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Abstract: Modern industrial enterprises require high accuracy and precision feedback systems to fulfil
cutting edge requirements of technological processes. As demand for a highly accurate system grows,
a thin gap between throughput and quality exists. The conjunction of ultrafast lasers and modern
control strategies of mechatronic systems can be taken into account as an effective solution to reach
both throughput and tolerances. In the present paper, the dynamic errors of the moving platform of the
one degree of freedom stage, based on linear motor and air bearings, have been analyzed. A precision
positioning system is investigated as a symmetric system which is based on symmetric linear motor.
The goal of the present article is to investigate the controllers of the different architecture and to
find the best controller that can ensure a stable and small dynamic error of the displacement of the
stage platform at four different constant velocities of the moving platform. The relations between the
controller order, velocity and the displacement dynamic error have been investigated. It is determined
that higher-order controllers can reduce the dynamic error significantly at low velocities of the moving
platforms: 1 and 5 mm/s. On the contrary, the low order controllers of 4th-degree polynomials of the
transfer function can also provide small dynamic errors of the displacement of the platform.

Keywords: air bearings; linear motors; position control; velocity control; nanotechnologies; frequency
response function; transfer function; dynamic error

1. Introduction

High-resolution systems with the lowest possible velocity are important for both industry and
fundamental physics research. On the one hand, there is the requirement to ensure the low velocity
in the interferometric application, which is used to research fundamental physical relationships;
on the other hand, it is important to maintain as stable as possible micrometer level velocity in the
technological process to ensure the minimal possible influence of dynamic error and mechanical “jitter.”
In most cases, the performance of linear motor stages is investigated in high velocity regimes, but there
is a lack of research that is related to the stability of a relatively low velocity linear motor and air bearing
system. The velocity loop in a cascade control system and a velocity feedback source play a significant
role in settling process of sensitive positioning systems, its damping control and stability [1,2].

High-performance industrial processes are often automated by applying positioning systems that
are based on linear motor and air bearings. Positioning systems which are based on linear motors and
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air bearings do not have gears and ball or rollers in their guides. Therefore, after their calibration and
tuning (stabilization), the systems do not require maintenance because of geometry degradation or
loosening of greases. Air bearing and linear motor-based systems are widely integrated to machines
where high velocity, high machine accuracy and precision are important [3–6]. Usually, air bearing is
sliding on a thin air film; therefore, no friction is applied, which means no maintenance and degradation
will occur. The accuracy of the machines based on the air bearings is strongly dependent on the surface
quality (especially flatness) in air bearing operating zones. Depending on the environment condition
and stage design, air bearings might be operated with different kinds of gases instead of compressed
air. On the other hand, in air bearing systems, there is no damping, which is usually observed in stages
of the mechanical guiding system. Therefore, air bearing systems are very sensitive and aggressively
tuned. These systems can even suddenly become unstable because of noise coming from the motor
amplifier. To stabilize the air bearing stages, it is required to precisely fit the controller transfer function
and necessary filters (or, for example, use a Kalman filter) and control it by using the sliding control
mode (SCM). Therefore, it is required to estimate the damping which occurs because of Eddy Current
(ECD) [7–9]. To add a Kalman filter or SMC to the control system, special system diagnostics must be
undertaken, including frequency response function (FRF) identification, control loop shaping and its
fitting to required conditions [10–12].

Direct drive mechanisms are mandatory if there are requirements to minimize the static and dynamic
errors of the displacement [13–17]. In the majority of cases with mechanical guiding system-based long
travel linear motor stage with air bearings (LMS), these errors are caused by various imperfections such
as backlash, a lack of precision for component assembly, preload, eigenfrequencies of parts, errors of the
measurement system, altering or even nonoperational ambient conditions, etc. In case of air bearing
LMS, the abovementioned factors might be reduced to a damping factor. Linear motors are “direct drive”
systems where no gears (such as a ball screw, belt drive, rack and pinion) are required to transform a
rotary motion to a linear motion. Linear force is generated by a “Lorentz force,” induced proportionally

to the added current:
(
→

F = I
→

Lx
→

B
)
. Linear motor systems with air bearings can be analyzed as a linear

dynamic system. However, to be precise, there may be dampings that should be taken into account if
sub micrometer or nanometer precision has to be reached out.

