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Abstract: In this paper, we reparameterized the extended exponential model based on the mean in
order to include covariates and facilitate the interpretation of the coefficients. The model is compared
with common models defined in the positive line also reparametrized in the mean. Parameter
estimation is approached based on the expectation–maximization algorithm. Furthermore, we discuss
residuals and influence diagnostic tools. A simulation study for recovered parameters is presented.
Finally, an application illustrating the advantages of the model in a real data set is presented.
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1. Introduction

Models with positive support have been used a lot in the literature for their usefulness.
For example, in areas such as survival analysis, reliability, regression models, among others.
In this context, the common models used are the exponential (E), Weibull (W), gamma (G),
Birnbaum–Saunders (BS), and generalizations of these distributions, for instance, for limiting cases
as illustrated in Fisher and Tippett [1]. A well-known generalization is the one introduced by
Gómez et al. [2], named the extended exponential (EE) model with probability density function (PDF)

f (y) =
α2(1 + βy) exp(−αy)

α + β
, y > 0, α > 0 and β ≥ 0. (1)

The motivation for this model arises from a mixture between the E distribution with rate α and
the G distribution with shape equal to 2 and rate α, respectively, where the mixture probability are
given by α/(α + β) and β/(α + β), respectively. Another model with a similar motivation is the
Lindley (L) distribution Ghitany et al. [3]. The exponentiated generalized EE model has been proposed
by Andrade et al. [4]. Rasekhi et al. [5], Rasekhi et al. [6] introduce a generalization and a discrete
version of the EE model.

Remark 1. The following distribution are particular cases from the EE(α, β) model:

• EE(α, β = 0) = E(α).
• EE(α, β = 1) = L(α).
• lim

β→+∞
EE(α, β) = G(2, α).
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In Remark 1, we can see the flexibility of the model proposed by Gómez et al. [2] since having
only two parameters has as special cases three well-known distributions. The mean and variance of
the EE(α, β) model are

E(Y) = α + 2β

α(α + β)
and Var(Y) =

α3 + 5α2β + 6αβ2 + 2β3

α5 + 3α4β + 3α3β2 + α2β3 ,

respectively. The rest of the paper proceeds as follows. In Section 2, we introduce a new parameterization
of the EE distribution that is indexed by the mean and mixture parameters. Section 3 presents the EE
regression model with varying mean and the estimation problem approached via maximum likelihood
(ML) estimation via the expectation–maximization (EM) algorithm. In addition, diagnostic measures
are discussed. In Section 4, some numerical results of the estimators are presented with a discussion of
the obtained results. Furthermore, we discuss an application to real data that shows the usefulness of
the proposed model. Concluding remarks are given in Section 5.

2. A EE Distribution Parameterized by Its Mean and Mixture Parameters

Regression models are typically obtained to model the mean of a distribution. However, the PDF
of the EE distribution given in (1) is indexed by α and β. In this context, in this section, we considered
a new parameterization of the EE distribution in terms of the mean and the mixture proportion of the
distribution, say µ > 0 and π ∈ [0, 1], respectively. Consider the parameterization,

µ =
α + 2β

α(α + β)

π =
α

α + β

or

α =
2− π

µ

β =
(1− π)(2− π)

πµ

Under this new parameterization, the PDF in Equation (1), it follows from

f (y; µ, π) =
(2− π)(µπ + (1− π)(2− π)y) exp[−(2− π)y/µ]

µ2 , (2)

where y > 0, µ > 0 and π ∈ [0, 1]. Henceforth, we referred to a random variable (RV) with PDF
as in (2) as the reparameterized extended exponential model (we denote as REE(µ, π)). With this
parameterization, based on results in Gómez et al. [2], we have that

E(Y) = µ and Var(Y) = µ2[v(π)]2,

where v(π) =
√

2− π2/(2− π) is the coefficient of variation (CV). Figure 1 displays some plots of
the PDF in (2) for some parameter values. We can notice that the distribution is very flexible and it can
be an interesting alternative to other distributions with positive support.

