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Abstract: The current problem of packets generation and transformation around the world is router
congestion, which then leads to a decline in the network performance in term of queuing delay (D)
and packet loss (PL). The existing active queue management (AQM) algorithms do not optimize the
network performance because these algorithms use static techniques for detecting and reacting to
congestion at the router buffer. In this paper, a weight queue active queue management (WQDAQM)
based on dynamic monitoring and reacting is proposed. Queue weight and the thresholds are
dynamically adjusted based on the traffic load. WQDAQM controls the queue within the router buffer
by stabilizing the queue weight between two thresholds dynamically. The WQDAQM algorithm is
simulated and compared with the existing active queue management algorithms. The results reveal
that the proposed method demonstrates better performance in terms mean queue length, D, PL,
and dropping probability, compared to gentle random early detection (GRED), dynamic GRED,
and stabilized dynamic GRED in both heavy or no-congestion cases. In detail, in a heavy congestion
status, the proposed algorithm overperformed dynamic GRED (DGRED) by 13.3%, GRED by 19.2%,
stabilized dynamic GRED (SDGRED) by 6.7% in term of mean queue length (mql). In terms of D in
a heavy congestion status, the proposed algorithm overperformed DGRED by 13.3%, GRED by 19.3%,
SDGRED by 6.3%. As for PL, the proposed algorithm overperformed DGRED by 15.5%, SDGRED by
19.8%, GRED by 86.3% in term of PL.

Keywords: congestion algorithms; GRED; SDGRED; implementation; queue weight

1. Introduction

Computer network devices are utilized in smart homes, smart buildings, organizations, universities,
companies, and countries. The wide distribution of computer networks is a consequence of many factors,
and among these is the emerging of the Internet-of-Things (IoT). The ever-increasing use of computer
networks has resulted in increasing computer crimes and cyber-attacks. Moreover, the connected
terminals throughout these networks add a heavy load on the network resources and devices [1].
As a result, the amount of data transferred across the network devices, such as computers and routers,
greatly increases. To share the network resources [2–6], the transferred data are divided into packets.
Every device that generates packets must be temporarily stored at the router buffer before forwarding
to the next router or its destination. When the router buffer becomes full, congestion occurs, and it will
lead to the case of packet loss (Figure 1) [7–10].
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TCP protocol has its congestion control, however, congestion control at the router buffer that results
in using TCP over the underlying networks is not considered [4,11]. Congestion plays a prominent role
in the deterioration of network performance. This phenomenon increases the queuing delay (D) and
packet loss (PL) and decreases the number of packets transferred to their destination, which is called
throughput (T) [10,12–14]. To face such a challenge, many active queue management (AQM) algorithms
were developed and improved to detect congestion at an early stage and improve network performance.
Several examples include the enhanced adaptive gentle random early detection (GRED) [15], stabilized
dynamic GRED (SDGRED) [16], Markov-modulated queuing systems [17], FL Intelligent Traffic
Management [18], fuzzy logic approach for congestion control [19], and dynamic GRED (DGRED) [20],
Markov-modulated [17], FLACC [19], and dynamic stochastic early discovery [20]. These algorithms,
although they have great influence in easing the congestion, suffer from some limitations. For example,
the DGRED algorithm adopts the concept of target average queue length (Taql), and thus drops
a large number of packets to statically stabilize the queue length at a specific length. In addition,
GRED algorithms use static thresholds and qw, which lead to bursty traffic problems and rapid
congestion in the router buffer, respectively. Therefore, the router buffer rapidly increases and
becomes full.

The performance measures, delay (D), packet loss (PL) and throughput (T) have a primary
concern because they are used to evaluate whether the network performance is satisfactory or not [21].
The existing algorithms do not provide the best performance according to the mean queue length (mql),
D and PL. This is because the existing algorithms used a static technique for detecting and reacting to
congestion at the router buffer. Therefore, a dynamic algorithm must be developed to manage the
packet dropping based on the dynamic weight queue.

