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Abstract: We derived the component Lagrangian for the free N-extended on-shell massless higher
spin supermultiplets in four-dimensional anti-de Sitter space. The construction was based on
the frame-like description of massless integer and half-integer higher spin fields. The massless
supermultiplets were formulated for N ≤ 4k, where k is a maximal integer or half-integer spin in the
multiplet. The supertransformations that leave the Lagrangian invariant were found in explicit form
and it was shown that their algebra is closed on-shell.

Keywords: extended supersymmetry; higher spin symmetry; gauge invariance

1. Introduction

The study of various aspects of higher spin fields is currently one of the actively developing areas
of modern theoretical and mathematical physics (for review see, e.g., [1–5]). Recently, there has been
a surge of interest in constructing supersymmetric higher spin models (in the literature, higher spin
models are sometimes called higher spin (super)gravities) and in investigating the properties of such
models [6–42]. In this paper, we studied a general problem of Lagrangian construction for arbitrary
N-extended massless free on-shell supermultiplets in four-dimensional (4D) AdS space and derived
the Lagrangians describing the dynamics of such supermultiplets.

It is well known that in four dimensions, N-extended supermultiplets with maximal spin k = 1
are restricted by the condition N ≤ 4, and that multiplets with maximal spin k = 2 are restricted by the
condition N ≤ 8. Supermultiplets with N > 8 must contain higher spins of k > 2. To be more precise,
there is a specific relationship between the parameter N and the highest spin k in a supermultiplet,
N ≤ 4k (see, e.g., [43]). Of course, if one does not restrict the maximal spin in a multiplet by the
quantities k = 1, 2, then for any N, there exists supermultiplets with arbitrary higher spins.

For the case of simple N = 1 supersymmetry, the component Lagrangian formulation of
on-shell higher spin supermultiplets in Minkowski space has been known for a long time [44,45];
furthermore, the component approach has been generalized and studied in [46–52]. In particular,
supertransformations have been found that leave invariant the sum of Lagrangians for free massless
fields with spins k and k + 1/2. Completely off-shell Lagrangian formulations for such theories have
been constructed within the framework of the superfield approach [53,54] (see also the later paper [55]
on the same subject). The off-shell formulation of the N = 1 higher superspin free Lagrangian theory
in 4D AdS space was first developed in [56] at the very beginning of superfield formalism, and its
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component form was derived from superfield theory. Quantization of this theory was provided
in [57]. The N = 2 supersymmetric higher spin models both in the Minkowski and AdS spaces were
discussed in [58], while the universal higher spin superfield approach in 4D N = 1 AdS superspace
was developed in [59].

Recently, on-shell superfield Lagrangian realization was constructed for extended N = 1 massless
supermultiplets in the framework of light-cone gauge formalism [41]. An extension of this approach
for on-shell N-extended superfield Lagrangian formulation was given in [42] under the condition
N = 4n, where n is a natural number. In this paper, we generalized the results of [42] and provide an
explicit component Lagrangian construction of arbitrary N-extended massless higher spin on-shell
supermultiplets in 4D anti-de Sitter space without using the condition accepted in [42].

Our construction was based on the frame-like approach for higher spin fields. The generic scheme
of the Lagrangian formulation for free higher spin bosonic and fermionic fields in this approach
was developed in [46]. The full higher spin field Lagrangian is the sum of the free Lagrangians
for the bosonic and fermionic component fields of an on-shell supermultiplet. The main question
that must be solved in such an approach is finding the supersymmetry transformations that leave
the full Lagrangian invariant. In principle, the necessary supersymmetry transformations can be
obtained on the basis of the construction developed in [47,50]; however, an explicit realization of the
supersymmetry transformations has not been derived thus far. Herein, we aimed to fill this gap and
to find the explicit supertransformations for N-extended massless higher spin supermultiplets that
leave the sum of free bosonic and fermionic Lagrangian invariants and show that the algebra of the
supertransformations is closed on-shell.

This paper is organized as follows. In Section 2, we describe the basic elements of the frame-like
Lagrangian formulation for free massless higher spin fields in 4D AdS space and the 4D multispinor
technique. In Section 3, we present minimal massless N = 1 supermultiplets [37], which are used as
the building blocks to construct N-extended supermultiplets. Section 4 is devoted to constructing the
arbitrary N-extended massless supermultiplets in 4D AdS. For each case, we formulated the field
contents and introduced the corresponding field variables. Then, we derived the supertransformations
for these supermultiplets and defined the Lagrangian as a sum of the Lagrangians for all of the integer
and half-integer spin fields of a given supermultiplet. We proved that such a Lagrangian is invariant
under the above transformations. Finally, we showed that the constructed supertransformations form
the closed N-extended 4D AdS superalgebras.

2. Free Higher Spin Fields

In this section, we briefly consider the frame-like Lagrangian formulation of the free massless
higher spin fields in 4D AdS space and the corresponding 4D multispinor formalism.

In the frame-like approach, the massless fields with integer spin k ≥ 2 are described by the
dynamical 1-form f α(k−1)α̇(k−1) and the auxiliary 1-form Ωα(k)α̇(k−2), Ωα(k−2)α̇(k) (see all notations in
the appendix A) [46]. These fields are totally symmetric with respect to the dotted and undotted
indices and generalize the tetrad field and Lorentz connection in the frame formulation of gravity. We
chose them to be real values, that is, they satisfy the following rules of hermitian conjugation:

( f α(k−1)α̇(k−1))† = f α(k−1)α̇(k−1),

(Ωα(k)α̇(k−2))† = Ωα(k−2)α̇(k).