The displacement errors of the positioning systems are still under intensive investigations since,
on the one hand, it is important to ensure the required precision for a long term of the operating of
the positioning systems; on the other hand, it is very important to have a diagnostic methodology to
warrant the required precision. These requirements actualize many factors that can affect the errors:
the materials, the design of the system, the control approach, the motion mode (for example velocity)
and so on. For example, the influence of the porosity to the piezo effect of the symmetric piezo ceramic
beam was investigated in [18], while the design factors affecting the preciseness of the displacement
were discussed in [19]. In this paper, it is concluded that the main factor affecting the error is the
micrometer gap (backlash) between. However, in this article, there is no information related to the
frequency mode that leads to the degradation of the gear. The investigation of the flexible rotor with
the air bearings and its dynamic behavior is presented in [20]. The forward kinematics and dynamics
of the mechanical systems of the multi-degree of freedom connected in series was investigated in [21].

It should also be noticed that the stability and bandwidth of systems may depend on the human
factor, which affects the assembly and mechanical adjustment of the system. The errors entailed by the
human factor are not systematic, and therefore, are difficult to predict without interrupting the highly
qualified engineering staff [22]. It should be noted that the analysis of the systems with air bearings
and linear motors is only a control engineering problem, since these systems have no mechanical
stiffness and damping.

In the particular investigation, iron-less motor-based positioning system of the symmetrical
design was investigated. The linear force generated by the stage is guaranteed by the motor windings
that are symmetrically placed in the mover of the motor. The mover is placed to the symmetric
“U-Shape” permanent magnet tack based on the classic “Halbach” array. The force of the motor and it
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inducing current is characterized by the motors’ force constant that strongly depends on the magnet
type, its internal design and symmetry of the windings. The moving part is placed on symmetrically
distributed air-bearings.

The main aim of the present investigation is to understand the possibility to ensure position
and velocity stability of the stage platform by identifying the transfer function of the plant and by
applying the proportional-integral-derivative controllers, denoted hereafter as PID, with different
filters. In the present article, PID with the low pass filter is denoted hereafter by PID1; PID with
the low pass and notch filters is denoted by PID2; and PID with the low pass, notch and bi-quad
filters is denoted by PID3. The investigation results should be useful to ensure the stability of the
system under investigation with minimum arrangements. That is, without any additional efforts to
modify the plant mechanically or to change the plant itself. The setup is based on a granite base,
air bearing, three-phase brushless DC motor made by “Tecnotion UM9N,” which is controlled by
position and velocity control regulator “ACS Motion Control UDMsd.” The control loops are closed
by the Michelson laser interferometer “Renishaw XL-80” with 24-bit output that is converted to the
industrial digital differential quadrature RS-422 signal output. Particular architecture of the stage is
quite popular in ultra-high precision industrial architecture; therefore, the investigation might help in
the control and preparation of similar systems.

To identify the plant, it is excited by the frequency-based sinusoidal current (or force) of the
constant amplitude, while the system is commanded to move at a constant speed. The procedure of
the identification performed during the motion of the plant allows us to estimate the transfer function
of the plant and open loop system without the influence of the static damping effects caused by
cables, drag chain and so on. An additional tool to identify the transfer functions is the accelerometer.
Accelerometers play an important role in experiments, since they allow us to compare identified
eigenfrequencies to the harmonic excitation obtained by the FRF of the plant.

The obtained results of the investigation are represented by the derived transfer functions of the
plant, controllers and the whole open loop LMS. The experimentally identified frequency response
functions (FRF) are compared with the FRF of the theoretically derived transfer functions of the LMS.

2. Materials and Methods

The object of investigation. The one degree of freedom-long travel linear motor stage with air
bearings, hereafter denoted as LMS, see Figure 1, consists of: a moving platform (pos 1 of Figure 1),
a granite base (pos. 2 of Figure 1), accelerometers (pos. 3 of Figure 1), load (pos. 4 of Figure 1),
an interferometer mirror (pos. 5 of Figure 1), air bearings (pos. 6 of Figure 1) and a three-phase ironless
linear brushless DC motor (pos. 7 of Figure 1).

Figure 1. The general view of the long travel linear motor stage with the air bearings with load (a) and
without load (b): 1 is the moving platform; 2 is the granite base; 3 are the accelerometers; 4 is the
load; 5 is the interferometer mirror; 6 are the air bearings; and 7 is the three-phase linear BLDC motor
“TECNOTION UM9N.”



Symmetry 2020, 12, 2062 4 of 16

LMS is assembled on a heavy granite base (pos. 2 of Figure 1) along with the load (pos. 4 of
Figure 1) to ensure stability. Position and velocity control loops of the platform are both closed by a
Michelson laser interferometer. The mirror (pos. 5 of Figure 1) of the interferometric measurement
system is attached directly to the moving platform (pos. 1 of Figure 1) to ensure the precise displacement
feedback. In the LMS under consideration, the guiding system is the air bearings system (pos. 6 of
Figure 1). Bandwidth and partially frequency response of the LMS is estimated by accelerometers
(pos. 3 of Figure 1).