Table 1 gives a summary of the two indices, the skewness and kurtosis for the reparameterized
gamma (RGA), reparameterized Birnbaum–Saunders (RBS) and REE distributions, respectively.
The interested reader in reparameterized regression models is referred to Santos-Neto et al. [7] and
Bourguignon et al. [8,9]. We highlight that in models reparametrized in terms of the mean we can
compare the regression coefficients directly.
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Figure 1. Plots of the REE PDF for indicated µ and π = 0 (solid line), π = 0.25 (dashed line), π = 0.50
(dotted line) and π = 0.90 (dotdash line).

Table 1. Skewness and kurtosis of the RGA, RBS, and REE distributions.

Skewness Kurtosis

RGA 2√
φ

3 + 6
φ

RBS 4(3φ+11)
(2φ+5)3/2

3(41φ+186)
(2φ+5)2

REE 2(2−π3)
(2−π2)3/2

3(8−π4−4π2)
(2−π2)2

3. REE Regression Model

Suppose a random sample Y1, . . . , Yn be n independent RV, where each Yi, i = 1, . . . , n, follows
the PDF given in (2) with mean µi and mixture proportion parameter π. Suppose the mean parameter
of Yi satisfies the following functional relation:

g1(µi) = η1i = z>i γ, (3)

where γ = (γ0, . . . , γp)> is a vector of unknown regression coefficients, γ ∈ Rp+1, with p < n, η1i is
a linear predictor and zi = (1, zi1, . . . , zip)

> are observations on p known regressors, for i = 1, . . . , n.
Furthermore, we assume that the covariate matrices Z = (z1, . . . , zn)> have rank p. The link functions
g1 : R → R+ in (3) must be strictly monotone, positive, and at least twice differentiable, such that
µi = g−1

1 (z>i γ), with g−1
1 (·) being the inverse function of g1(·).

Finding the ML estimate of the parameter vector by direct maximization of the log-likelihood
can be a hard task. Taking into account the mixture representation of the REE model, we develop
an estimation procedure based on the EM algorithm; see Dempster et al. [10] for details about
such algorithm.

3.1. EM Algorithm

Considering the mixture representation of the REE distribution, we have

Yi | Xi; µi ∼ RGA(1 + xi, µi)

Xi; π ∼ B(π), (4)

where RGA(µ, φ) with PDF f (y; µ, φ) ∝ yφ−1 exp{−φy/µ} and B(π) denotes the Bernoulli distribution
with success probability equal to π. Under this setting, Dobs = (Y , Z) represents the observed data,
X = (x1, . . . , xn) represents the unobserved (latent) data and Dcomp = (Y , Z, X) denotes the complete
data, where Y = (y1, . . . , yn), Y = (y1, . . . , yn) and X = (x1, . . . , xn). The complete log-likelihood for
ψ = (γ, π) is given by
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`c(ψ; Dcomp) ∝
n

∑
i=1

[
(2− xi) log

(
2− π

µi

)
− (2− π)yi

µi
+ xi log π + (1− xi) log(1− π)

]
. (5)

Let ψ(k) be the estimate of ψ at the k-th iteration of the EM algorithm and denote the conditional
expectation of `c(ψ; Dcomp) given the observed data as Q(ψ | ψ(k)). Therefore,

Q(ψ | ψ(k)) ∝ −
n

∑
i=1

[
(2− x̃(k)i ) log µi +

(1 + x̃(k)i )yi

µi
− x̃(k)i log π − (1− x̃(k)i ) log(1− π)

]
, (6)

where x̃(k)i = E(Xi | Dobs; ψ(k)), i = 1, . . . , n. The distribution of Xi | Dobs; ψ is derived in the
following proposition.

Proposition 1. For the REE model, the distribution of Xi | Dobs; ψ in the hierarchical representation in (4) is

Xi | Dobs; ψ ∼ B
(

πµi/(yi(2− π))

1− π + πµi/(yi(2− π))

)
, i = 1, . . . , n.

Proof. The marginal distribution for Yi is

f (yi | Dobs, ψ) = ∑
xi∈{0,1}

f (yi | Xi = xi; Dobs, ψ)P(Xi = xi; π)

= 1− π + πµi/(yi(2− π)).

