the percentage of Oil to Dry Mesocarp (%ODM) and percentage of Oil to Wet Mesocarp (%OWM),
while the dried ground mesocarp was used to estimate the percentage of Fat Fatty Acids (%FFA).
These parameters were analyzed through conventional analytical chemistry that adopts standard test
methods from the Palm Oil Research Institute of Malaysia (PORIM) [45,46]. The %ODM was calculated
in dry matter basis, which removes the weight of water content, while the %OWM used wet matter
basis. Statistically, the distribution range of %ODM used as dataset is 56.38–86.9%; the %OWM is
19.75–64.81%, and the %FFA is 0.17–6.3%. The NIR spectra on oil palm fruit mesocarp (both in fresh
and dried ground mesocarp) and its frequency distribution on response variables, the %ODM, %OWM,
and %FFA, can be seen in the previous study (see [23]). It is important to note that no prior knowledge
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on whether or not outliers and high leverage points are present in this dataset. The discussions
were therefore, addressed to evaluate the methods based on their accuracy improvement through its
desirability index.

5.1. Oil to Dry Mesocarp

A total of 960 observations which comprised 488 wavelengths (range 550–2500 nm: 4 nm interval)
of NIR spectral of fresh fruit mesocarp were used in this study. Following a prior procedure, the cross
validation scheme was employed to obtain the RMSECV value in parallel to the increasing number
of PLS components. To evaluate the RMSE values both in fitting and prediction ability performance,
the scree plot is presented in Figure 7. This plot is essential to observe when the slope starts leveling
off and illustrate the gap difference between the RMSECV and RMSEP values. The maximum number
of PLS components was limited to 30 for computation efficiency purpose.Symmetry 2020, 12, x FOR PEER REVIEW 18 of 27 
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Figure 7. The RMSE of the fitted PLSR through cross validation and the prediction ability using
%ODM dataset.

As seen in Figure 7, the stages of where the slope starts leveling off are at 7, 16, and 26 PLS
components. The gap difference between the RMSECV and RMSEP values is wider after 26 PLS
components, but both errors gradually become smaller. A larger discrepancy between the values
indicates an over fitted which decreases the model accuracy. This indicates that despite using higher
components, improvement in the accuracy is not guaranteed.

The mean weights of the fitted PLS both using WA-PLS and RRWA-PLS are plotted in Figure 8.
It can be seen that the weight of the WA-PLS rapidly increases as the number of PLS components
increases. This shows that using a higher number of PLS components improves accuracy. In RRWA-PLS,
the weights are relatively comparable as the PLS components increases. It is interesting to observe that
by using the weight strategy in RRWA-PLS, some components show lower mean weights compared to
the others even though they have less and higher PLS components. For instance, applying 2 and 5 PLS
components results in the signal for under fitting while applying 35 and 45 PLS components results in
over fitting. The weighting scheme in the WA-PLS and RRWA-PLS depends on the number of PLS
components used in the PLSR model. In fact, using a higher number of PLS components may risk in
the inclusion of more noise, yielding a larger variation in the predicted model. The WA-PLS is known
to be only suitable in preventing a large regression coefficient which indicates an over fitting. Through
its corrected weights using reliability values, the RRWA-PLS does not only prevent over fitting but also
under fitting.
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As seen in Figure 9, the prediction ability error between the classical PLS, WA-PLS, and RRWA-PLS
are comparable to each other. The first minimal RMSEP was obtained with 7 PLS components. After the
7 PLS components, the WA-PLS produced a higher RMSEP than the classical PLS and RRWA-PLS.
The second minimal RMSEP was obtained with 16 PLS components, and the third minimal RMSEP was
obtained with 26 PLS components. The classical PLS and RRWA-PLS have similar prediction ability
error with 4, 9, 27, 28, 29, and 30 PLS components used in the PLSR model. In general, the RMSEP values
using RRWA-PLS method are always within the range and fall around the classical PLS. The RMSEP
curve decreases slightly up to 30 PLS components. In an industrial application, the number of factor
greater than 30 PLS components is not recommended. Although this would yield better prediction
ability, it is computationally intensive.
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Figure 9. The RMSEP values of classical PLS, WA-PLS, RRWA-PLS method using %ODM dataset.

The performance of WA-PLS is not better than its modified weight in MWA-PLS (see Table 2).
However, the accuracy of MWA-PLS is still lower than that of the RRWA-PLS. This is due to the
weight in the WA-PLS which is not able to capture the reliability of the predictor variables. Comparing
the prediction ability in the classical PLS with optimum PLS component (27), the RRWA-PLS is still
superior. To prevent the influence of noise to the final model, we eliminated the first PLS component
from the RRWA-PLS model. This is due to the fact that the first PLS component is usually less accurate
if it is still included in the procedure.
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Table 2. The RMSE, R2, and SE in the weighted methods using %ODM data.