The test equipment. The test stand consists of: a granite base (pos. 1 of Figure 2), a Michelson laser
interferometer (pos. 2 of Figure 2), LMS (pos. 3 of Figure 2), a PC with control and diagnostic software
(pos. 4 of Figure 2) and a motion controller and amplifier module (pos. 5 of Figure 2). The general
view of the test equipment is shown in Figure 2.

Figure 2. The general view of the test equipment: 1 is the granite base; 2 is the Michelson interferometer
RENISHAW XL-80; 3 is the long travel linear motor stage with the air bearings (LMS); 4 is the PC with
control and diagnostic software; 5 is the setup based on controller ACS SP + EC-04000032NAN5NDNN
and motor driver (current amplifier) ACS UDMSD2B2N0N.

Motor windings are directly connected to current amplifier UDMSD2B2N0N, which is part of
the motion control setup (pos. 5 of Figure 2). Position and velocity control loops of the platform
are both closed by a Michelson laser interferometer RENISHAW XL-80 (pos. 2 of Figure 2). As a
result, the interferometer (pos. 2 of Figure 2) provides the quantized output, which is based on
the digital differential RS-422 interface. The RS-422 interface output of the digital interferometer
(pos. 2 of Figure 2) is directly connected to the current amplifier UDMSD2B2N0N, which is part
of the motion control setup (pos. 5 of Figure 2). The motion controller (single board computer or
master) SP with EC-04000032NAN5NDNN is used to establish the communication with a PC (pos. 4
of Figure 2) using TCP/IP interface from one side, and UDMSD2B2N0N (or slave) using EtherCAT
interface from the other side. Furthermore, by using a PC (pos. 4 of Figure 2) and a combination
based on motion controller SP with EC-04000032NAN5NDNN and current amplifier UDMSD2B2N0N
(pos. 5 of Figure 2), real time control and diagnostics of LMS (pos. 3 of Figure 2) will be investigated.
To obtain the frequency response functions of LMS, it is excited by the current of the limited bandwidth
and amplitude (which might be considered as force excitation). The bandwidth is compared with the
results obtained by the accelerometers.

In the next stage, the controllers PID1, PID2 and PID3 are examined by comparing the displacement
dynamic errors of the platform of LMS with different PIDs. Additionally, the Fourier spectral analysis
of the amplitudes of the displacement dynamic errors is performed.
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Mathematical modelling of the long travel linear motor stage with air bearings. The block diagram
of LMS and control system is shown in Figure 3. LMS with a current amplifier (including current control
loop which consists of “proportional-integral” controller) is hereafter called the plant, see Figure 3.
After tuning of the current loop, the plant is considered as a constant, while the influence of the different
velocity loop shaping filters, LPF (second order low pass filter), NF (second order notch filter) and
BF (second order bi-quad filter), is investigated. As was already mentioned, in the present article,
the position and velocity loops together with the velocity loop shaping filters are called controller PID1,
when LPF is applied; controller PID2, when LPF and NF are applied; and controller PID3 when LPF,
NF and BF are applied.

Figure 3. The block diagram of the long travel linear motor stage with air bearings (LMS).

The position and velocity loops together comprise the control system. The position loop
corresponds to the “proportional” controller, a velocity loop which consists of the “proportional-integral”
controller and “loop shaping filters.” Furthermore, the influence on the dynamic error of certain filter
combination will be investigated.

The mathematical modelling of LMS is based on the following assumptions:

(1) No friction forces appear in the moving LMS parts;
(2) All parts of the LMS are absolutely rigid. That is, only the rigid body dynamics is considered in

the present investigation;
(3) There is no backlash in the connections of the moving LMS parts;
(4) The motion of the all moving LMS parts is straight-linear;
(5) The displacements of all the moving LMS parts are identical;
(6) The current amplifier is considered as linear after tuning of the PI controller in the current

control loop;
(7) The moving mass is constant and the amplifier bus voltage is constant;
(8) The environmental conditions are constant and well-controlled.

3. Modeling and Identification

3.1. Governing Equations

In the present section, the transfer functions of the open loop system consisting of the plant and
the controller are derived analytically. To assess the accuracy of the analytically obtained transfer
functions, the frequency response functions obtained from the transfer functions were compared with
the experimentally identified frequency response functions of the open loop systems of LMS consisting
of different controllers: PID1, PID2 and PID3.