The proof is complete applying the Bayes’s theorem for P(Xi = xi | Dobs; ψ).

Corollary 1. The following expected values are directly from Proposition 1.

• E (Xi | Dobs; ψ) = E
(
X2

i | Dobs; ψ
)
= πµi/(yi(2−π))

1−π+πµi/(yi(2−π))
, i = 1, . . . , n.

In general, the three steps of the Algorithm 1 are:

Algorithm 1 EM algorithm for REE regression model

E-step. For i = 1, . . . , n, compute

x̃(k)i =
π(k−1)µ

(k−1)
i /(yi(2− π(k−1)))

1− π(k−1) + π(k−1)µ
(k−1)
i /(yi(2− π(k−1)))

.

M-step I. Using x̃(k) = (x̃(k)1 , . . . , x̃(k)n ) obtained previously in the E-step, update γ(k) solving the
following nonlinear equation for γ

n

∑
i=1

z>i
(

1 + ỹ(k)i

)
=

n

∑
i=1

z>i

(
1 + x̃(k)i

)
yi

µi
, and;

M-step II. Update π(k) as follows

π(k) =
1
n

n

∑
i=1

x̃(k)i .

The E, M-I and M-II steps are alternated repeatedly until a suitable convergence rule is satisfied,
e.g., the difference in successive values of the estimates is less than a tolerance value.
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Remark 2. When no covariates are available, the M-step I for µ can be updated in a closer form as follows:

µ(k) =

n

∑
i=1

(
1 + x̃(k)i

)
yi

n

∑
i=1

(
1 + x̃(k)i

) .

Remark 3. The usual choice for g1(·) in (3) is g1(u) = exp(u).

We carry out inference for ψ of the REE regression model using asymptotic distribution of the
ML estimator ψ̂ obtained by the EM algorithm. This estimator is consistent and has a multivariate
normal joint asymptotic distribution with an asymptotic mean ψ and asymptotic covariance matrix Σψ,
respectively, which can be obtained from the corresponding expected information Fisher information
matrix I(ψ). Hence, we have

√
n [ψ̂−ψ]

D−→ Np+2(0, Σψ̂ = J −1(ψ)), (7)

as n → ∞, where D−→ means “convergence in distribution”, and J (ψ) = limn→∞
1
nI(ψ). Note that

Î(ψ̂) is a consistent estimator of the asymptotic covariance matrix of ψ. According to these results,
an approximate 100× [1− τ]% confidence region for ψ obtained from (7) is

R = {ψ ∈ Rp+2 : [ψ̂−ψ]>Σ̂−1
ψ [ψ̂−ψ] ≤ χ2

p+2;1−τ}, 0 < τ < 1, (8)

where χ2
p+2;1−τ denotes the [1− τ]× 100th percentile of the chi-squared distribution with p+ 2 degrees

of freedom and Σ̂ψ is an estimate of Σψ.

3.2. Diagnostic Analysis

Diagnostic analysis is an important way to detect influential cases and evaluate their effect on
the model assumptions. In this subsection, we use the local influence approach to detect influential
observations that under small perturbation of the model exert a great influence on the ML estimators.
There are basically two approaches to detect influential observations that seriously influence the
results of statistical analysis: (A1) the first approach is the case-deletion approach, in which the impact
of deleting an observation on the estimators is directly assessed by metrics such as the likelihood
distance and Cook’s distance, see Cook [11]; (A2) the second one is to estimate outputs with respect to
the model inputs via various minor model perturbations, such as the local influence; see Cook [12].
Zhu and Lee [13] introduced a unified approach for local influence analysis of general statistical models
with missing data on the basis of the Q-function for the EM-type algorithm. Alternative methodologies
to perform diagnostic analysis can be seen in Bolboaca and Jantschi [14], Jantschi [15].