This study proposes a new algorithm called weight queue dynamic active queue management
algorithm (WQDAQM) to address the limitations of the existing ones and improve network performance.
The proposed algorithm is integrated with the TCP protocol to maintain the established conversation
for data exchange in high performance [22]. The specific objective of this study is to decrease the mean
queue length (mql), PL, and D compared with other algorithms. The proposed algorithm controls
and manages the packet dropping by maintaining the queue weight and the thresholds dynamically.
The rest of the paper is organized as follows, Section 2 presents the literature review, and Section 3
discusses the proposed WQDAQM algorithm, Section 4 explains the simulation mechanism, Section 5
discusses the results of all compared algorithms, and Section 6 provides the conclusion.
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2. Related Works

Several algorithms were created to manage the queue and control congestion at the router
buffer [3,8,11,23]. The default algorithm for congestion control is the drop tail (DT) algorithm [24].
This algorithm uses the first-in first-out (FIFO) principle, in which the arriving packets are dropped
once the router buffer overflows, as illustrated in Figure 2 [11]. The DT does not have thresholds,
and when the maximum capacity of the router buffer is reached, the new arriving packets are dropped
directly. The main disadvantages of DT include increasing bursty traffic and PL, decreasing delay and
T, and causing global synchronization [2,11].
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Figure 2. Drop tail (DT) router buffer.

To overcome the limitations of the DT algorithm, AQM algorithms are introduced [15,25,26].
Unlike the former, which depends on the capacity of the router, the latter use thresholds and parameters
to manage and maintain congestion at an early stage. AQM algorithms use the average queue length (aql)
and queue length (q) as signs to notify the algorithm to adjust the dropping of arriving packets before
the capacity limit of the router buffer is reached, thereby managing the congestion and maintaining the
performance measures at the optimal level as much as possible. All AQM algorithms deliver better
results than the DT algorithm in terms of mql, D, and PL.

Floyed and Jacobson [27] proposed an algorithm called random early detection (RED) to manage
the congestion at an early stage and overcome the drawbacks and limitations of the DT algorithm.
The main mechanism of this algorithm involves computing the aql of the incoming packets and dropping
them before the router buffer becomes full. To calculate the dropping probability (DP), the calculated
aql and the router buffer thresholds (min and max thresholds) are maintained to implement packet
dropping based on the following scenarios: (1) if aql < min threshold, no packet is dropped; (2) if min
threshold> aql < max threshold, packets are dropped following a specific equation; and (3) if aql > max
threshold, all packets are dropped, and DP = 1 because the incoming packet will be eliminated [27].
Therefore, the random dropping in the RED algorithm is a good solution for avoiding bursty traffic and
global synchronization. In addition, this algorithm achieves better performance than the DT algorithm.
Figure 3 depicts the router buffer in the former [25].
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As the RED algorithm enhances the performance measures of congestion control and addresses
the limitations of the DT algorithm, researchers begin to improve AQM algorithms with reference to
the RED mechanism. For instance, Floyd [25] created GRED, which aims to manage full congestion.
The objective of GRED is to stabilize the aql among the min, max, and doublemax thresholds (Figure 4).
Unlike RED, GRED uses three thresholds that provide the opportunity to control congestion at an early
stage by dropping the packets in three stages to prevent the router buffer from the building itself.
The mechanism of GRED is executed as follows. First, the router buffer receives the packet when
aql reaches the min threshold. If the min threshold < aql ≤ max threshold, GRED drops the packet
randomly following a specific equation. Secondly, DP is increased following a specific equation when
aql is between the max and doublemax thresholds. Lastly, DP becomes 1 when the aql exceeds the
doublemax threshold. As a result, every packet will overflow.
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However, GRED has a problem regarding the number of thresholds that it contains, which results
in a parameterization issue [20]. The parameter should be set to a defined value to obtain a good
performance. In addition, the behavior of aql cannot be suddenly changed. When aql relies on the min
threshold area, and heavy congestion occurs, aql needs a long time to modify its value, and thus causes
the router buffer to overflow. The GRED algorithm is one of the important AQM algorithms. DGRED
is an enhanced version of GRED [20], which is developed to improve the congestion investigation [20].
This algorithm is based on Taql; the value of Taql should be between the min and max thresholds
following a specific equation to stabilize aql at a specific position and prevent the router buffer from
building itself and overflowing [20]. Figure 5 shows the Taql at the router buffer. The DGRED algorithm
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achieves a better performance than other AQM algorithms and stabilizes the Taql at a specific level to
prevent the buffer from overflowing rapidly.