The system of the governing differential equations of the LMS consists of three equations that
relate the displacement of the LMS platform, the electromechanical parameters of the LMS devices and
the current and voltage:

mtot
d2x(t)

dt2 = Fmotor(t) (1)
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Fmotor(t) = KtI(t) (2)

L
dI(t)

dt
+ RI(t) = U −Ke

dx(t)
dt

(3)

From Equations (1)–(3), it follows that:

L
dI(t)

dt
+ R

mtot

Kt

d2x(t)
dt2 = U −Ke

dx(t)
dt

(4)

where t is time (s); x is displacement of the LMS platform, see Figure 1, (m);
.
x (m/s) and

..
x (m/s−2) are

the velocity and acceleration of the LMS platform or the first and the second order time derivatives
of the displacement x of the LMS platform, respectively; mtot = 100 (kg) is the total mass of the parts
of the LMS platform that move in the straight-line motion; I is the current (A); Fmotor is the motor
generated force (N); Kt = 36.3 (N/A) is the motor force constant; L = 2.0 (mH) is the inductance of the
motor winding; R = 6.2 (Ohm) is the resistance of the motor winding; U = 48 (VDC) is the nominal bus
voltage; and Ke = 30.0 ((Vs)/m) is the motor Back EMF constant. In Equations (1)–(3), the current I is a
time-dependent given function, while quantities mtot, Kt, Ke, L, R and U are time-independent constant

parameters. The displacement x(t), velocity dx(t)/dt def
=

.
x(t) and acceleration d2x(t)/dt2 def

= a(t) of the
LMS platform are unknown time functions.

As illustrated in Figure 3, the plant consists of: motor, air bearing, current amplifier and current
controller, which is considered linear after the current loop is tuned. The current controller might be
represented as the transfer function given in Equation (5), which represents the PID controller:

i(s) = Kp +
Ki
s
+ Kd · s =

KP · s + Ki + Kd · s2

s
(5)

where Kp = 570 is proportional coefficient of PID controller; Ki = 6000 is integral coefficient of PID
controller; Kd = 0.

3.2. Theoretical Transfer Functions, Their Frequency Response Functions and a Comparison with the
Experimentally Identified Frequency Response Functions

The transfer functions obtained in this section will be written as ratios of polynomials and will be
illustrated graphically and compared with the experimental results. Factorized style transfer function
expressions will not be presented here in order to have more compact equations, to simplify the
modelling by mathematical software tools. The structure of the controller is presented in Figure 3,
while PID coefficients and filter bandwidths are represented in Table 1. The transfer function of the
plant, denoted by HPLANT, which includes the motor current amplifier, see Equation (4), and the
current controller, see Equation (5), in the frequency domain, can be represented as the following
polynomial ratio:

HPLANT(s) =
2.586 · 107

· s + 2.722 · 108

2 · 10−1 · s4 + 5.762 · 104 · s3 + 6 · 105 · s2
(6)

Table 1. Summarized parameters of the transfer functions HPID1, HPID2 and HPID3.

Parameter HPID1 HPID2 HPID3

LPF cut off frequency, Hz 45 98 150
NF central frequency, Hz - 45 110
BF central frequency, Hz - - 45

BF type - - Notch filter
Position loop P coefficient 5 5 5
Velocity loop P coefficient 200 180 180
Velocity loop I coefficient 120 160 160
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Before starting the analysis of the dynamic errors of LMS, the experimental identification of
PLANT was conducted by defining the empirical FRFs L̂PLANT1, L̂PLANT2 and L̂PLANT3. Additionally,
these functions L̂PLANTi, i ∈ {1, 2, 3} were compared with the FRF of the theoretical transfer function
HPLANT, denoted by LPLANT. These frequency response functions are depicted in Figure 4.

Figure 4. Frequency response functions of the plant: L̂PLANTi, i ∈ {1, 2, 3} are the experimentally
identified FRF and LPLANT is the FRF of the theoretical transfer function HPLANT given in Equation (6).

From Figure 4, we can observe that the experimentally determined behavior of the real PLANT
remains constant for all investigated controller cases and has a set of the eigenfrequencies that can have
an influence on the whole stability, settling time and settling window of LMS. As is mentioned above,
LMS is frictionless and based on the air bearings. Therefore, eigenfrequencies can be caused by the
structure of LMS, cable management etc. The more detailed mechanical analysis and design revisions
can be considered to damp the parasitic resonances of the system. However, in the present investigation,
the influence of the architecture of the velocity control loop has been taken into account and investigated
to understand if the eigenfrequencies can be damped by using the only loop shaping filters.