Case Deletion Measures

Case-deletion diagnosis is an approach to detect the effect of dropping the ith case from the data
set. Here, we develop diagnostic measures with the whole vector (yi, xi) deleted and denote these
by the subscript “(i)”. The classic measures are the Cook distance and the likelihood displacement.
Following this approach, Lee and Xu [16] introduce the analogue to the generalized Cook’s distance
(GCDc

i ) and likelihood displacement (LDc
i ) for the Q-function, which are given by

GCDc
i =(ψ̂(i) − ψ̂)>[−Q̈(ψ̂ | ψ)](ψ̂(i) − ψ̂);

LDc
i =2{`c(ψ̂)− `c(ψ̂(i))},

where ψ̂(i) is the maximizer of the Q-function Q(i)(ψ | ψ̂), i = 1, . . . , n.



Symmetry 2020, 12, 2042 6 of 13

The Hessian Matrix Q̈ψ(ψ)

To obtain the diagnostic measures of the REE regression model, based on the approach of
Dempster et al. [10], it is necessary to compute Q̈ψ(ψ̂) = ∂2Q(ψ|ψ̂)/∂ψ∂ψ>, where ψ = (π, γ>)>.
It follows from (6) that Q̈ψ(ψ̂) have elements given by

∂2Q(ψ | ψ̂)

∂γ∂γ>
= −

n

∑
i=1

ziz>i
(1 + x̃i)yi

µi
, and

∂2Q(ψ | ψ̂)

∂π∂π
=−

n

∑
i=1

[
x̃(k)i
π2 +

(1− x̃(k)i )

(1− π)2

]
.

3.3. Perturbation Schemes

In this subsection, we consider three different perturbation schemes for the REE regression model.

3.3.1. Case Weights Perturbation

Let ω = (ω1, . . . , ωn)> an n× 1 dimensional vector with ω0 = (1, . . . , 1)>. Then, the expected
value of the perturbed complete-data log-likelihood function (perturbed Q-function) can be written as
Q(ψ, ω | ψ̂) = ∑n

i=1 ωiE[`i(ψ | yc)] = ∑n
i=1 ωiQ(ψ | ψ̂), where Q(ψ | ψ̂) is given in (6). In this case,

the matrix

∆ω0 =
∂2Q(ψ, ω | ψ̂)

∂ψ∂ω>

∣∣∣∣
ω=ω0

=
(

∆>γ , ∆>π

)>
,

has elements given by

∆γ =−
n

∑
i=1

w0z>i

[
(2− x̃i)

(1 + x̃i)yi
µi

]
,

∆π =
n

∑
i=1

w0

[
x̃(k)i
π
−

(1− x̃(k)i )

(1− π)

]
.

3.3.2. Response Perturbation

We here assume an additive perturbation for the response variables y = (y1, . . . , yn)>, such that
y(ω) = y + ωsz, where sz is a scale factor equal to the estimated standard deviation of y. Then,
perturbed Q-function is given by

Q(ψ, ω | ψ̂) ∝ −
n

∑
i=1

[
(2− x̃(k)i ) log µi +

(1 + x̃(k)i )yi(ωi)

µi
− x̃(k)i log π − (1− x̃(k)i ) log(1− π)

]
.

3.3.3. Covariate Perturbation

Here, we are interested in perturbing a specific explanatory variable. Under this condition,
we consider an additive perturbation of the explanatory variables by setting zr(ω) = zr + srω,
with r = 1, . . . , p and sr is a scale value typically given by the standard deviation of zr. In this
perturbation scheme, the perturbed Q-function is given by

Q(ψ, ω | ψ̂) ∝ −
n

∑
i=1

[
(2− x̃(k)i (ωi)) log µi(ωi) +

(1 + x̃(k)i (ωi))yi

µi(ωi)

−x̃(k)i (ωi) log π − (1− x̃(k)i (ωi)) log(1− π)
]

,

where µi(ωi) = x>r (ωi)γ.
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3.4. Residual Analysis

In order to check the goodness-of-fit of the REE regression model, we propose two types of
residuals for our model, which are the randomized quantile (RQ) and the generalized Cox–Snell (GCS)
residuals proposed by [17,18], and given respectively by

rRQ
i = Φ−1(ŜY(yi; µ̂i, π̂)),

(9)

rGCS
i = − log(ŜY(yi; µ̂i, π̂)), i = 1, . . . , n,

where µ̂i = x>γ̂, Φ−1 is the inverse function of the N(0, 1) cumulative distribution function (CDF)
and ŜY(yi; µ̂i, π̂) is the estimated CDF of the RV given in (2). If the REE model is correctly specified,
then the RQ residual has a N(0, 1) distribution, regardless of the model specification, whereas the GCS
residual has an exponential distribution with a parameter equal to one.