The Lagrangian being the differential 4-form in 4D AdS space looks like:

(−1)k

i
Lk = kΩα(k−1)βα̇(k−2)Eβ

γΩα(k−1)γα̇(k−2) − (k− 2)Ωα(k)α̇(k−3)β̇Eβ̇
γ̇Ωα(k)α̇(k−3)γ̇

+2Ωα(k−1)βα̇(k−2)eβ
β̇D fα(k−1)α̇(k−2)β̇

+2kλ2 f α(k−2)βα̇(k−1)Eβ
γ fα(k−2)γα̇(k−1) + h.c., (1)
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where 1-form eαα̇ is the AdS background tetrad, D is the AdS covariant derivative Deαα̇ = 0, and Eαβ

and Eα̇β̇ are a double product of eαα̇ (see appendix for details Appendix A). The form of Lagrangian (1)
is determined by the invariance under the gauge transformations:

δ f α(k−1)α̇(k−1) = Dξα(k−1)α̇(k−1) + eβ
α̇ηα(k−1)βα̇(k−2) + eα

β̇ηα(k−2)α̇(k−1)β̇,

δΩα(k),α̇(k−2) = Dηα(k),α̇(k−2) + λ2eα
β̇ξα(k−1)α̇(k−2)β̇,

δΩα(k−2),α̇(k) = Dηα(k−2),α̇(k) + λ2eβ
α̇ξα(k−2)βα̇(k−1).

A remarkable property of frame-like formulation is the possibility to construct gauge invariant
objects that generalize the torsion and curvature in gravity:

T α(k−1)α̇(k−1) = D f α(k−1)α̇(k−1) + eβ
α̇Ωα(k−1)βα̇(k−2) + eα

β̇Ωα(k−2)α̇(k−1)β̇,

Rα(k),α̇(k−2) = DΩα(k),α̇(k−2) + λ2eα
β̇ f α(k−1)α̇(k−2)β̇,

Rα(k−2),α̇(k) = DΩα(k−2),α̇(k) + λ2eβ
α̇ f α(k−2)βα̇(k−1).

To simplify the construction of supermultiplets, we did not introduce any supertransformations
for the auxiliary fields Ω. Instead, all calculations were done up to the terms proportional to the
auxiliary field equations of motion, which is equivalent to the following “zero torsion conditions”:

T a(k−1) ≈ 0 ⇒ eβ
α̇Rα(k−1)βα̇(k−2) + eα

β̇R
α(k−2)α̇(k−1)β̇ ≈ 0 . (2)

As for the supertransformations for the dynamical fields f , the corresponding variation of the
Lagrangian can be compactly written as follows:

(−1)kδLk = −i2Rα(k−1)βα̇(k−2)eβ
β̇δ fα(k−1)α̇(k−2)β̇ + h.c.

Now let us turn to massless fields with half-integer spin k + 1/2 ≥ 3/2, which are described by
1-form Φα(k)α̇(k−1), Φα(k−1)α̇(k) [46]. To be Majorana fields, they must satisfy the reality condition:

(Φα(k)α̇(k−1))† = Φα(k−1)α̇(k).

The corresponding Lagrangian has the form:

(−1)kLk+ 1
2

= Φα(k−1)βα̇(k−1)e
β

β̇DΦα(k−1)α̇(k−1)β̇

+εk+ 1
2

λ

2
[(k + 1)Φα(k−1)βα̇(k−1)E

β
γΦα(k−1)γα̇(k−1) (3)

−(k− 1)Φα(k)α̇(k−2)β̇Eβ̇
γ̇Φα(k)α̇(k−2)γ̇ + h.c.].

The Lagrangian is invariant under gauge transformations:

δΦα(k)α̇(k−1) = Dξα(k)α̇(k−1) + eβ
α̇ηα(k)βα̇(k−2) + εk+ 1

2
λeα

β̇ξα(k−1)α̇(k−1)β̇,

δΦα(k−1)α̇(k) = Dξα(k−1)α̇(k) + eα
β̇ηα(k−2)α̇(k)β̇ + εk+ 1

2
λeβ

α̇ξα(k−1)βα̇(k−1),

where εk+ 1
2
= ±1. Note that the above consideration does not fix a sign of εk+ 1

2
. As in the integer spin

case, we can construct the gauge invariant curvatures:

F α(k)α̇(k−1) = DΦα(k)α̇(k−1) + εk+ 1
2
λeα

β̇Φα(k−1)α̇(k−1)β̇,

F α(k−1)α̇(k) = DΦα(k−1)α̇(k) + εk+ 1
2
λeβ

α̇Φα(k−1)βα̇(k−1).
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Then, the Lagrangian variation can be compactly written as follows:

(−1)kδLk+ 1
2

= −Fα(k−1)βα̇(k−1)e
β

β̇δΦα(k−1)α̇(k−1)β̇ + h.c.

In both the bosonic and in fermionic cases, the variation of the higher spin Lagrangians is
completely expressed in geometric terms.

3. Minimal N = 1 Supermultipets

In this section, we present the minimal massless N = 1 supermultiplets in 4D AdS. The off-shell
formulation of the N = 1 higher superspin free Lagrangian theory in 4D AdS space was first developed
in [56] at the very beginning of superfield formalism, and its component form was derived from
superfield theory. In the frame-like approach, massless 4D AdS higher spin supermultiplets were
considered in [37], extending the results of [45] in 4D Minkowski space. In the next sections, they play
the role of building blocks for constructing extended supermultiplets.