In the first case, a relatively simple (standard/straightforward) architecture of the controller PID1
was investigated. PID1 is made of the control system, see Figure 3, by adding the second-order low
pass filter to the velocity loop to shape the velocity loop and damp the low-frequency resonances.
Cut off frequency of the added LPF is 45 Hz. The analytically derived theoretical transfer function of
PID1 in the frequency domain can be written as follows:

HPID1 =
2 · 102

· s3 + 1.12 · 103
· s2 + 6 · 102

· s
1.25 · 10−2 · s4 + 7.074 · s3 + 1 · 103 · s2

(7)

The experimental identification of the FRF of PID1, denoted hereafter as L̂PID1, was also conducted.
The experimental and theoretical FRFs L̂PID1 and LPID1, where LPID1 is the FRF of HPID1, given in
Equation (7), are depicted in Figure 5.



Symmetry 2020, 12, 2062 8 of 16

Figure 5. Frequency response functions of controller PID1: L̂PID1 is the experimentally identified FRF
and LPID1 is the FRF of the theoretical transfer function HPID1 given in Equation (7).

Controller PID2 has been investigated in the second case. LPF and the second-order notch filter
(NF) are added in the velocity loop of PID2. NF is added to damp the particular narrow bandwidth in
the frequency domain. The cut-off frequency of the newly added LPF is 98 Hz, while NF is wrapped
around a 45 Hz frequency.

The transfer function of controller PID2, denoted by HPID2, in the frequency domain can be
written as follows:

HPID2(s) =
1.8 · 102

· s5 + 1.006 · 104
· s4 + 1.444 · 107

· s3 + 8.478 · 107
· s2 + 6.396 · 107

· s
2.637 · 10−3 · s6 + 3.911 · s5 + 2.027 · 103 · s4 + 5.11 · 105 · s3 + 7.994 · 107 · s2

(8)

The experimental identification of the FRF of PID2, denoted by L̂PID2, has also been conducted.
The theoretical FRF LPID2 of HPID2, see Equation (8), and the experimental FRF L̂PID2 are shown
in Figure 6.

Figure 6. Frequency response functions of controller PID2: L̂PID2 is the experimentally identified FRF
and LPID2 is the FRF of the theoretical transfer function HPID2 given in Equation (8).
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Controller PID3 has been investigated in the third case. Three filters have been added to the
velocity loop of PID3. In addition to LPF and NF, added in PID2, the extra second-order bi-quad filter
(BF) has been added to the velocity loop to damp the second particular narrow bandwidth in the
frequency domain. It should be noted that it is impossible to continuously increase an order of the
velocity loop because of the decreasing phase margin. The cut-off frequency of the newly added LPF
is 150 Hz, the NF is wrapped around 110 Hz frequency and the second-order BF that is designed as
an NF is wrapped around 45 Hz. In the present third case, the transfer function of controller PID3,
denoted by HPID3, in the frequency domain can be written as follows:

HPID3 =

 7∑
i=1

aisi


 8∑

i=2

b js j


−1

(9)

where coefficients ai and b j are the following: a1 = 3.822 · 108, a2 = 5.077 · 108, a3 = 8.783 · 107,
a4 = 3.207 · 105, a5 = 1.292 · 103, a6 = 7.625 · 10−1, a7 = 2.252 · 10−3, b2 = 4.777 · 108, b3 = 4.644 · 106,
b4 = 1.699 · 104, b5 = 3.288 · 101, b6 = 4.404 · 10−2, b7 = 3.805 · 10−5, b8 = 1.408 · 10−8.

As in the previous cases of the controllers PID1 and PID2, the experimental identification of the
FRF of PID3, denoted by L̂PID3, has also been conducted. The theoretical and experimental frequency
response functions LPID3 of HPID3, see Equation (9), and L̂PID3 are depicted in Figure 7.

Figure 7. Frequency response functions of controller PID3: L̂PID3 is the experimentally identified FRF
and LPID3 is the FRF of the theoretical transfer function HPID3 given in Equation (9).

The scheme of the controller is shown in Figure 3. In case of the velocity loop architecture,
loop shaping filters are connected in series. The parameters of the transfer functions HPID1, HPID2 and
HPID3 of the corresponding controllers are summarised in Table 1.

