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Abstract: In this paper, we study the asymptotic and oscillatory properties of a certain class of
third-order neutral delay differential equations with middle term. We obtain new characterizations
of oscillation of the third-order neutral equation in terms of oscillation of a related, well-studied,
second-order linear equation without damping. An Example is provided to illustrate the main results.
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1. Introduction

In this paper, we consider the third-order nonlinear damped neutral differential equation of
the form (

r2

(
r1
(
y′
)α
)′)′

(t) + b (t)
(
y′ (t)

)α
+ q (t) f (x (σ (t))) = 0, for t ≥ t0, (1)

where y (t) = x (t) + p (t) x (τ (t)), α is a ratio of positive odd integers and f ∈ C (R,R) satisfies

f (x) ≥ kxα for x 6= 0.

Throughout this paper, we assume the following conditions:

(I1) r1, r2 ∈ C ([t0, ∞) , (0, ∞))∫ ∞

t1

r−1/α
1 (s)ds = ∞ and

∫ ∞

t1

r−1
2 (s)ds = ∞, t1 ≥ t0, t1 ∈ [t0, ∞) ;

(I2) p, q ∈ C ([t0, ∞) , [0, ∞)) , p (t) ≤ p0 < ∞, q does not vanish identically;
(I3) σ, τ ∈ C1 ([t0, ∞) ,R) , σ (t) < t, τ (t) < t, τ′ ≥ τ0, σ ◦ τ = τ ◦ σ and limt→∞ σ (t) =

limt→∞ τ (t) = ∞.

A solution of (1), we mean x ∈ C ([Tx, ∞), [0,R)) with Tx ≥ t0, which satisfies the property
y′, r2

(
r1 (y′)

α)′ ∈ C1 ([Tx, ∞),R)) and moreover satisfies (1) on [Tx, ∞). We consider the nontrivial
solutions of (1) existing on some half-line [Tx, ∞) and satisfying the condition sup{|x (t)| : T ≤ t <
∞} > 0 for any T ≥ Tx.

Moreover, throughout our results, we need an assumption:
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(A) There exists a nonoscillatory a solution of

(
r2z′

)′
(t) +

(
p (t)
r1 (t)

)
z (t) = 0. (2)

A solution x of (1) is said to be oscillatory if it has arbitrarily large zeros and otherwise, it is called
nonoscillatory. Equation (1) is said to be oscillatory if all its solutions are oscillatory.

Recently, it is easy to notice the growing interest in studying the qualitative properties of solutions
to fractional/functional differential and difference equations, see [1–4]. The third-order differential
equations have an important applications in many problems for instance, economy, physics, biology
and population dynamics, see [5–7]. Although importance of those kind of equations in applications
they had been realized very early.

In the last three decades, a few results asymptotic behavior of oscillation of third-order have been
studied in the literatures. But even-order differential equations have been deeply studied, see [8–14].
In the early twentieth century, it have been appeared the basic interested paper in asymptotic behavior
of third-order differential equations [15]. Recently, a study has developed, especially oscillatory or
nonoscillatory of solutions studying by various techniques, see [16–23].

For the sake of brevity, we define the operators

£1y (t) := r1
(
y′
)α , £2y (t) := r2

(
r1
(
y′
)α
)′

, £3y (t) :=
(

r2

(
r1
(
y′
)α
)′)′

.

From Equation (1) and assumption for f (x), we obtain the inequality

£3y (t) +
b (t)
r1 (t)

£1y (t) + kq (t) xα (σ (t)) ≤ 0. (3)

Through this paper, we will use the following notation:

η1 (t, t1) :=
∫ t

t1

(r1 (s))
− 1

α ds, η2 (t, t1) :=
∫ t

t1

(r2 (s))
−1 ds,

η̃2 (t, t1) :=
(

η2 (t, t1)

r1 (t)

)1/α

, η̂2 (t, t1) :=
∫ t

t1

η̃2 (s, t1)ds.

Lemma 1. [23] Assume that c1, c2 ∈ [0, ∞) and γ > 0. Then

(c1 + c2)
γ ≤ µ

(
cγ

1 + cγ
2
)

,

where

µ :=
{

1 if γ ≤ 1
2γ−1 if γ > 1.