4. Simulation Study

In this section, we carry out a simulation study to evaluate the performance of the ML estimators
of the REE regression model parameters. Here, we consider for each individual two covariates
(p = 2): one dichotomous, drawn from the B(0.5) distribution, and one continuous, drawn from
the standard normal model. Those covariates were included although µi following Equation (3).
In addition, we consider four values for π: 0.2, 0.5, 0.75, and 0.95, and three combinations for the vector
of parameters γ = (γ0, γ1, γ2) related to the covariates: (1, 0.5, 0.01), (1,−1,−0.01) and (2,−0.5, 0.02).
We also consider four sample sizes: 50, 100, 200, and 500. Each combination for π, γ, and n were
replicated 10,000 times. For each scenario and for each parameter, we computed the mean bias,
the mean of the estimated standard errors (SE), the root of the mean squared error (RMSE), and the 95%
coverage probability (CP) based on the asymptotic distribution for maximum likelihood estimators.
Results are presented in Tables 2 and 3. Note that, in all scenarios, the bias for each parameter
is acceptable and decreases when the sample size is increasing. The SE and RMSE terms also are
closer, reducing their difference when n increases, suggesting that the variance of estimators is well
estimated. Finally, the CP’s are closer to the nominal value (95%), especially when n is increased,
which suggests that the distribution of the estimators is well approximated by the normal, even with
moderate sample sizes. Simulation and application codes were written in the R programming language,
R [19], where they were compiled using the Windows 10 operating system, 16 GB RAM, Intel Core i7
processor, 64 bits.

Table 2. Recovery parameters for the REE regression model under different scenarios (cases n = 50 and
n = 100).

True Values n = 50 n = 100

π γ0 γ1 γ2 Estimator Bias SE RMSE CP Bias SE RMSE CP

0.2

1 0.5 0.01

π −0.018 0.200 0.165 0.992 −0.012 0.125 0.124 0.946
γ0 −0.018 0.158 0.161 0.943 −0.010 0.111 0.112 0.950
γ1 −0.007 0.224 0.226 0.949 0.001 0.156 0.155 0.951
γ2 −0.002 0.116 0.119 0.946 −0.001 0.079 0.080 0.949

1 −1 −0.01

π −0.018 0.197 0.167 0.992 −0.011 0.125 0.122 0.951
γ0 −0.017 0.158 0.164 0.941 −0.009 0.111 0.111 0.951
γ1 0.001 0.224 0.228 0.945 0.001 0.157 0.155 0.952
γ2 −0.002 0.115 0.117 0.949 −0.001 0.080 0.081 0.944

2 −0.5 0.02

π −0.021 0.197 0.164 0.989 −0.010 0.125 0.123 0.949
γ0 −0.019 0.158 0.162 0.940 −0.009 0.110 0.113 0.945
γ1 0.003 0.224 0.228 0.945 0.000 0.157 0.158 0.944
γ2 −0.001 0.115 0.117 0.948 0.000 0.079 0.079 0.948
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Table 2. Cont.