3.1. Higher Superspins

The Supermultiplet (k + 1/2, k) contains two massless fields with spin k and spin k + 1/2. They
are described by the fields:

f α(k−1)α̇(k−1), Ωα(k)α̇(k−2), Ωα(k−2)α̇(k),

and:
Φα(k)α̇(k−1), Φα(k−1)α̇(k),

respectively. The corresponding supertransformations are written in the form:

δ f α(k−1)α̇(k−1) = aΦα(k−1)βα̇(k−1)ζβ − āΦα(k−1)α̇(k−1)β̇ζ β̇,

δΦα(k)α̇(k−1) = bΩα(k)α̇(k−2)ζ α̇ + c f α(k−1)α̇(k−1)ζα,

δΦα(k−1)α̇(k) = b̄Ωα(k−2)α̇(k)ζα + c̄ f α(k−1)α̇(k−1)ζ α̇,

where a, b, and c are the complex parameters. The parameters of the N = 1 supertransformations ζα,
and ζ α̇ satisfy the relation:

Dζα = −λeα
β̇ζ β̇, Dζ α̇ = −λeβ

α̇ζβ. (4)

Note that we do not introduce any supertransformation for the auxiliary field Ω here, nor further
on, since its calculations were done up to equations of motion (2). The invariance of the Lagrangian
δ(Lk + Lk+ 1

2
) = 0 requires restrictions on the coefficients:

a = i
(k− 1)

4
b̄, c = λb, b = εk+ 1

2
b̄, εk+ 1

2
= ±1.

The free complex parameter b can be taken as purely real or purely imaginary. In AdS space, it
relates the sign of the mass-like term for the fermionic field and the parity of the bosonic field. The two
cases εk+ 1

2
= +1/− 1 correspond to different N = 1 massless supermultiplets with parity-even/odd

boson. To fix parameter b, one must calculate the commutator of two supertransformations on the
bosonic field:

1
ρ
[δ1, δ2] f α(k−1)α̇(k−1) = Ωα(k−1)βα̇(k−2)ξβ

α̇ + Ωα(k−2)α̇(k−1)β̇ξα
β̇

+λ( f α(k−2)βα̇(k−1)ηα
β + f α(k−1)α̇(k−2)β̇ηα̇

β̇), (5)
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where:
ξβ

α̇ = i(ζ α̇
1 ζ2β − ζ α̇

2 ζ1β), ηα
β = i(ζα

1 ζ2β − ζα
2 ζ1β), (6)

and:

ρ =
(k− 1)

4
b̄b.

We can see that the commutator of these supertransformations is a combination of translation
with parameter ξαα̇ and Lorentz rotation with parameters ηαβ and ηα̇β̇. This means that the two
corresponding supercharges Qα and Qα̇ satisfy the commutation relations of N = 1 AdS superalgebra:

{Qα, Qβ̇} ∼ Pαβ̇,

{Qα, Qβ} ∼ λMαβ,

{Qα̇, Qβ̇} ∼ λMα̇β̇,

where Pαα̇, Mα(2), amd Mα̇(2) are the AdS generators.
The Supermultiplet (k, k− 1/2) contains massless integer spin k and half-integer spin k− 1/2.

The corresponding fields are:

f α(k−1)α̇(k−1), Ωα(k)α̇(k−2), Ωα(k−2)α̇(k),

and:
Φα(k−1)α̇(k−2), Φα(k−2)α̇(k−1).

Supertransformations under the equations of motion for the auxiliary field Ω (2) can be written as:

δ f α(k−1)α̇(k−1) = a′Φα(k−1)α̇(k−2)ζ α̇ − ā′Φα(k−2)α̇(k−1)ζα,

δΨα(k−1)α̇(k−2) = b′Ωα(k−1)βα̇(k−2)ζβ + c′ f α(k−1)α̇(k−2)β̇ζ β̇,

δΨα(k−2)α̇(k−1) = b̄′Ωα(k−2)α̇(k−1)β̇ζ β̇ + c̄′ f α(k−2)βα̇(k−1)ζβ.

The Lagrangian invariance δ(Lk + Lk− 1
2
) = 0 gives:

a′ =
i

4(k− 1)
b̄′, c′ = λb′, b′ = εk− 1

2
b̄′, εk− 1

2
= ±1.

Again, the free parameter b′ can be purely real/imaginary. It corresponds to two different
N = 1 massless supermultiplets with parity-even/odd boson. Calculating the commutator of two
supertransformations, which is equal (5), we fix can b′:

ρ =
1

4(k− 1)
b̄′b′.

3.2. Low Superspins

The Supermultiplet (3/2, 1) contains a massless field with spin 3/2, which is described by
the1-forms Φα and Φα̇ with the Lagrangian (3) at k = 1:

L 3
2

= −Ψβeβ
β̇DΨβ̇ − ε 3

2
λ[ΨβEβ

γΨγ + h.c.].

Massless spin 1 is described by dynamical 1-form f and auxiliary 0-forms Wα(2) and W α̇(2).
The corresponding Lagrangian looks like:

1
i
L1 = 2EWα(2)W

α(2) + Eα(2)W
α(2)D f + h.c.
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It is evident that the Lagrangian is invariant under gauge transformations:

δ f = Dξ, δWα(2) = 0.

We did not introduce any supertransformation for the auxiliary field Wα(2), since the calculations
were done up to the equations of motion, which are equivalent to the condition:

T = D f + 2(Eα(2)W
α(2) + Eα̇(2)W

α̇(2)) ≈ 0. (7)

As an consequence of the above condition, we obtained the relation:

Eα(2)DWα(2) + Eα̇(2)DW α̇(2) ≈ 0.