Generalization of transfer functions HPLANT, see Equation (6), and HPID1, see Equation (7),
yields the transfer function of the open loop system consisting of the controller and the plant (in the
frequency domain):

HOLSYS1(s) =
5.173 · 109

· s4 + 8.342 · 1010
· s3 + 3.204 · 1011

· s2 + 1.634 · 1011
· s

2.502 · 10−3 · s8 + 7.222 · 102 · s7 + 4.153 · 105 · s6 + 6.186 · 107 · s5 + 6.000 · 108 · s4
(10)

The experimental identification of the FRF of the open loop system (denoted hereafter by
L̂OLSYS1) was conducted to assess the accuracy of the theoretically obtained transfer function HOLSYS1,
see Equation (10), of the open loop of the system. The experimentally and analytically obtained
FRFs L̂OLSYS1 and LOLSYS1 are depicted in Figure 8. I should be noted that in this particular case,
the bandwidth of LMS is 13.6 Hz, the gain margin is 5.8 dB and the phase margin is 29.
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Figure 8. Experimentally and analytically obtained FRFs, L̂OLSYS1 and LOLSYS1, respectively, of LMS
with controller PID2.

Generalization of the transfer functions HPLANT, see Equation (6), and HPID2, see Equation (8),
yields the transfer function of the open loop system consisting of the controller (LPF and NF) and
PLANT (in frequency domain):

HOLSYS2 =

 6∑
i=1

aisi


 10∑

i=4

b js j


−1

(11)

where coefficients ai and b j are the following: a1 = 1.741 · 1016, a2 = 2.474 · 1016, a3 = 6.125 · 1015,
a4 = 3.763 · 1014, a5 = 3.092 · 1011, a6 = 4.655 · 109, b4 = 4.797 · 1013, b5 = 4.913 · 1012, b6 = 3.068 · 1010,
b7 = 1.193 · 108, b8 = 2.273 · 105, b9 = 1.528 · 102, b10 = 5.275 · 10−4.

As in the previous case, the FRF of the open loop system was identified experimentally, denoted
by L̂OLSYS2, and compared with the FRF of the theoretical transfer function HOLSYS2, see Equation (11).
The graphs of FRFs L̂OLSYS2 and LOLSYS2 are shown in Figure 9. The bandwidth of this LMS is 13.6 Hz,
the gain margin is 5.7 dB and the phase margin is 29.

Figure 9. Experimentally and analytically obtained FRFs, L̂OLSYS2 and LOLSYS2, respectively, of LMS
with controller PID2.
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Finally, the theoretical transfer functions HOLSYS3, see Equation (12), defined over the frequency
domain, of the open loop system of LMS was obtained by combining the transfer functions HPLANT,
see Equation (6), and HPID3, see Equation (9):

HOLSYS3 =

 8∑
i=1

aisi


 12∑

i=4

b js j


−1

(12)

where coefficients ai and b j are the following: a1 = 1.040 · 1017, a2 = 1.481 · 1017, a3 = 3.704 · 1016,
a4 = 2.359 · 1015, a5 = 8.646 · 1012, a6 = 3.362 · 1010, a7 = 2.033 · 107, a8 = 5.823 · 104, b4 = 2.866 · 1014,
b5 = 3.031 · 1013, b6 = 2.779 · 1011, b7 = 9.999 · 107, b8 = 1.924 · 106, b9 = 2.567 · 103, b10 = 2.21,
b11 = 8.190 · 10−4, b12 = 2.816 · 10−9. The empirical FRF of the open loop of LMS, denoted by L̂OLSYS3,
was experimentally identified and depicted together with the FRF, denoted by LOLSYS3, of the transfer
function HOLSYS3 for the purpose of the comparison (see Figure 10). For this third case, the bandwidth
of LMS is 12.7 Hz, the gain margin is 5.6 dB and the phase margin is 29.

Figure 10. Experimentally and analytically obtained FRFs, L̂OLSYS3 and LOLSYS3, respectively, of LMS
with controller PID3.

From Figures 8–10, we can conclude that the analytically obtained transfer functions HOLSYSi,
i ∈ {1, 2, 3}, given in Equations (10)–(12), respectively, of the open loop systems of LMS with different
controllers, PID1, PID2 and PID3, are accurate enough, and the stability of these LMS are also good
enough in the frequency domain.

4. Results and Discussion

In the present section the quasi stable LMSs in the time domain are investigated. These LMSs,
with different controllers PID1, PID2, PID3, were examined by measuring the dynamic error of the
displacement of the stage platform, see detail 1 in Figure 1. The displacements were entailed by exciting
LMSs with different velocities {1, 5, 10, 20} mm/s; the mass of the moving platform and the acceleration
and jerk were constant.
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Three configurations of the controller were analyzed: PID1 (where only LPF is used), PID2
(where LPF and NF are used) and PID3 (where LPF, NF and BF are used). In each phase of the
experiment, the following activities were arranged:

(1) An excitation of the system with the harmonic signal of the constant amplitude to identify the
transfer functions of the systems under investigation. This investigation gives the information
concerning the frequency domain.