True Values n = 50 n = 100

π γ0 γ1 γ2 Estimator Bias SE RMSE CP Bias SE RMSE CP

0.5

1 0.5 0.01

π −0.060 0.265 0.245 0.881 −0.025 0.198 0.190 0.908
γ0 −0.026 0.175 0.186 0.933 −0.010 0.124 0.127 0.943
γ1 0.004 0.250 0.258 0.938 −0.002 0.176 0.178 0.945
γ2 0.001 0.129 0.135 0.936 0.000 0.090 0.091 0.943

1 −1 −0.01

π −0.062 0.267 0.247 0.882 −0.024 0.198 0.189 0.912
γ0 −0.025 0.175 0.184 0.934 −0.013 0.124 0.126 0.945
γ1 0.002 0.249 0.260 0.932 0.003 0.176 0.178 0.946
γ2 0.000 0.129 0.136 0.937 0.002 0.090 0.091 0.947

2 −0.5 0.02

π −0.062 0.267 0.248 0.883 −0.027 0.198 0.189 0.913
γ0 −0.024 0.175 0.186 0.932 −0.011 0.124 0.127 0.943
γ1 0.002 0.249 0.258 0.938 0.001 0.176 0.179 0.945
γ2 0.000 0.129 0.135 0.938 −0.001 0.090 0.093 0.941

0.75

1 0.5 0.01

π −0.136 0.330 0.287 0.857 −0.075 0.267 0.218 0.893
γ0 −0.031 0.187 0.203 0.928 −0.017 0.133 0.140 0.939
γ1 0.002 0.266 0.281 0.934 0.002 0.189 0.199 0.938
γ2 0.001 0.138 0.148 0.935 −0.001 0.096 0.098 0.946

1 −1 −0.01

π −0.138 0.331 0.288 0.853 −0.078 0.266 0.220 0.886
γ0 −0.028 0.186 0.202 0.927 −0.013 0.133 0.138 0.941
γ1 −0.002 0.265 0.283 0.928 −0.002 0.189 0.195 0.939
γ2 0.001 0.138 0.147 0.936 0.000 0.096 0.099 0.944

2 −0.5 0.02

π −0.140 0.328 0.290 0.849 −0.071 0.269 0.216 0.892
γ0 −0.031 0.186 0.203 0.928 −0.015 0.133 0.140 0.935
γ1 0.007 0.265 0.284 0.931 0.006 0.189 0.198 0.938
γ2 0.001 0.138 0.146 0.935 −0.001 0.096 0.100 0.943

Table 3. Recovery parameters for the REE regression model under different scenarios (cases n = 200
and n = 500).

True Values n = 200 n = 500

π γ0 γ1 γ2 Estimator Bias SE RMSE CP Bias SE RMSE CP

0.2

1 0.5 0.01

π −0.005 0.087 0.088 0.928 −0.001 0.056 0.056 0.943
γ0 −0.004 0.078 0.079 0.949 −0.001 0.049 0.049 0.949
γ1 0.000 0.110 0.111 0.949 −0.001 0.069 0.070 0.951
γ2 0.001 0.056 0.055 0.953 −0.001 0.035 0.035 0.949

1 −1 −0.01

π −0.005 0.087 0.088 0.929 −0.002 0.056 0.056 0.941
γ0 −0.004 0.078 0.078 0.951 −0.002 0.049 0.049 0.947
γ1 0.000 0.110 0.110 0.950 0.000 0.069 0.069 0.950
γ2 0.001 0.055 0.055 0.946 0.001 0.035 0.035 0.947

2 −0.5 0.02

π −0.007 0.087 0.088 0.928 −0.002 0.056 0.055 0.943
γ0 −0.005 0.078 0.079 0.947 −0.002 0.049 0.049 0.951
γ1 0.000 0.110 0.111 0.950 −0.001 0.069 0.069 0.949
γ2 0.000 0.056 0.056 0.949 0.000 0.035 0.035 0.949

0.5

1 0.5 0.01

π −0.012 0.141 0.140 0.934 −0.004 0.087 0.086 0.953
γ0 −0.006 0.088 0.089 0.946 −0.003 0.056 0.057 0.946
γ1 0.000 0.124 0.125 0.951 0.001 0.079 0.079 0.950
γ2 0.001 0.063 0.064 0.944 0.001 0.039 0.040 0.945

1 −1 −0.01

π −0.009 0.142 0.139 0.933 −0.004 0.087 0.088 0.950
γ0 −0.005 0.088 0.088 0.948 −0.003 0.056 0.056 0.948
γ1 −0.001 0.125 0.125 0.949 0.001 0.079 0.079 0.948
γ2 0.000 0.063 0.062 0.947 0.000 0.040 0.040 0.947