2. Results and Proofs

Lemma 2. Assume that (A) holds. If x is a nonoscillatory solution of (1), then there are two possible classes
for y :

N1 = {y (t) : £1y (t) > 0, £2y (t) > 0} ;

N2 = {y (t) : £1y (t) < 0, £2y (t) > 0} .
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Proof. Let x be a positive solution of (1). Then there exists t1 ≥ t0 such that x (t) > 0, x (τ (t)) > 0
and x (σ (t)) > 0. By (3), it is easy to see that

(
r2z′ (t)

)′
(t) +

b (t)
r1 (t)

z (t) > 0, (4)

where z (t) = −£1y (t) . Let u(t) > 0 be a solution of (2) for t ≥ t1 ≥ t0. Assume that z > 0 is oscillatory.
Hence z has consecutive zeros at a and b (t1 < a < b) such that z′(a) ≥ 0, z′(b) ≤ 0 for t ∈ (a, b).
This implies that

0 <
∫ b

a

((
r2z′ (t)

)′
(t) +

b (t)
r1 (t)

z (t)
)

u (t)dt

= r2 (t) z′ (t) u (t)
∣∣b
a −

∫ b

a
r2 (t) z′ (t) u′ (t)dt +

∫ b

a

b (t)
r1 (t)

z (t) u (t)dt

= r2 (t) z′ (t) u (t)
∣∣b
a − r2 (t) z (t) u′ (t) |ba +

∫ b

a

(
r2 (t) u′ (t)

)′ z (t)dt +
∫ b

a

b (t)
r1 (t)

z (t) u (t)dt

= r2 (t) z′ (t) u (t)
∣∣b
a +

∫ b

a

((
r2 (t) u′ (t)

)′
+

b (t)
r1 (t)

u (t)
)

z (t)dt = r2 (t) z′ (t) u (t)
∣∣b
a ≤ 0.

This contradiction completes the proof.

Lemma 3. Assume x is a nonoscillatory solution of (1) with y ∈ N1. Then

£1y (t) ≥ η2 (t, t1) £2y (t) (5)

and
y (t) ≥ η̂2 (t, t1) (£2y (t))1/α . (6)

Proof. Let x be a positive solution and y ∈ N1 be a solution of (1). Then there exists t1 ≥ t0 such that
x (σ (t)) > 0 and x (g (t)) > 0. From (1), we see that £3y (t) ≤ 0. Thus

£1y (t) =
∫ t

t1

(£1y (s))′ ds + £1y (t1) ≥
∫ t

t1

1
r2 (s)

£2y (s)ds ≥ £2y (t)
∫ t

t1

1
r2 (s)

ds

= η2 (t, t1) £2y (t) .

That is,

y′ (t) ≥
(

η2 (t, t1)

r1 (t)

)1/α

(£2y (t))1/α = η̃2 (t, t1) (£2y (t))1/α . (7)

Now, integrating (7) from t1 to t, we get

y (t) ≥
∫ t

t1

η̃2 (s, t1) (£2y (s))1/α ds ≥ (£2y (t))1/α
∫ t

t1

η̃2 (s, t1)ds

= η̂2 (t, t1) (£2y (t))1/α .

Thus, the proof is complete.

Lemma 4. Assume x is nonoscillatory solution of (1) with y ∈ N2. Then

y (u) ≥ (−£1y (v))1/α η1 (v, u) , for v ≥ u ≥ t. (8)
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Proof. Since £1y (t) is nondecreasing, for v ≥ u ≥ t, we have

y (u) = y (v)−
∫ v

u

1

r
1
α
1 (ϑ)

(£1y (ϑ))1/α dϑ

≥ − (£1y (v))1/α
∫ v

u

1

r
1
α
1 (ϑ)

dϑ

= (−£1y (v))1/α η1 (v, u) ,

i.e.,
y (u) ≥ (−£1y (v))1/α η1 (v, u) .

The proof of the lemma is complete.

Lemma 5. Assume that x is a positive a solution and y ∈ N1 and p (t) ∈ (0, 1) . Then

£3y (t) +
b (t)
r1 (t)

£1y (t) + kQ (t) yα (σ (t)) ≤ 0, (9)

where
Q (t) = q (t) (1− p (σ (t)))α .

Proof. Let x be a positive a solution of (1) and y ∈ N1. Then there exists t1 ≥ t0 such that x (σ (t)) > 0
and x (g (t)) > 0. The corresponding y(t) satisfies

x (t) = y (t)− p (t) x (τ (t)) ≥ y (t)− p (t) y (τ (t))

≥ y (t)− p (t) y (t) = y (t) (1− p (t)) .

That is
xα (σ (t)) ≥ yα (σ (t)) (1− p (σ (t)))α . (10)

Combining (3) and (10), we have

£3y (t) +
b (t)
r1 (t)

£1y (t) + kQ (t) yα (σ (t)) ≤ 0.