Then, the supertransformations can be rewritten in the form:

δ f = aΦαζα − āΦα̇ζα̇,

δΦα = beββ̇Wαβζ β̇ + c f ζα,

δΦα̇ = b̄eββ̇W α̇β̇ζβ + c̄ f ζ α̇.

The condition of the Lagrangian invariance δ(L1 + L 3
2
) = 0 under equation T ≈ 0 yields:

a = −i
b̄
2

, c = −λ

2
b, b = ε 3

2
b̄, ε 3

2
= ±1.

The commutator of the two supertransformations has the form:

1
ρ
[δ1, δ2] f = −2eββ̇(W

αβξα
β̇ + W α̇β̇ξβ

α̇), (8)

where ξαα̇ is the same as in (6) and ρ = b̄b
4 .

The Supermultiplet (1, 1/2) contains the massless spin 1 described in the same way as in the
previous case and the massless spin 1/2 described by 0-forms Yα and Yα̇. The Lagrangian for spin
1/2 field has the form:

L = −YαEα
α̇DYα̇.

Note that unlike the higher spin fermionic fields, there is no mass-like term in the above
Lagrangian. The supertransformations, up to the equations of motion for the auxiliary field Wαβ, are
written as follows:

δ f = a′eαα̇Yαζ α̇ − ā′eαα̇Yα̇ζα,

δYα = b′Wαβζβ,

δYα̇ = b̄′W α̇β̇ζ β̇.

The Lagrangian invariance δ(L1 + L 1
2
) = 0 under equation T ≈ 0 (7) yields:

a′ = − i
4

b̄′.

Calculating the commutator of the superetransformations leads to the relation (8) and allows to
fix the parameter ρ = b̄′b′

8 .
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The Supermultiplet (1/2, 0) contains the massless spin 1/2 and one massless spin 0, which is
described by the dynamical 0-form W and the auxiliary 0-form Wαα̇. The Lagrangian for spin 0 has
the form:

1
i
L = −1

2
EWαα̇Wαα̇ − Eαα̇Wαα̇DW + 2λ2EW2.

Using the equation of motion for the auxiliary field Wαα̇:

W = DW + eαα̇Wαα̇ ≈ 0,

one gets the relation:

eαα̇DWαα̇ ≈ 0 ⇒ Eα
γ̇DWβγ̇ ≈ 1

2
εαβEγγ̇DWγγ̇.

We used the following anzac for the supertransformations:

δW = a0Yαζα − ā0Yα̇ζα̇,

δYα = b0Wαα̇ζα̇ + c0Wζα,

δYα̇ = b̄0Wαα̇ζα + c̄0Wζ α̇,

with the set of arbitrary complex parameters a0, b0, and c0. The invariance of the Lagrangian δ(L0 +

L 1
2
) = 0 under the equationW ≈ 0 places restrictions on the parameters:

a0 =
i
2

b̄0, c0 = λb0.

The commutator of two supertransformations for the spin 0 field has the form:

1
ρ
[δ1, δ2]W = Wαα̇ξαα̇,

where ξαα̇ is the parameter of translation (6) and ρ = b̄0b0. The parameter β can be taken as purely
real/imaginary depending on whether the supermultiplet has a parity-even/odd spin 0 field.

The chiral supermultiplet (1/2, 0+, 0−) contains one massless spin 1/2 and two massless
parity-even/odd spins 0+/0−. In this case, the spin 0 is described by the complex scalar field W.
The corresponding supertransformations have the form:

δW = 2a0Yαζα δYα = b0Wαα̇ζα̇ + c0Wζα, (9)

δW̄ = −2ā0Yα̇ζα̇ δYα̇ = b̄0W̄αα̇ζα + c̄0W̄ζ α̇, (10)

where:
a0 =

i
2

b̄0, c0 = λb0.

The commutators of the supertransformations are written as follows:

1
ρ
[δ1, δ2]W = Wαα̇ξαα̇,

1
ρ
[δ1, δ2]W̄ = W̄αα̇ξαα̇,

where ρ = b̄0b0. To re-denote the complex field in the form:

W = W+ + iW− Wαα̇ = Wαα̇
+ + iWαα̇

− ,

W̄ = W+ − iW− W̄αα̇ = Wαα̇
+ − iWαα̇

− ,
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then, at real b0, the field W+ is a parity-even spin 0 field, while W− is a parity-odd one. At imaginary
b0, the W+ is a parity-odd field and W− is a parity-even one.

4. N-Extended Supermultiplets

In this section, we consider the massless N-extended higher spin supermultiplets in 4D AdS.
As we pointed out in the Introduction, for the given maximal integer or half-integer spin k in the
supermultiplet, the parameter N satisfies the relation N ≤ 4k. For each spin k, we described the
field contents and the corresponding field variables. Then, we derived the supertransformations
and showed that the specially defined free Lagrangians are invariant under these transformations.
Finally, we proved that the constructed supertransformations form the on-shell closed N-extended 4D
AdS superalgebras.

4.1. N ≤ 2k− 3

In this case, the massless supermultiplets contain the massless fields with spins:

k, k− 1
2

, k− 1, ..., k− N − 1
2

, k− N
2

,

where k is an arbitrary integer or half-integer. We can write it compactly as:

k− m
2

, m = 0, 1, ..., N.