Similar to GRED, DGRED suffers from a parameterization problem because of its several thresholds
and Taql. Therefore, the SDGRED algorithm is developed to improve and manage congestion [20].
This algorithm uses dynamic thresholds based on the value of aql to detect congestion at an early stage.
Figure 6 presents the SDGRED router buffer.
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Unlike in DGRED, all thresholds in the SDGRED algorithm change following the status of aql at
the router buffer [16]. Moreover, SDGRED eliminates Taql to decrease the parameterization in the router
buffer. This algorithm reduces congestion in either congested or non-congested cases. The SDGRED
algorithm improves the network performance in terms of mql, D, PL and decreases the dependency on
a specific parameter. However, this algorithm requires further improvement to reduce the bursty traffic
when the number of arriving packets increases, especially during high traffic. This study investigates
the congestion detection mechanism, advantages, and disadvantages of the DT, RED, GRED, DGRED,
and SDGRED algorithms. These algorithms aim to control the congestion before the router buffers
become occupied. In general, the drawbacks of the algorithms that use a non-adaptive mechanism,
such as DT, RED, and GRED algorithms, include static parameters, fixed threshold values, and fixed
dropping calculation. The adaptive mechanism, such as DGRED and SDGRED algorithms, are just
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for thresholds. Table 1 compares the existing AQM algorithms and highlights the gaps that will be
covered in this paper.

Table 1. Summary of the existing active queue management (AQM) algorithms.

Algorithms Metric(s) Adaptive/
Non Adaptive Dropping Mechanism Advantages Disadvantages

Drop tail Queue length (q) Non Adaptive Drop all packets only after
the buffer gets overloaded

Simple and low computation
overhead requirements

High PL, high delay and
low throughput, and leads
to global synchronization

RED (Qavg) Non Adaptive Drop packets stochastically Eliminate global
synchronization problems

Sensitive to
sudden congestion

GRED (Qavg) adaptive Drop packets stochastically More robust to
sudden congestion

Several threshold values,
parameterization

and overflow

DGRED Qavg adaptive Drop packets stochastically Stabilize Qavg partially
Several threshold values,

parameterization
and overflow

SDGRED Qavg adaptive

Uses dynamic thresholds
based on the value of aql to

detect congestion at
an early stage

Stabilize Qavg partially
Several threshold values,

parameterization
and overflow

Managing the congestion in dynamic router buffers is urgent. The algorithms mentioned previously
fail to address the issue regarding the bursty traffic congestion caused by the numbers of packets in the
router buffer. This problem leads to an increase in average time and PL. Therefore, the WQDAQM
algorithm is proposed to improve the PL and D of dynamic router buffers. This algorithm aims to
identify and avoid congestion in the buffer by stabilizing aql at a level that is less than the router buffer
capacity by using a dynamic qw.

3. Proposed Algorithm

The WQDAQM algorithm adopts several processes used in the SDGRED mechanism and utilizes
a dynamic qw to timely manage the congestion. Unlike the latter, which uses a static value that is
intended for its buffer technique, the aim of the proposed algorithm is to control the dropping of the
packets by dynamically stabilizing the qw between the min and max thresholds. Another aim of the
proposed algorithm is to enhance the network performance in terms of mql, PL, and D compared with
other AQM algorithms when full congestion occurs.

As illustrated in Figure 7, the router buffer in the proposed algorithm is separated into three parts,
namely, min, max, and doublemax thresholds. Congestion is measured based on aql.
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The router buffer operates normally when the incoming packet is less than the min threshold;
that is, the rate of the packet arrival is less than that of packet departure. Therefore, no congestion
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occurs in the router buffer. However, when the number of incoming packets increases, the arrival
quantity ranges between the min threshold and max threshold, and the buffer drops the packets
randomly in accordance with Equation (1):

DP =

Dmax×(aql − min threshold)
max threshold − min threshold

(1−C× Dinit )
(1)

When the traffic increases and the number of packets exceeds the max threshold, DP increases
following Equation (2) to prevent the router buffer from the building itself. When the number of:

DP =
Dmax +

(1−Dmax)×(aql −max threshold)
max threshold

(1−C× Dinit )
(2)

arriving packets exceeds the doublemax threshold, DP is set to 1, which means that all incoming
packets will be dropped and the router buffer is occupied.

WQDAQM also updates the queue weight parameter at the router buffer to control the congestion.
WQDAQM uses the SDGRED algorithm’s policy in dropping packets with probability when the
aql is either between the min threshold and max threshold or between the max threshold and
doublemax threshold.