The proof of the lemma completed.

Lemma 6. Assume x is a positive a solution of (1) and y ∈ N2. Then(
1 +

pα
0

τ0

)
£3y (t) +

(
b (t)
r1 (t)

£1y (t) +
pα

0

(τ0)
1
α

b (τ (t))
r1 (τ (t))

£1y (τ (t))

)
+

k
µ

q̃ (t) yα (σ (t)) ≤ 0, (11)

where q̃ (t) := min {q (t) , q (τ (t))} .

Proof. Let x be a positive a solution of (1) and y ∈ N2. Then there exists t1 ≥ t0 such that x (t) >

0, x (τ (t)) > 0 and x (σ (t)) > 0. From Lemma 1, we obtain

yα (t) ≤ µ (xα (t) + pα
0 xα (σ (t))) . (12)

Now, from (3) and (I3), we have

0 ≥
pα

0
τ0

£3y (τ (t)) + pα
0

b (τ (t))

(τ0)
1
α r1 (τ (t))

£1y (τ (t)) + pα
0kq (τ (t)) xα (τ (σ (t))) . (13)
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Combining (3) along with (13), we get

0 ≥ £3y (t) +
pα

0
τ0

£3y (τ (t)) +

(
b (t)
r1 (t)

£1y (t) +
pα

0

(τ0)
1
α

b (τ (t))
r1 (τ (t))

£1y (τ (t))

)
+kq̃ (t) (xα (σ (t)) + pα

0 xα (τ (σ (t)))) .

By virtue of (12) and using £3y (t) ≤ 0, we have

0 ≥
(

1 +
pα

0
τ0

)
£3y (t) +

(
b (t)
r1 (t)

£1y (t) +
pα

0

(τ0)
1
α

b (τ (t))
r1 (τ (t))

£1y (τ (t))

)
+

k
µ

q̃ (t) yα (σ (t)) .

The proof of the lemma completed.

Theorem 1. Assume (A) holds, α ≥ 1 and σ′ (t) > 0. If there exist a function δ (t) ∈ C1 ([t0, ∞) , (0, ∞)) ,
for all sufficiently large t1 ≥ t0, there is a t2 ≥ t1 such that

lim sup
t→∞

∫ t

t1

[
k
µ

Q (t) δ (s)− (δ′ (t) r1 (t)− δ (t) b (t))2

4αδ (t) (r1 (t))
2 σ′ (t) η̃2 (σ (t) , t1) (η̂2 (σ (t) , t1))

α−1

]
ds = ∞, (14)

then, N1 = ∅.

Proof. Let x be a positive a solution of (1) and y ∈ N1. Then there exists t1 ≥ t0 such that x (σ (t)) > 0
and x (g (t)) > 0. By (1), we see that £3y (t) ≤ 0

£1y (t) =
∫ t

t2

(£1y (s))′ ds + £1y (t2) ≤
∫ t

t2

1
r2 (s)

£2y (s)ds + £1y (t2) ≤ £2y (t)
∫ t

t2

1
r2 (s)

ds

= £1y (t2) + η2 (t, t2) £2y (t) ,

for t2 ≥ t1, that is £2y (t) > 0 otherwise limt→∞ £1y (t) = −∞, a contradiction. Define a positive
function by

w (t) = δ (t)
£2y (t)

yα (σ (t))
. (15)

Using (7), we have

y′ (σ (t)) ≥
(

η2 (σ (t) , t1)

r1 (σ (t))

)1/α

(£2y (σ (t)))1/α ≥
(

η2 (σ (t) , t1)

r1 (σ (t))

)1/α

(£2y (t))1/α ,

hence,

y′ (σ (t))
y (σ (t))

≥
(

η2 (σ (t) , t1)

r1 (σ (t)) δ (t)

)1/α δ1/α (t) (£2y (t))1/α

y (σ (t))

=

(
η2 (σ (t) , t1)

δ (t) r1 (σ (t))

)1/α

w1/α (t) . (16)

Also by (6), it is easy to see that

w (t) = δ (t)
£2y (t)

yα (σ (t))
≤ δ (t)

£2y (σ (t))
yα (σ (t))

≤ δ (t)
(η̂2 (σ (t) , t1))

α ,

hence

w (t)(1/α)−1 ≤ (δ (t))(1/α)−1

(η̂2 (σ (t) , t1))
1−α

. (17)
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Now, by differentiating (15), we get

w′ (t) = δ′ (t)
£2y (t)

yα (σ (t))
+ δ (t)

£3y (t)
yα (σ (t))

− αδ (t) yα−1 (σ (t)) y′ (σ (t)) σ′ (t) £2y (t)
y2α (σ (t))

. (18)

Using (15) and (9), we obtain

w′ (t) =
δ′ (t)
δ (t)

w (t) +
£3y (t)
£2y (t)

w (t)− ασ′ (t) y′ (σ (t))
y (σ (t))

w (t)

≤ δ′ (t)
δ (t)

w (t)−
b(t)
r1(t)

£1y (t)− kQ (t) yα (σ (t))

£2y (t)
w (t)− ασ′ (t) y′ (σ (t))

y (σ (t))
w (t) .