The number of massless fields with the given spin k− m
2 is equal to N!

m!(N−m)! . One can see that the

minimal spin equals 3
2 in the boundary case N = 2k− 3. Thus, all massless fields entering extended

supermultiplets are uniformly described in Section 1.
Let us introduce the bosonic field variables:

fk−m
2 ,i[m]

α(k−m+2
2 )α̇(k−m+2

2 ), Ωk−m
2 ,i[m]

α(k−m
2 )α̇(k−

m+4
2 ),

and the fermionic ones:
Φk−m

2 ,i[m]
α(k−m+1

2 )α̇(k−m+3
2 ).

where the first lower index denotes the spin of the field, and the compact index i[m] = [i1i2...im]
denotes the antisymmetric combination of indices i = 1, 2, ...N and corresponds to the antisymmetric
representation of the internal symmetry group SO(N). If the maximal spin k is an integer, then m
takes the even values 0, 2, ..., 2[N

2 ] for the bosonic fields and the odd values 1, 3, ..., 2[N−1
2 ] + 1 for the

fermionic ones. In the case of the maximal half-integer spin k, the parameter m takes even values for
fermions and odd one for bosons.
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The generic anzatz for the linear supertransformations was chosen in the following form with a
set of arbitrary complex coefficients am, a′m, bm, b′m, cm, and c′m:

δ fk−m
2 ,i[m]

α(k−m+2
2 )α̇(k−m+2

2 ) = a′mΦk−m+1
2 ,i[m]j

α(k−m+2
2 )α̇(k−m+4

2 )ζ j α̇

−ā′mΦk−m+1
2 ,i[m]j

α(k−m+4
2 )α̇(k−m+2

2 )ζ jα

+amΦk−m−1
2 ,i[m−1]

α(k−m+2
2 )βα̇(k−m+2

2 )ζiβ

−āmΦk−m−1
2 ,i[m−1]

α(k−m+2
2 )α̇(k−m+2

2 )β̇ζi β̇, (11)

δΦk−m
2 ,i[m]

α(k−m+1
2 )α̇(k−m+3

2 ) = bmΩk−m+1
2 ,i[m]j

α(k−m+1
2 )α̇(k−m+5

2 )ζ j,α̇

+b′mΩk−m−1
2 ,i[m−1]

α(k−m+1
2 )βα̇(k−m+3

2 )ζi,β

+cm fk−m+1
2 ,i[m]j

α(k−m+3
2 )α̇(k−m+3

2 )ζ j,α

+c′m fk−m−1
2 ,i[m−1]

α(k−m+1
2 )α̇(k−m+3

2 )β̇ζi,β̇. (12)

where ζα
i and ζ α̇

i are the parameters of the extended supertransformations satisfying the conditions
(4). The Lagrangian is defined as L = ∑m Lk−m

2
, where Lk−m

2
is the Lagrangian for the free field with

spin k− m
2 . Invariance of the Lagrangian under these supertransformations leads to restrictions on the

arbitrary parameters:

am =
i(k− m+2

2 )

4
b̄m−1 cm = λbm, bm = εk−m

2
b̄m,

a′m =
i

4(k− m+2
2 )

b̄′m+1 c′m = λb′m, b′m = εk−m
2

b̄′m.

In these relations, εk−m
2

= +1 or εk−m
2

= −1 for any m depending on the parity of the
corresponding field. This means that there are two families of parameters, bm and b′m. In order
to relate them to one another, the supertransformation algebras (11) and (12) need to be closer. This
yields the condition:

ambm−1 − a′mb′m+1 = 0. (13)

The calculation of the commutator for the two supertransformations (11) allows to obtain
the result:

1
ρ
[δ1, δ2] fk−m

2 ,i[m]
α(k−m+2

2 )α̇(k−m+2
2 ) = Ωk−m

2 ,i[m]
α(k−m+2

2 )βα̇(k−m+4
2 )ξβ

α̇

+Ωk−m
2 ,i[m]

α(k−m+4
2 )α̇(k−m+2

2 )β̇ξα
β̇

+λ( fk−m
2 ,i[m]

α(k−m+2
2 )α̇(k−m+4

2 )β̇ηβ̇
α̇ (14)

+ fk−m
2 ,i[m]

α(k−m+4
2 )βα̇(k−m+2

2 )ηβ
α)

+λ fk−m
2 ,i[m−1]j

α(k−m+2
2 )α̇(k−m+2

2 )zj
i,

where:

ξβ
α̇ = i(ζ1 j,βζ

j
2

α̇ − ζ2 j,βζ
j
1

α̇), ηβ̇
α̇ = i(ζ1 j,β̇ζ

j
2

α̇ − ζ2 j,β̇ζ
j
1

α̇) (15)

zj
i = i(ζ j,β

1 ζ2iβ − ζ
j,β
2 ζ1iβ + ζ

j,β̇
1 ζ2i β̇ − ζ

j,β̇
2 ζ1i β̇), zij = −zji. (16)

One can see that commutator (14) is equal to combinations of translations, Lorentz rotations,
and internal SO(N) transformations with parameters ξαα̇, ηαβ, and zij, respectively. We calculated
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such a commutator only for the bosonic fields. For the fermionic fields, the results were the same;
however, the computations became more complicated and tedious. From (13) and (14), we obtained
restrictions for the parameters:

b̄m−1bm−1 =
4ρ

(k− m+2
2 )

, b̄′m+1b′m+1 = 4ρ(k− m + 2
2

).