Phases of the WQDAQM Algorithm

The WQDAQM algorithm is implemented in seven stages, as illustrated in Figure 8. In stage one,
the parameters are initialized as the packets start to arrive at the router buffer. The thresholds are
set to 3, 9, and 18, which are the same as the threshold values of the GRED, DGRED and SDGRED
algorithms [25]. The value of aql is set to zero, which indicates that no packet has reached the router
buffer yet. Dmax, which represents the highest value of the primary packet that will be dropped, is set
to 0.1 [25]. The value of qw is dynamic and dependent on the station of aql at the router buffer.
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Accordingly, in the proposed algorithm, when the value of aql is less than the min threshold, qw 
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In stage two, the router buffer of the proposed algorithm starts receiving the packets to store and
forward them to their destinations. The Bernoulli model is used to manage the receiving packets, which
is suitable for the buffer that has a static length slot [28,29]. In the third stage, qw prominently drops the
packets because DP depends on the values of aql. When aql is extremely small and q, which represents
the real packet in the router buffer, is excessively high, the aql needs a long time to update its value.
Therefore, qw must be dynamic to balance aql and q to drop the packet and prevent sudden congestion
or bursty traffic. The detailed process flow is displayed in Figure 9.
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Accordingly, in the proposed algorithm, when the value of aql is less than the min threshold, qw is
set to 0.002, which is the same value as that set in the GRED algorithm [25]. No dropping occurs in this
situation to allow more packets to enter the router buffer. When the value of aql is between the min
and max thresholds, qw is determined as

qw = qw + 0.001 (3)

The aql is updated, and packet dropping starts randomly according to Equation (1) to prevent the
router buffer from building itself. In this scenario, aql exceeds the min threshold, and the dynamic qw

allows the value of aql to be updated. In this situation, more packets are dropping to prevent the router
buffer arriving at max threshold to maintain the aql as small as possible.

When the value of aql is between the max and doublemax thresholds, qw is calculated as

qw = qw + 0.002 (4)

As the value of aql increases, DP increases following Equation (2) that used in the GRED, DGRED,
and SDGRED algorithms. Moreover, the dropping probability is increased quickly to control the
congestion at the router buffer by dropping more packets before the packets arrive at the doublemax
threshold. As a result, every arriving packet will be overflow, and heavy congestion will occur.

Figure 10 shows the pseudocode for implementing the fourth stage. This code depends on the case
of the buffer. If the router buffer is unfilled, aql is calculated using the equation in line 4. Meanwhile,
if the packets arrive at the router buffer, aql is determined using the equation in line six.
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In stage five, a dynamic threshold is utilized with the router buffer with each packet arrival.
The value of aql in the proposed algorithm is compared with the three thresholds (min, max and
doublemax threshold). The proposed algorithm updates both the max threshold and doublemax
threshold, according to Equations (5)–(7). The updating processes stabilize the value of aql near min
threshold to prevent the router buffer growing rapidly and overflowing, which leads to little packets
being dropped:

max_threshold = max_threshold− 2×min_threshold (5)

Doublemax_threshold = Doublemax_threshold− 2×min_threshold (6)

max_threshold = max_threshold + Min_threshold (7)

As such, if aql is less than the min threshold, no update occurs for the value of max threshold
and doublemax threshold. Also, if the value of aql is still less than min threshold × 2 and the max
threshold position arrives at the value >= min threshold ×. 3, the proposed algorithm starts to update
the position of max threshold and doublemax threshold using the following equations.

The proposed algorithm controls the congestion by examining the value of aql. As the number
of packets is below the min threshold, an update occurs, no packets are dropped in the router buffer,
and the dropping probability is represented by zero. In case, more packets arrive at the router buffer
and the value of aql increased and reached the min threshold, the WQDAQM algorithm starts dropping
the packets based in Equation (1), to allow the router buffer accommodating the arrival packets and
prevent the router overflowing. When the value of aql increases to the value that exceeds the max
threshold, the proposed algorithm starts dropping the packets according tEquation (2). Lastly, when
the value of aql increases, suddenly the doublemax threshold is reached, the dropping probability is
set to one, which means no arriving packets are accommodated as the router buffer is fully occupied
and overflowing.

The proposed algorithm is simulated in the seven stages. The FIFO technique is adopted, and only
one router is present. As previously mentioned, the Bernoulli model is used to represent the arrival of
the packets [30]. The Bernoulli phase is better when the router buffer is divided into static time length
time or slot [30].