It follows from (15) and (5) that

w′ (t) ≤ δ′ (t)
δ (t)

w (t)− b (t)
r1 (t)

η2 (t, t1)w (t)− kQ (t) δ (t)− ασ′ (t) y′ (σ (t))
y (σ (t))

w (t)

≤
(

δ′ (t)
δ (t)

− b (t)
r1 (t)

η2 (t, t1)

)
w (t)− kQ (t) δ (t)− ασ′ (t)

y′ (σ (t))
y (σ (t))

w (t) . (19)

From (16), we get

w′ (t) ≤
(

δ′ (t)
δ (t)

− b (t)
r1 (t)

η2 (t, t1)

)
w (t)− kQ (t) δ (t)− ασ′ (t)

(
η2 (σ (t) , t1)

δ (t) r1 (σ (t))

)1/α

w(1/α)−1 (t)w2 (t) .

By (17), we have

w′ (t) ≤ −kQ (t) δ (t) +
(

δ′ (t)
δ (t)

− b (t)
r1 (t)

η2 (t, t1)

)
w (t)

−ασ′ (t)
δ (t)

η̃2 (σ (t) , t1) (η̂2 (σ (t) , t1))
α−1 w2.

Applying the inequality

Au− Bu2 ≤ A2

4B
,

with

A =

(
δ′ (t)
δ (t)

− b (t)
r1 (t)

η2 (t, t1)

)
, B =

ασ′ (t)
δ (t)

η̃2 (σ (t) , t1) (η̂2 (σ (t) , t1))
α−1 .

Thus,

w′ (t) ≤ − k
µ

Q (t) δ (t) +
(δ′ (t) r1 (t)− δ (t) b (t))2

δ (t)2 (r1 (t))
2

× δ (t)

4ασ′ (t) η̃2 (σ (t) , t1) (η̂2 (σ (t) , t1))
α−1 ,

that is

w′ (t) ≤ − k
µ

Q (t) δ (t)

+
(δ′ (t) r1 (t)− δ (t) b (t))2

4αδ (t) (r1 (t))
2 σ′ (t) η̃2 (σ (t) , t1) (η̂2 (σ (t) , t1))

α−1 . (20)
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Integrating (20) from t2 to t, we obtain

∫ t

t2

[
k
µ

Q (t) δ (s)− (δ′ (t) r1 (t)− δ (t) b (t))2

4αδ (t) (r1 (t))
2 σ′ (t) η̃2 (σ (t) , t1) (η̂2 (σ (t) , t1))

α−1

]
ds ≤ w (t2) .

The proof of the lemma is complete.

Now, let

P1 (t) =
b (t)
r1 (t)

η2 (t, t1)
α P2 (t) = kQ (t) (η̂2 (t, t1))

α

and

µ (t) = exp
(∫ t

t1

P1 (s)ds
)

.

We present the following theorem.

Theorem 2. Assume (A) holds. If every a solution of the first-order equation

z′ (t) + P2 (t) z (σ (t)) = 0. (21)

or £2y (t) is oscillatory, then N1 = ∅.

Proof. Let x be a positive a solution of (1) and y ∈ N1. Then there exists t1 ≥ t0 such that x (σ (t)) > 0
and x (g (t)) > 0. As in Theorem 1, we have £2y (t) > 0. Hence by (9), we obtain

0 ≥ £3y (t) +
b (t)
r1 (t)

£1y (t) + kQ (t) yα (σ (t)) .

Using (5) and (6), we have

0 ≥ £3y (t) +
b (t)
r1 (t)

η2 (t, t1) £2y (t) + kQ (t) (η̂2 (σ (t) , t1))
α £2y (σ (t)) .

Now, set v (t) = £2y (t), we get

v′ (t) + P1 (t)v (t) + P2 (t)v (σ (t)) ≤ 0. (22)

Multiplying (22) by µ (t), we have

(µv)′ (t) + µ (t) P2 (t)v (σ (t)) ≤ 0.