The form of the above commutator proves that the supercharges Qα
i and Qα̇

i corresponding to the
supertransformations (11) and (12) satisfy the commutation relations of the extended AdS superalgebra:

{Qi
α, Qj

β̇
} ∼ δijPαβ̇,

{Qi
α, Qj

β} ∼ λ(δij Mαβ +
1
2

εαβTij), (17)

{Qi
α̇, Qj

β̇
} ∼ λ(δij Mα̇β̇ +

1
2

ε α̇β̇Tij),

where Pαα̇, Mα(2), and Mα̇(2) are the AdS generators and Tij = −T ji refers to the generators of the
internal SO(N) group symmetry.

4.2. 2k− 3 < N ≤ 2k

In order to go beyond N > 2k − 3, we should include massless fields with lower spins to
the supermultiplets. In the case of N = 2k − 2, it is sufficient to add the massless spin 1 and the
corresponding fields:

f1,i[2k−2], Wi[2k−2]
α(2).

Analogically, in the cases of N = 2k− 1 and N = 2k, we also should add the massless fields with
spin 1

2 :
Yi[2k−1]

α, Yi[2k−1]
α̇,

and set of complex fields for spin 0:

Wi[2k], Wi[2k]
αα̇ W̄i[2k], W̄i[2k]

αα̇.

In this case, the anzatz for supertransformations with a set of arbitrary parameters looks like:

δΦ 3
2 ,i[2k−3]

α = b′2k−3Ω2,i[2k−4]
αβζi,β + c′2k−3 f2,i[2k−4]

αβ̇ζi,β̇

+b2k−3eββ̇Wi[2k−3]j
αβζ j β̇ + c2k−3 f1,i[2k−3]jζ

jα, (18)

δ f1,i[2k−2] = a2k−2Φ 3
2 ,i[2k−3]

αζiα + a′2k−2eαα̇Yi[2k−2]j
αζ j α̇, (19)

δYi[2k−1]
α = b′2k−1Wi[2k−2]

αβζiβ

+b2k−1Wi[2k−1]j
αα̇ζ j

α̇ + c2k−1Wi[2k−1]jζ
jα, (20)

δWi[2k] = 2a2kYi[2k−1]
αζiα, δW̄i[2k] = −2ā2kYi[2k−1]

α̇ζi α̇. (21)

The Lagrangian is defined as a sum of the Lagrangians for all of the fields in the supermultiplet.
Invariance of the Lagrangian yields restrictions for the arbitrary parameters:

a2k−2 = −i
b̄2k−3

2
, c2k−3 = −λ

2
b2k−3, b2k−3 = ε 3

2
b̄2k−3, ε 3

2
= ±1,

a′2k−2 = − i
4

b̄′2k−1, a2k =
i
2

b̄2k−1, c2k−1 = λb2k−1.
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As a result, there are three arbitrary complex parameters, namely, b2k−3, b′2k−1, and b2k−1,
which can be either purely real or purely imaginary depending on the parity of the bosonic fields
entering the supermultiplets being even or odd. We fixed them by the requirement that commutators
for spins 1 and 0 are closed. This gives the condition:

a2k−2b2k−3 − a′2k−2b′2k−1 = 0. (22)

Then, the commutators for the spin 1 field has the following form up to the gauge transformations:

1
ρ
[δ1, δ2] fi[2k−2] = −2eαα̇(Wi[2k−2]

αβξβ
α̇ + Wi[2k−2]

α̇β̇ξα
β̇) + λ fi[2k−3]jz

j
i, (23)

1
ρ
[δ1, δ2]Wi[2k] = Wi[2k]

αα̇ξαα̇, (24)

where ξαα̇ and zij are the parameters of the translations and internal SO(N) symmetry defined by (15)
and (16). The relations (22)–(24) lead to the following conditions for the parameters:

b̄2k−3b2k−3 = 4ρ, b̄′2k−1b′2k−1 = 8ρ, b̄2k−1b2k−1 = ρ.

Using the commutators (23) and (24), we can show that the corresponding supercharges satisfy
the relations (17).

4.3. 2k < N < 4k

To extend the supersymmetry further, i.e., to consider the case of N > 2k, we Appendix A.
Notations and Conventions

1
2

, 1,
m
2
− k m = 2k + 3, 2k + 4, ..., N − 1, N.

Therefore, we introduced the additional field variables for spin 1
2 :

Yi[2k+1]
α, Yi[2k+1]

α̇.

For spin 1:
f1,i[2k+2], Wi[2k+2]

α(2).

For higher spins:

f m
2 −k,i[m]

α(m−2
2 −k)α̇(m−2

2 −k), Ω m
2 −k,i[m]

α(m
2 −k)α̇(m−4

2 −k), m = 2k + 4, ..., 2[
N
2
]

Φ m
2 −k,i[m]

α(m−1
2 −k)α̇(m−3

2 −k), m = 2k + 3, ..., 2[
N − 1

2
] + 1.
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An additional anzatz for the supertransformations was chosen in the following form with a set of
arbitrary parameters:

δ f m
2 −k,i[m]

α(m−2
2 −k)α̇(m−2

2 −k) = a′mΦ m+1
2 −k,i[m]j

α(m−2
2 −k)βα̇(m−2

2 −k)ζ j
β

+amΦ m−1
2 −k,i[m−1]

α(m−2
2 −k)α̇(m−4

2 −k)ζi
α̇ + h.c. m ≥ 2k + 4,

δΦ m
2 −k,i[m]

α(m−1
2 −k)α̇(m−3

2 −k) = bmΩ m+1
2 −k,i[m]j

α(m−1
2 −k)βα̇(m−3

2 −k)ζ j
β

+b′mΩ m−1
2 −k,i[m−1]