The proposed and existing algorithms are simulated through a discrete-time methodology.
The packets depart from the router buffer with geometrically distributed service times [17]. The details
of the simulation are discussed in the next section.

The simulation results are collected in the final stage, and the outputs of the compared algorithm
are calculated. The results of the proposed algorithm are compared with those of the existing ones to
determine which algorithm achieves the best performance.

4. Simulation

The proposed and existing algorithms are simulated, and the results are evaluated using mql,
PL, D, T, and DP. The simulation is implemented in Java using NetBeans Integrated Development
Environment (IDE) 8.1 under 64bits Windows 10, in Intel Core i3 2.10GHz processor and 6 GB RAM.
A single router was modulated using first-in first-out (FIFO) with a variable arrival rate and departure
rate. The system architecture is illustrated in Figure 11.

Figure 12 shows the simulation cycle for the algorithms. The initialized parameters of the compared
algorithms are summarized in Table 2.
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Table 2. Parameter initialization.

Parameters GRED Algorithm DGRED Algorithm SDGRED Algorithm WQDAQM Algorithm

Alpha 0.33–0.93 0.33–0.93 0.33–0.93 0.33–0.93

qw 0.002 0.002 0.002 Dynamic

Beta 0.5 0.5 0.5 0.5

Maximum probability 0.1 0.1 0.1 0.1

Slot 2 million 2 million 2 million 2 million

Buffer size 20 20 20 20

Minimum T 3 .. .. ..

Maximum T 9 .. .. ..

Double MT 18 .. .. ..



Symmetry 2020, 12, 2077 11 of 16

The packet arrival and departure rates are set. The qw of the proposed and existing algorithms are
assigned with dynamic and static values, respectively. The slot number and the buffer capacity are the
same as those in the GRED algorithm [25]. The probability of the packet arrival is set within 0.18–0.93
to guarantee that either congestion or non-congestion will occur.

The thresholds in the GRED algorithm are set to 3, 9, and 18, whereas those in DGRED, SDGRED,
and WQDAQM are assigned dynamic values. Dmax is set to 0.1 following the corresponding values
in the DT and GRED algorithms [25]. The buffer capacity is set to 20 packets to detect congestion at
small buffer sizes. The processes in the router buffer are divided into time units called slots, and the
packets may arrive or depart during a specific slot. The warm period occurs when 2,000,000 slots
are generated [31]. After such a period, the packet departure is evaluated, that is if the departure is
terminated or not. If the generated number is less than beta (0.5), the number of departing packets is
increased by one unit; otherwise, no packet will depart. Subsequently, the number of arriving packets
is checked. If this quantity is less than the number of departing packets, no congestion is present,
and the former is increased by one unit. Moreover, no packet is allowed to enter the router buffer.
The router buffer calculates the performance measures of all algorithms if the slot number reaches
7,999,999. The steps are repeated 10 times to obtain accurate results.

5. Evaluation Results

The results of the proposed WQDAQM algorithm are compared with those of GRED, DGRED,
and SDGRED algorithms, which were discussed in Section 2. All experiments are run ten times to
eliminate potential bias, and yield confidence intervals of the performance run. The algorithms were
assessed based on their mql, T, D, PL, and DP values. To facilitate easy comparison between the
proposed and existing algorithms, the improvement ratio is calculated as given in Equation (8):

IR =
ReferencePerformance−ComparedPerformance

ReferencePerformance
× 100% (8)

5.1. mql

The results of the GRED, DGRED, SDGRED, and WQDAQM algorithms are evaluated using
various packet arrival probabilities (0.18, 0.33, 48, 0.67, 0.78, and 0.93) to ensure that either congestion
or non-congestion will occur at the router buffer. Figure 13 shows the mql values of the compared
algorithms. The value of mql is an important performance measure of router buffers. The small value
of mql is an indication that the router buffer prevents congestion and the increase in q.
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As depicted in Figure 13, the mql values of the proposed and existing algorithms are the same at
alpha’s value of 0.18 and 0.33. When the probability of packet arrival is less than that of packet departure
(a < B), each packet that arrives will depart. When the value of alpha is 0.48, the WQDAQM, DGRED,
and SDGRED algorithms demonstrate better performances than the GRED algorithm, and bright
congestion is present. When mql increases and the probability of packet arrival exceeds that of packet
departure, the proposed algorithm overperforms the other algorithms. The overflow obtained by
the WQDAQM algorithm during heavy congestion is less than those obtained by the existing ones.
Consequently, the proposed algorithm maintains the mql at a level that is lower than the doublemax
threshold to allow the arrival of many packets and prevent the rapid increase in the size of the router
buffer. In detail, in a heavy congestion status at a probability of packet arrival of 0.93, the proposed
algorithm overperformed DGRED by 13.3%, GRED by 19.2%, SDGRED by 6.7% in terms of mql.