(2) Tuning of the system to adjust the velocity loop shaping filters.
(3) Excitation of the moving part of LMS by different velocities.
(4) Analysis of the time dependent displacement of the moving platform, see detail 1 in Figure 1,

at steady dynamic process (
..
x = 0) as a function of the different velocities

.
x ∈ {1, 5, 10, 20}mm/s and

different controllers: PID1, PID2 and PID3, while the mass of load mtot ≈ 100 kg was constant.

Firstly, the direct measurement of the dynamic error of the displacement of the LMS platform has
been performed. The error of the displacement, denoted by ∆e, in this article is expressed hereafter as a
difference ∆e = ∆m −∆set, where ∆m is the measured displacement and ∆set is the required displacement
set by the computer. The dynamic displacement errors ∆e of the systems with the different controllers
PID1, PID2 and PID3 and at the different velocities

.
x ∈ {1, 5, 10, 20}mm/s, at the constant acceleration

..
x = 0 of the moving platform, are shown in Figure 11.

Figure 11. Dynamic displacement errors ∆e of the LMS platform with different controllers PID1, PID2
and PID3 at different velocities

.
x ∈ {1, 5, 10, 20}mm/s and at the constant acceleration

..
x = 0.
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As we can see from Figure 11, the dependency of the displacement dynamic error ∆e on the time is
harmonic. The displacement error ∆e is smaller at the low excitation velocities, i.e., when

.
x ∈ {1, 5}mm/s

in comparison to the error ∆e at the bigger excitation velocities, when
.
x ∈ {10, 20}mm/s. The influence

of the complexity of controller PID on the dynamic errors ∆e is bigger at the low velocity than at the
big velocity.

In Table 2, the estimations are summarized of the dynamic displacement error ∆e of the LMS
platform with different controllers PID1, PID2 and PID3 at different velocities

.
x ∈ {1, 5, 10, 20}mm/s

and at the constant acceleration
..
x = 0. In this table, the estimations of mean, standard deviation,

minimum and maximum are denoted by m∆e, s∆e, min and max, respectively.

Table 2. Estimations of the dynamic displacement error ∆e of the LMS platform.

Controller

PID1 PID2 PID3
Estimations of the dynamic displacement error, ∆e in nm

Velocity, mm/s min{∆e} max{∆e} s∆e m∆e min{∆e} max{∆e} s∆e m∆e min{∆e} max{∆e} s∆e m∆e
1 −240.00 240.00 79.70 58.20 −160.00 160.00 50.60 −14.20 −240.00 160.00 65.10 −79.03
5 −400.00 560.00 213.00 51.80 −400.00 320.00 140.00 −37.50 −160.00 240.00 63.30 21.10
10 −160.00 160.00 66.50 −30.50 −400.00 320.00 130.00 26.70 −320.00 320.00 122.00 15.90
20 −240.00 320.00 117.00 31.70 −160.00 320.00 92.10 75.80 −320.00 160.00 85.30 −62.70

From Table 2, we can observe the following minimums of the absolute value of the estimated means,
min{|m∆e|} := min

{∣∣∣m∆e,i
∣∣∣ : i ∈ {PID1, PID2, PID3}

}
, and the estimated standard deviation, min{s∆e} :=

min
{
s∆e,ii : i ∈ {PID1, PID2, PID3}

}
, of the dynamic error ∆e depending on the velocity

.
x ∈ {1, 5, 10, 20}

mm/s, at the constant acceleration
..
x = 0 m/s2:

(1) When the velocity
.
x = 1 m/s, the LMS with controller PID2 attains both minimum values

min
{
m∆e

}
=

∣∣∣m∆e,PID2

∣∣∣ = 14.2 nm and min{s∆e} = s∆e,PID2 = 50.6 nm.

(2) When the velocity
.
x = 5 m/s, the LMS with controller PID3 attains both minimum values

min
{∣∣∣m∆e

∣∣∣} = ∣∣∣m∆e,PID3

∣∣∣ = 21.1 nm and min{s∆e} = s∆e,PID3 = 63.3 nm.

(3) When the velocity
.
x = 10 m/s, the LMS with controller PID3 attains minimum values of the

estimated mean min{|m∆e|} = m∆e,PID3 ∨ 19.9 nm, while the LMS with PID1 attains the minimum
estimated standard deviation: min{s∆e} = s∆e,PID1 = 31.7 nm.