α(m−1
2 −k)α̇(m−5

2 −k)ζi
α̇

+cm f m+1
2 −k,i[m]j

α(m−1
2 −k)α̇(m−3

2 −k)β̇ζ j
β̇

+c′m f m−1
2 −k,i[m]

α(m−3
2 −k)α̇(m−3

2 −k)ζi
α m ≥ 2k + 5,

δΦ 3
2 ,i[2k+3]

α = b2k+3Ω2,i[2k+3]j
αβζ j

β + c2k+3 f2,i[2k+3]j
αβ̇ζ j

β̇

+b′2k+3eββ̇Wi[2k+2]
αβζi

β̇ + c′2k+3 f1,i[2k+2]ζi
α,

δ f1,i[2k+2] = a′2k+2Φ 3
2 ,i[2k+2]j

αζ j
α + a2k+2eαα̇Yi[2k+1]

αζi
α̇,

δYi[2k+1]
α = b2k+1Wi[2k+1]j

αβζ j
β

+b′2k+1W̄i[2k]
αα̇ζi α̇ + c′2k+1W̄i[2k]ζi

α,

δWi[2k] = −2ā′2kYi[2k]j
α̇ζ j

α̇ δW̄i[2k] = 2a′2kYi[2k]j
αζ j

α.

The Lagrangian is defined as a sum of the Lagrangians for all of the fields in the supermultiplet.
The condition of invariance of the Lagrangian invariance yields restrictions on the arbitrary parameters:

am =
i

4(m−2
2 − k)

b̄m−1, cm = λbm, bm = ε m
2 −k b̄m,

a′m =
i(m−2

2 − k)
4

b̄′m+1, c′m = λb′m, b′m = ε m
2 −k b̄′m,

a′2k+2 = −i
b̄′2k+3

2
, c′2k+3 = −λ

2
b′2k+3, b′2k+3 = ε 3

2
b̄′2k+3, ε 3

2
= ±1,

a2k+2 = − i
4

b̄2k+1, a′2k =
i
2

b̄′2k+1, c′2k+1 = λb′2k+1.

To close algebra of the supertransformations, we imposed the conditions:

ambm−1 − a′mb′m+1 = 0, a2k+2b2k+1 − a′2k+2b′2k+3 = 0, 2a2kb2k−1 + 2ā′2k b̄′2k+1 = 0. (25)
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As a result, the commutators of the supertransformations had the form:

1
ρ
[δ1, δ2] f m

2 −k,i[m]
α(k−m+2

2 )α̇(k−m+2
2 ) = Ω m

2 −k,i[m]
α(k−m+2

2 )βα̇(k−m+4
2 )ξβ

α̇

+Ω m
2 −k,i[m]

α(k−m+4
2 )α̇(k−m+2

2 )β̇ξα
β̇

+λ( f m
2 −k,i[m]

α(k−m+2
2 )α̇(k−m+4

2 )β̇ηβ̇
α̇ (26)

+ f m
2 −k,i[m]

α(k−m+4
2 )βα̇(k−m+2

2 )ηβ
α)

+λ f m
2 −k,i[m−1]j

α(k−m+2
2 )α̇(k−m+2

2 )zj
i,

1
ρ
[δ1, δ2] f1,i[2k+2] = −2eαα̇(Wi[2k+2]

αβξβ
α̇ + Wi[2k+2]

α̇β̇ξα
β̇) + λ fi[2k−3]jz

j
i,

1
ρ
[δ1, δ2]Wi[2k] = Wi[2k]

αα̇ξαα̇ + λWi[2k−1]jz
j
i,

where ξαα̇, ηαβ, and zij are defined by (15) and (16). The form of the above commutators and relation
(25) allowed to find additional restrictions for the arbitrary parameters:

b̄m−1bm−1 = 4ρ(
m− 2

2
− k), b̄′m+1b′m+1 =

4ρ

(m−2
2 − k)

,

b̄′2k+3b′2k+3 = 4ρ, b̄2k+1b2k+1 = 8ρ, b̄′2k+1b′2k+1 = ρ.

The commutator (26) allowed to calculate the algebra of the supercharges with the form (17).
As a result, we obtained the on-shell N-extended component free Lagrangian formulations for
supermultiplets with 2k < N < 4k.

4.4. N = 4k

Now, we consider a special case of maximal N-extended supersymmetry with the highest spin k
in a supermultiplet. Such a supermultiplet contains the massless fields with all spins from k to 0. The
field variables are the same as in the N = 2k case, but now, i = 1, 2 · · · , 4k:

fk−m
2 ,i[m]

α(k−m+2
2 )α̇(k−m+2

2 ), Ωk−m
2 ,i[m]

α(k−m
2 )α̇(k−

m+4
2 ),

for the bosonic higher spin fields and:

Φk−m
2 ,i[m]

α(k−m+1
2 )α̇(k−m+3

2 ),

for the fermionic higher spin fields. For spin 1, we introduced the fields:

f1,i[2k−2], Wi[2k−2]
α(2).

For spin 1/2, we introduced the fields:

Yi[2k−1]
α, Yi[2k−1]

α̇.