Dataset Methods nPLS RMSEP R2 SE

%ODM

PLS with opt. 27 3.139 0.648 3.141
WA-PLS 30 3.316 0.603 3.317
MWA-PLS 30 3.315 0.644 3.317
RRWA-PLS 30 3.071 0.661 3.072

Note: nPLS is the number of optimal PLS components used in the PLSR model; PLS with opt. is the classical PLS
with optimal number of PLS components.

5.2. Oil to Wet Mesocarp

In this section, the %OWM is considered as the response variable of the NIR spectral fresh
fruit mesocarp dataset. The evaluation on the RMSE values, both in fitting and prediction ability,
is presented in the scree plot. The maximum number of PLS components was limited to 30 for
computation efficiency purposes. As seen in Figure 10, the slope of scree plot starts leveling off at 7, 16,
and 22 PLS components. The gap difference between the RMSECV and RMSEP values are wider after
the 22 PLS components. Contrarily, even though both errors become slightly smaller, a large difference
between the RMSECV and RMSEP would lead to over fitting and make the predicted model unstable.
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Figure 10. The RMSE of the fitted PLSR through cross validation and the prediction ability using
%OWM dataset.

With the increasing number of PLS components, the mean weights of both WA-PLS and RRWA-PLS
also increase (see Figure 11). The mean weights of WA-PLS method are comparably higher to the weight
in the RRWA-PLS where accuracy is improved by employing a higher number of PLS components.
There are some components in the RRWA-PLS with mean weights lower than those of other PLS
components although they have a higher number of components. Applying 2 and 5 PLS components
results under fitting, while applying 26 and 29 PLS components results in over fitting. The RRWA-PLS
shows its robustness which is not dependent on the increasing number of PLS components used.
Its weighing scheme is based on the selection of the relevant aggregate number of PLS components
used as factors in the PLSR model. The most relevant PLS components will get a higher weight,
while the less relevant will obtain a lower weight.
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Figure 11. The mean weights of the fitted PLSR in WA-PLS and RRWA-PLS methods using
%OWM dataset.

Figure 12 indicates that the prediction ability of the three methods using the first 5 components is
fairly close to each other, but afterwards their performances seem to be different in terms of accuracy.
The first minimal RMSEP is obtained with 8 PLS components. After the 8 PLS components, the WA-PLS
produces higher RMSEP than the classical PLS and RRWA-PLS. The second minimal RMSEP is
obtained with 14 PLS components, and the third minimal RMSEP is obtained with 23 PLS components.
The classical PLS with 15 to 22 PLS components produces lower RMSEP values; however, after 24 PLS
components, the accuracy between RRWA-PLS and classical PLS becomes closer. In general, the RMSEP
values using RRWA-PLS method are always within the range, and the values are reasonably close to
the classical PLS. The RMSEP curves slightly decrease which begin from 17 to 30 PLS components.
The WA-PLS relatively has low accuracy compared to the RRWA-PLS and classical PLS. The WA-PLS
suffers from over-under fitting due to several irrelevant variables, but it may still possibly be included
in the fitting process.
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Using its optimum at 22 PLS components, the classical PLS with the optimum number of PLS
components is indeed inconsistent and sensitive to the number of PLS components used. By comparing
the RMSE, R2, and SE values in Table 3, it can be concluded that the proposed RRWA-PLS produces
better accuracy than the other methods. The modified weight in MWA-PLS has improved the accuracy
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of the predicted model; however, it cannot outperform the RRWA-PLS. The robust weighted-average
strategy prevents the PLSR model from depending on the specific number of PLS components used in
the fitting process.

Table 3. The RMSE, R2, and SE in the weighted methods using %OWM data.

Dataset Methods nPLS RMSEP R2 SE

%OWM

PLS with opt. 22 4.442 0.668 4.444
WA-PLS 30 4.520 0.672 4.522
MWA-PLS 30 4.239 0.708 4.241
RRWA-PLS 30 4.185 0.718 4.187

Note: nPLS is the number of optimal PLS components used in the PLSR model; PLS with opt. is the classical PLS
with optimal number of PLS components.

5.3. Fat Fatty Acids

The NIR spectral of dried ground mesocarp with a total of 839 observations and 500 wavelengths
(range 500–2500 nm: 4 nm interval) were utilized as predictor variables. Here, the %FFA was used
as the response variable. In the scree plot (Figure 13), the RMSECV and RMSEP curves gradually
decrease when the number of PLS components increases. Within the first 10 PLS components, the gap
difference between RMSECV and RMSEP is small, but after 10 PLS components, the gap difference
starts to increase continuously. The slope of the scree plot starts leveling off at the 6, 16, 22, and 27 PLS
components. The gap difference between the RMSECV and RMSEP values becomes wider after 16 PLS
components. Therefore, the use of specific number of PLS components affects the accuracy of the
fitted model.Symmetry 2020, 12, x FOR PEER REVIEW 22 of 27 
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Figure 13. The RMSE of the fitted PLSR through cross validation and the prediction ability using
%FFA dataset.