(4) When the velocity
.
x = 20 m/s, the LMS with controller PID1 attains minimum values of the

estimated mean min{|m∆e|} =
∣∣∣m∆e,PID1

∣∣∣ = 66.5 nm, while the LMS with PID3 attains the minimum
estimated standard deviation: min{s∆e} = s∆e,PID3 = 85.3 nm.

The following conclusions can be made from the obtained dynamic errors ∆e of the displacements
of the LMS platform. In general, there is no explicit tendency that the more complex controllers
provide smaller dynamic errors of the displacement ∆e. For example, when

.
x = 20 mm/s, the smallest

estimation of the absolute value of the mean of ∆e is obtained for LMS with relatively simple controller
PID1, i.e., min

{∣∣∣m∆e

∣∣∣} = ∣∣∣m∆e,PID1

∣∣∣. However, the measured dynamic errors ∆e show that the complexity
of the controller decreases with the increase of the velocity. Additionally, it can be stated that the relative
simple controller PID1 is good enough to stabilize the displacements of the LMS moving platform at
all considered velocities

.
x ∈ {1, 5, 10, 20}mm/s. It should be noticed that the transfer function of LMS

with PID1, i.e., HOLSYS1, is relatively simple in comparison to other transfer functions HOLSYS2 and
HOLSYS3. The nominator of HOLSYS1 is the polynomial of the fourth order, while its denominator is the
polynomial of the eighth order. Contrarily, the polynomial of the denominator of HOLSYS3 is even of
12th order.
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5. Conclusions

The linear motor stage based on the symmetric linear motor was analyzed. The dynamic errors of
the displacement of the platform of the one degree of freedom long-travel linear motor stage have
been investigated by applying three different controllers consisting of a low pass filter, notch filter and
the second-order bi-quad filter at four different excitation velocities 1, 5, 10 and 20 mm/s and at the
steady-state, i.e., when the acceleration equals 0.

The following conclusions can be made on the bases of the obtained experimental and analytical
results and their analysis:

(1) To decrease the dynamic displacement error of the platform, the order of the polynomials of the
transfer function of the considered long-travel linear motor stage should be increased with the
decreased velocity of the displacements of the stage;

(2) The transfer functions of the fourth order polynomials can be good enough to obtain an appropriate
dynamic error of the displacement of the platform when the velocity of the platform is 10 mm/s
and 20 mm/s;

(3) The minimums of the estimated mean and the standard deviation of the dynamic displacement error
of the platform were attained with the following controllers depending on the exciting velocity:

i. At 1 mm/s exciting velocity, the best controller consists of low pass and notch filters
(controller PID2); the absolute value of the estimated mean and the standard deviation are
14.2 nm and 50.6 nm, respectively;

ii. At 5 mm/s exciting velocity, the best controller consists of only one low pass filter
(controller PID1); the estimated mean and the standard deviation are 21.1 nm and
63.3 nm, respectively;

iii. At 10 mm/s exciting velocity, according to the estimated standard deviation of the dynamic
error, the best controller consists of one low pass filter (controller PID1); the standard
deviation is 66.5 nm. However, according to the estimated mean, the best controller
consists of a low pass filter, notch filter and second-order bi-quad filter (controller PID3);
the estimated mean is 15.9 nm.

iv. At 20 mm/s exciting velocity, according to the estimated standard deviation of the dynamic
error, the best controller consists of a low pass filter, notch filter and second-order bi-quad
filter (controller PID3); the standard deviation is 85.3 nm. However, according to the
estimated mean, the best controller consists only of a low pass filter (controller PID1);
the estimated mean is 31.7 nm.
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Abbreviations

BF second order bi-quad filter;
BLDC brushless DC electric motor;
EMF electromotive force;
FRF frequency response function;
LMS long travel linear motor stage with air bearings;
LPF low pass filter;

plant
LMS with current amplifier, including the current control loop consisting of
proportional-integral controller;

NF notch filter;
HOLSYS modelled transfer function of open loop system;
PID proportional-integral-derivative controller;
OLSYS open loop system;
H transfer function;
L and L̂ theoretically derived and experimentally identified frequency response functions;

∆e and A∆e

dynamic error and amplitude of the dynamic error of the displacement of the stage of
the long travel linear motor stage with air bearings;

.
x and

..
x excitation velocity and acceleration;

min{∆e} and max{∆e} minimum and maximum of the dynamic error of the displacement of the stage;

s∆e and m∆e
estimated standard deviation and mean of the dynamic error of the displacement
of the stage.
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