2 −0.5 0.02

π −0.012 0.140 0.137 0.934 −0.004 0.087 0.087 0.950
γ0 −0.006 0.088 0.089 0.946 −0.003 0.056 0.056 0.947
γ1 −0.001 0.124 0.126 0.946 0.001 0.079 0.078 0.950
γ2 −0.001 0.063 0.063 0.948 0.000 0.040 0.040 0.950
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Table 3. Cont.

True Values n = 200 n = 500

π γ0 γ1 γ2 Estimator Bias SE RMSE CP Bias SE RMSE CP

0.75

1 0.5 0.01

π −0.041 0.208 0.169 0.913 −0.016 0.141 0.123 0.927
γ0 −0.007 0.095 0.097 0.941 −0.003 0.060 0.062 0.944
γ1 0.001 0.134 0.138 0.941 0.001 0.085 0.086 0.945
γ2 0.000 0.068 0.069 0.945 −0.001 0.043 0.043 0.946

1 −1 −0.01

π −0.039 0.207 0.169 0.914 −0.013 0.142 0.121 0.928
γ0 −0.008 0.095 0.097 0.942 −0.003 0.060 0.061 0.951
γ1 0.002 0.134 0.138 0.940 0.001 0.085 0.085 0.953
γ2 −0.001 0.068 0.069 0.945 0.000 0.043 0.044 0.947

2 −0.5 0.02

π −0.038 0.209 0.168 0.916 −0.014 0.144 0.121 0.931
γ0 −0.007 0.095 0.097 0.943 −0.003 0.060 0.061 0.948
γ1 0.000 0.134 0.137 0.945 −0.001 0.085 0.087 0.946
γ2 0.001 0.068 0.070 0.941 0.000 0.043 0.044 0.945

5. Applications

In this section, we present a real data application where the good performance of the REE model
is presented over other common models in the literature.

5.1. Exploratory Data Analysis to the Mineral Data Set

We illustrate the proposed methodology by applying it to a real-world mineral data set. These data
were obtained from the Department of Mining of the University of Atacama, Chile, to study the
concentration of some ores in the soil. This data set corresponds to a sample of 86 measurements of
the concentration of the Vanadium and Thorium ores, respectively. We consider a regression model
to explain the quantity of vanadium (V) in terms of the quantity of thorium (Th). The study of the
concentration of ores in the soil is a matter of public health since it is possible to detect, for example
if the tributary water may be contaminated with heavy metals, among others. Similar works can be
found in Gómez et al. [20], Bolfarine et al. [21], Olmos et al. [22] and Reyes et al. [23] that verified the
concentration of nickel and zinc in the soil.

Table 4 provides a descriptive summary of the observed vanadium concentration that includes
median (MD), mean (y), SD, CV, skewness (CS) and kurtosis (CK), and minimum (y(1)) and maximum
(y(n)) values. The unit of measurement of the concentration (response variable) is parts-per million
(ppm). From this table, note the positively skewed nature of the data distribution. The skewed nature
is confirmed by the histogram of Figure 2 (left). In addition, Figure 2 (right) indicated some relationship
between quantity of vanadium in terms of the quantity of thorium, which motivates the use of the
REE regression model to study these variables.

Table 4. Descriptive statistics for mineral data.

y(1) MD y SD CV CS CK y(n) n

1.00 114.50 133.79 104.46 78.82 0.61 2.58 459.00 86
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Figure 2. Histogram (left) and Scatterplot with smoothing curve (right) for mineral data.
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5.2. Estimation and Model Checking

We consider the REE regression model with the structure: ηi = γ0 + γ1zi1. Table 5 provides
the estimation and hypothesis testing results for the REE regression model analyzing mineral data.
Results of the RGA and RBS regression models are also detailed in this table, as well as their AIC
(Akaike [24]), BIC (Schwarz [25]), and log-likelihood values.