The mean weights of both WA-PLS and RRWA-PLS increase as the number of PLS component
(see Figure 14) increases. Using %FFA dataset, the weight of RRWA-PLS is higher than that of the
WA-PLS. The mean weights of the WA-PLS method increase more steeply as the number of PLS
components increases. This indicates that the predicted model tends to be over fitting. The weight
of the RRWA-PLS is robust since its weight does not depend on the aggregation number of PLS
components used, irrespective of the number of sample size and the number of important variables.
Moreover, the weight is resistant to the influence of outliers and HLP that may exist in the dataset.
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Figure 14. The mean weights of the fitted PLSR in WA-PLS and RRWA-PLS methods using %FFA dataset.

In the first 6 components, the prediction ability of the three methods is comparable to each other
(see Figure 15). After 10 components, the WA-PLS has less accuracy than the classical PLS and the
RRWA-PLS. The first minimal RMSEP is obtained at 8 PLS components; after 8 PLS components,
the WA-PLS produces larger RMSEP than the classical PLS and the RRWA-PLS. The WA-PLS shows
the worst performance using this %FFA dataset. The second minimal RMSEP is obtained at 17 PLS
components, and the third minimal RMSEP is obtained at 27 PLS components. The RMSEP values
using RRWA-PLS method are always within the range and close to the classical PLS. The RMSEP in the
classical PLS is not robust when it comes to the number of PLS components used as using any selection
methods to find the optimal number of PLS components to be used in the PLSR model will result in
unstable results. The application of an improper method in the selection will produce a less accurate
result. The solution in using the robust weighted average is then suggested as it is unnecessary to find
the optimal components. This is the automated fitting process in the PLSR model.Symmetry 2020, 12, x FOR PEER REVIEW 23 of 27 
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Figure 15. The RMSEP values of classical PLS, WA-PLS, RRWA-PLS method using %FFA dataset.

In Table 4, the classical PLS really suffers from the model complexity used in the fitting process.
Using the one-sigma heuristic method in component selection, the accuracy of the selected optimal
number of PLS components is not better than the PLS with a higher number of components. This shows
the weakness of using a specific number of PLS components in the PLSR model. The robust RRWA-PLS
is free from the complexity of the aggregation number of PLS components used. As seen in Table 3,
the WA-PLS has the worst performance compared to the MWA-PLS, classical PLS, and RRWA-PLS.
The use of RRWA-PLS method is preferred to the classical PLS because it does not require the selection
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of an optimal number of PLS components to be used in the final PLSR model. In addition, the method
offers better reliability of the goodness-of-fit for the model.

Table 4. The RMSE, R2, and SE in the weighted methods using %FFA data.

Dataset Methods nPLS RMSEP R2 SE

%FFA

PLS with opt. 27 0.287 0.729 0.288
WA-PLS 30 0.324 0.658 0.324
MWA-PLS 30 0.311 0.683 0.312
RRWA-PLS 30 0.275 0.747 0.276

Note: nPLS is the number of optimal PLS components used in the PLSR model; PLS with opt. is the classical PLS
with optimal number of PLS component.

6. Reliability Values

A number of irrelevant variables most probably still exist in the dataset. If the PLSR method
fails to screen and downgrade the contribution of these irrelevant variables, it might decrease the
accuracy of the final fitted model. The use of RRWA-PLS on the artificial dataset (see Figure 16a)
helps the method to screen the most relevant variables and downgrade the irrelevant variables in
the dataset successfully. The use of NIR spectral data with different response variables (%ODM,
%OWM, and %FFA) has allowed the method to show its potential in the wavelength selection process.
The method highlights the most relevant wavelengths and downgrades the influence of irrelevant
wavelengths based on spectra absorption (see Figure 16b–d). The reliability values are important in
order to increase the computational speed in the fitting process, improve the accuracy, and provide
better interpretation of the NIR spectral dataset.Symmetry 2020, 12, x FOR PEER REVIEW 24 of 27 
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Figure 16. Reliability values using RRWA-PLS method on different datasets: (a) artificial data;
NIR spectral dataset: (b) %ODM; (c) %OWM; (d) %FFA.

7. Conclusions

This study has shown the robustness in the chemometric analysis of NIR spectral data related
to the aggregate number of PLS components and the resistance against outliers and HLP. The rich
and abundant information in the NIR spectral requires advanced chemometric analysis to classify
the most and least relevant wavelengths used in computation. Based on the results, the proposed
RRWA-PLS method is the most preferred method compared to other methods due to its robustness.
The weight improvement in MWA-PLS gives a better solution in improving the accuracy and reliability
of WA-PLS. In the selection of the optimal number of PLS components, the classical PLS still needs
the re-computational process to determine a specific complexity each time the model is updated.
The proposed RRWA-PLS shows its superiority in the improvement of weight and variable selection
process. It is also resistant to the contamination of outliers and HLP in the dataset. In addition,
the RRWA-PLS method offers a solution for automated fitting process in the PLSR model as it does not
require the selection of the optimal number of PLS components unlike in the classical PLS.
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