5.2. D

The delay performance results of the compared algorithms are illustrated in Figure 14.
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The proposed and existing algorithms have identical outputs according to D, when the probability
of packet arrival is 0.18 or 0.33 as the number of arriving packets is less than that of departing ones.
The proposed algorithm exhibits better performance than the existing ones when heavy congestion is
present in the router buffer because the former has fewer departing packets than the other algorithms.
The results further indicate that mql plays a key role in the delay equation D = mql/T. This equation
implies that D is small when mql is small. In detail, in a heavy congestion status at a packet arrival of
0.93, the proposed algorithm overperformed DGRED by 13.3%, GRED by 19.3%, SDGRED by 6.3% in
term of D.

5.3. T

The plot of T vs. the probability of packet arrival is illustrated in Figure 15.
The proposed and existing algorithms obtained identical results when the alpha was less than

beta. In addition, the light congestion occurs in the router buffer at packet arrival probabilities of
018, 0.33, and 0.48. When the value of alpha approaches that of beta and heavy congestion is present,
the compared algorithms stabilize at the value of the latter (0.5). In detail, in a heavy congestion status
at a packet arrival of 0.93, the proposed algorithm overperformed DGRED by 13.3%, GRED by 19.3%,
SDGRED by 6.3% in term of D.
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5.4. PL and DP

The number of packets dropped by the proposed and the existing algorithms are analyzed in
this section. The PL and DP values of the GRED, DGRED, SDGRED, and WQDAQM algorithms are
presented in Figures 16 and 17, respectively.

Figure 15 shows that the proposed algorithm achieves the lowest PL when heavy congestion is
present in the router buffer (packet arrival and packet departure). This phenomenon occurs because
the router buffer that is managed by this algorithm takes a long time to overflow, and the number
of arriving packets reaches the doublemax threshold. When alpha is less than beta, all algorithms
produced similar results. In details, with low traffic load, no PL occurs as a result of using any of the
algorithms. As slight congestion occurs at a packet arrival of 0.48, the DGRED overperformed the
proposed algorithm by 2% only. The proposed algorithm and SDGRED perform equally. At the same
time, the proposed algorithm overperformed GRED by 39.7%. In a heavy congestion status at a packet
arrival of 0.93, the proposed algorithm overperformed DGRED by 15.5%, SDGRED by 19.8%, GRED by
86.3% in term of PL.

The relationship between DP and alpha is illustrated in Figure 16. The result reveals that the
proposed WQDAQM algorithm drops many packets in the router buffer when the beta is less than the
alpha and when the number of arriving packets is less than that of the departing ones.
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6. Conclusions

In this paper, the WQDAQM algorithm was proposed by enhancing the SDGRED algorithm
with dynamic dropping rates. This algorithm aims to maintain the aql between two dynamically
predetermined thresholds to prevent the buffer from exceeding the latter and overflowing.
The WQDAQM algorithm controls the congestion at the router buffer and prevents the loss of the
packets. The proposed algorithm is compared with GRED, DGRED, and SDGRED algorithms in terms
of D, mql, PL, T, and DP to determine which among them achieves the best results based on the value of
alpha. The WQDAQM algorithm resulted in better mql, D, and PL compared to SDGRED, DGRED
and GRED algorithms when heavy congestion exists in the buffer. However, when the alpha is either
less than or greater than beta, all algorithms produce the same throughputs. Moreover, the proposed
algorithm drops fewer packets at the router buffers compared to the SDGRED, DGRED and GRED
algorithms. Accordingly, WQDAQM enhances and improves the congestion consequences at the
router buffer. The limitation appears as the proposed algorithm with slight congestion as the DGRED
overperformed the proposed algorithm by 2% only. Accordingly, in future work, the focus will be on
enhancing the performance of the proposed algorithm in a slightly congested network.
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