Table 5. ML estimates (with estimated asymptotic SEs in parentheses) for the RGA, RBS, and REE
regression model for the fit mineral data set.

Fitted Models

Parameter RGA RBS REE

γ̂0 5.0734 (0.1252) 5.0271 (0.1767) 5.0440 (0.1122)
γ̂1 −0.0145 (0.0060) −0.0172 (0.0063) −0.0125 (0.0044)

p-value [0.0148] [0.0068] [0.0049]
φ̂ 1.1955 (0.1630) - -
ξ̂ - 0.8888 (0.1376) -
π̂ - - 0.4650 (0.1713)

log-likelihood −503.3155 −520.3540 −502.5457
AIC 1012.6311 1046.7080 1011.0914
BIC 1019.9941 1054.0711 1018.4544

Figure 3 shows the QQ plots with simulated envelope for the GCS and QS residuals. These plots
allow us to check graphically whether the GCS and QS residuals follow the EXP(1) and N(0, 1)
distributions or not, respectively. From Figure 3, note that these residuals present a good agreement
with their corresponding target distributions.
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Figure 3. QQ plot with a simulated envelope under the indicated residual and model for mineral data.

5.3. Diagnostic Analysis

Based on estimation and model validation results presented previously, we conducted a diagnostic
analysis for the REE regression model, the suggested fitted model according to the analysis. Next,
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we carry out our diagnostic analysis based on global and local influence. First, Figure 4 presents
the case-deletion measures GCDc

i (ψ) and LDc
i (ψ) discussed in Section 3.2. From this figure, LDc

i (ψ)

statistic indicates that the cases #25, #44, and #69 are potentially influential. On the other hand,
the GCDc

i (ψ) statistic does suggest case #44 as potentially influential.
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Figure 4. Likelihood displacement (left) and Generalized Cook (right) distance for mineral data.

Index plots of Ci for π and γ under the case-weight, response, and covariate perturbation schemes
are displayed in Figure 5. Note that case #44 is detected as potentially influential on π̂ and γ̂ under the
three perturbation schemes.
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Figure 5. Index plots of Ci for δ under the case-weight (left), response (center) and covariate (right)
perturbation schemes with mineral data.

In order to check the impact on the model inference of the detected influential cases, we remove
influential cases and reestimating the parameters as well as their corresponding SEs. Table 6 shows
the parameter estimates and their corresponding estimated SEs without observation #44. In addition,
p-values are shown for the regression coefficients based on t-tests.
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Table 6. ML estimates (with estimated asymptotic SEs in parentheses) for the RGA, RBS, and REE
regression model for the fit mineral data set (without observation #44).

Fitted Models

Parameter RGA RBS REE

γ̂0 5.3248 (0.1240) 5.3260 (0.2020) 5.3008 (0.1276)
γ̂1 −0.0399 (0.0066) −0.0453 (0.0101) −0.0381 (0.0069)

p-value [<0.0001] [<0.0001] [<0.0001]
φ̂ 1.3865 (0.1925) - -
ξ̂ - 1.0595 (0.1640) -
π̂ - - 0.3056 (0.1548)

log-likelihood −488.7114 −508.1733 −488.1657
AIC 983.4229 1022.3466 982.3314
BIC 990.7508 1029.6746 989.6594

6. Conclusions

In the present paper, the reparameterization of the EE model based on the mean motivated us
to propose a regression model for positive data. The maximum likelihood method is employed with
the EM algorithm for estimating the model parameters. Application to real data with covariates was
presented showed by the AIC and BIC criteria besides the deviance residuals in which the REE model
fit better for this data set than the other reparameterizations considered.

The main contribution of this paper is to develop EM algorithms for maximum likelihood
estimation as well as to apply Zhu and Lee’s approach for case-deletion measures and the local
influence diagnostics in the linear regression models with REE errors. Closed-form expressions are
obtained for the M and E steps of EM algorithm, for the observed information matrix, for the Hessian
matrix Q̈, and for the ∆matrix under three perturbation schemes. The models can be fitted using
standard available software packages, like R (code available upon request).
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