Moreover, we introduced a set of complex fields for spin 0:

Wi[2k], Wi[2k]
αα̇ W̄i[2k], W̄i[2k]

αα̇

which are subject to the condition:

Wi[2k] =
1

(2k)!
Ei[2k]

j[2k]W̄j[2k], (27)
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where k is an arbitrary integer. As before, all field variables are totally antisymmetric over the indices
i = 1, 2, ...N. Totally antisymmetric invariant tensors Ei[4k] = E[i1i2...i4k ]

are normalized as E12...4k = 1.
The supertransformations in the case under consideration are the same as in the cases of

N = 2k, (11), (12), and (18)–(20). Meanwhile, for the spin 0 components, the supertransformations
compatible with (27) look like:

δWi[2k] = 2a2kYi[2k−1]
αζiα −

2ā2k
(2k− 1)!

Ei[2k]
j[2k]Yj[2k−1]

α̇ζ j α̇,

δW̄i[2k] = −2ā2kYi[2k−1]
α̇ζi α̇ +

2a2k
(2k− 1)!

Ei[2k]
j[2k]Yj[2k−1]

αζ jα. (28)

In this case, again, the algebra of supercharges has the form (17) and the Lagrangian is invariant
under the transformations (11), (12), (18)–(20), and (28).

To conclude this subsection, one notes that we studied here only the case of maximal integer spin
k. In the case of maximal half-integer spin, the above consideration is not applicable, since the relation
(27) is inconsistent with the half-integer k. This case requires a special analysis. The matter is that
the consistent usage of the generic scheme described Section 4.3 leads to double of all of the fields in
the supermultiplet. In the case of maximal integer spin, this doubling can be avoided if one imposes,
in particular, the condition (27). In the case of maximal half-integer spin, such a condition is impossible
We are grateful to Yu.M. Zinoviev for discussion of this question.

5. Summary and Prospects

In this paper, we studied the field realization of arbitrary N-extended massless supermultiplets in
4D AdS space. For the arbitrary highest integer or half-integer spin k fields entering the supermultiplets,
we realized the on-shell supersymmetric component Lagrangian formulations under the condition
N < 4k and defined the higher superspin field Lagrangians as the sums of the free Lagrangians for
all of the fields in the supermultiplets. We constructed the supertransformations that form the closed
on-shell algebras and leave invariant the Lagrangians. It was shown that the commutators of two
such supertransformations form the N-extended AdS superalgebra, i.e., they are combinations of the
translations, Lorentz rotations, and internal SO(N)-transformations. Moreover, we realized maximally
extended supermultiplets, where N = 4k in the case of the highest integer spin k, and were constructed
the corresponding supertransformations.

We hope that our results can be helpful for the construction of extended massive higher spin and
massless infinite spin supermultiplets and their Lagrangian formulations, extending the results of the
N = 1 case [37–39]. Moreover, we pointed out some other open problems in the free supersymmetric
higher spin field theory. First of all, this is a problem of the superfield Lagrangian formulation
of the 4D N = 1 supersymmetric massive higher superspin fields. The corresponding massless
theories were constructed in [53,54,56]. As regards massive theories, there are only partial examples
of the higher superspin massive N = 1 superfield models [60–65]. The problem of formulating
extended supersymmetric higher spin theories in terms of unconstrained superfields is completely
open. At present, the only case where such a possibility can, in principle, be realized is 4D N = 2
supersymmetry, where the harmonic superfield approach [66] allows to construct field models in
terms of N = 2 unconstrained superfields. We hope to study some of these open problems in
forthcoming papers.
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Appendix A. Notations and Conventions

In the paper, we adopted “condensed notation” for the indices. Namely, if some expression
contains n consecutive indices, denoted by the same letter with different numbers (e.g., α1, α2, . . . αn)
and is symmetric on them, we simply wrote the letter, with the number n in parentheses if n > 1
(e.g., α(n)). For example:

Φα1,α2,α3 = Φα(3), ζα1 Ωα2α3 = ζαΩα(2). (A1)

We defined symmetrization over indices as the sum of the minimal number of terms necessary
without a normalization multiplier.

We used the multispinor formalism in four dimensions (see, e.g., [67]). Every vector index was
transformed into a pair of spinor indices: Vµ ∼ Vαα̇, where α, α̇ = 1, 2. Dotted and undotted indices
were transformed into one another under the hermitian conjugation:(

Ωαα̇(2)
)†

= Ωα(2)α̇. (A2)

The spin-tensors, i.e., fields with odd number of indices, were Grassmannian. For example:

Aα(2)α̇ηα = −ηα Aα(2)α̇. (A3)

Under the hermitian conjugation, the order of fields was reversed:(
Aα(2)α̇ηα

)†
= ηα Aα(2)α̇ = −Aα(2)α̇ηα. (A4)

The metrics for the spinor indices comprised an antisymmetric bispinor εαβ and an inverse
one εαβ:

εαβξβ = −ξα, εαβξβ = ξα, (A5)

similarly for dotted indices.
In frame-like formalism, two bases, namely, the world one and the local one, are used. We denotef

the local basis vectors as eαα̇, while the world indices were omitted; all of the fields were assumed to
be of differential forms. Similarly, all of the products of the forms were exterior with respect to the
world indices. In this paper, we used the basis forms, i.e., antisymmetrized products of basis vectors
eαα̇. The forms were the 2-form Eα(2) + h.c., the 3-form Eαα̇, and the 4-form E. The transformation law
of the forms under the hermitian conjugation is:

(eαα̇)† = eαα̇, (Eα(2))† = Eα̇(2), (Eαα̇)† = −Eαα̇, (E)† = −E. (A6)

The covariant AdS derivative satisfied the following normalization conditions:

D ∧ DΩα(m)α̇(n) = −2λ2(Eα
βΩα(m−1)βα̇(n) + Eα̇

β̇Ωα(m)α̇(n−1)β̇). (A7)
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