Now, setting the positive function z = µv and taking into account µ (t) is increasing function, we
obtain

z′ (t) +
µ (t)

µ (σ (t))
P2 (t) z (σ (t)) ≤ 0.

That is
z′ (t) + P2 (t) z (σ (t)) ≤ 0.

In view of [24](Theorem 1), we see that the first-order delay differential Equation (21) has a positive a
solution, a contradiction. Then, the proof is complete.

Corollary 1. Assume (A) holds. If

lim inf
t→∞

∫ t

σ(t)
P2 (t)ds >

1
e

, (23)

then N1 = ∅.
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Theorem 3. Assume (2) is a oscillatory, then N1 = ∅.

Proof. Let x be a positive a solution of (1) and y ∈ N1, there exists t1 ≥ t0 such that x (σ (t)) > 0 and
x (g (t)) > 0. Set χ = £1y (t) in (9), we see that

(
r2χ′

)′
(t) +

b (t)
r1 (t)

χ (t) ≤ 0.

In view of [19] (Lemma 2.6), (2) has positive a solution, a contradiction. Then, the proof is complete.

Now, we can extend Theorem 2 to(
r2

(
r1
(
y′
)α
)′)′

(t) + b (t)
(
y′ (h (t))

)α
+ q (t) f (x (σ (t))) = 0, (24)

where h ∈ C1 ([t0, ∞) ,R) is such that σ (t) ≤ h (t) ≤ t and h′ (t) ≥ 0.

Theorem 4. If every solution of the first-order equation

(
r2χ′

)′
(t) +

b (t)
r1 (h (t))

χ (h (t)) = 0, (25)

or y′ is oscillatory, then N1 = ∅.

Proof. Let x be a positive solution of (1) and y ∈ N1. Then there exists t1 ≥ t0 such that x (σ (t)) > 0
and x (g (t)) > 0. Now, we can easily extend Lemma 5 to the equation

£3y (t) +
b (t)

r1 (h (t))
£1y (h (t)) + kQ (t) yα (σ (t)) ≤ 0.

Set χ = £1y (t), we see that (
r2χ′

)′
(t) +

b (t)
r1 (h (t))

χ (h (t)) ≤ 0.

In view of [19] (Lemma 2.6), (25) has a positive solution, a contradiction. Then, the proof is
complete.

Theorem 5. Assume (A) holds and α ≥ 1, and there exists a function h ∈ C1(I,R) such that σ (t) < h (t) <
t, h′ (t) ≥ 0. If

lim sup
t→∞

∫ t

h(t)
Q̃ (s) η2 (h (t) , h (s))ds > 1 (26)

holds with

Q̃ (t) =
τ0

τ0 + pα
0

(
ck
µ

q̃ (t) η1 (h (t) , σ (t))−
pα

0

(τ0)
1
α

b (τ (t))
r1 (τ (t))

− b (t)
r1 (t)

)
for all t ≥ t1,

where c is positive constant, then N2 = ∅ or £2y (t) is oscillatory.

Proof. Let x be a positive solution of (1) and y ∈ N2. Then there exists t1 ≥ t0 such that x (σ (t)) > 0
and x (g (t)) > 0. We consider £2y (t) ≤ 0 cannot hold for all large t, by a double integration of

y′ (t) =
(

£1y (t)
r1 (t)

)1/α

≤
(

£1y (t2)

r1 (t)

)1/α
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that is y′ < 0, a contradiction. Thus £2y (t) ≥ 0. By using (8) with u = σ (t) and v = h (t), we get
(σ (t) < h (t) < τ (t))

y (σ (t)) ≥ η1 (h (t) , σ (t)) (−£1y (h (t)))
1
α . (27)

Substituting (27) into (11), we obtain

0 ≥
(

1 +
pα

0
τ0

)
£3y (t) +

(
b (t)
r1 (t)

£1y (t) +
pα

0

(τ0)
1
α

b (τ (t))
r1 (τ (t))

£1y (τ (t))

)
+

k
µ

q̃ (t) yα (σ (t)) .

Since h (t) < τ (t) < t, we find

0 ≥
(

1 +
pα

0
τ0

)
£3y (t) + £1y (h (t))

(
b (t)
r1 (t)

+
pα

0

(τ0)
1
α

b (τ (t))
r1 (τ (t))

)

+
k
µ

q̃ (t) η1 (h (t) , σ (t)) (−£1y (h (t)))
1
α .

Set θ (t) = −£1y (t)

0 ≤
(

1 +
pα

0
τ0

) (
r2 (t) θ′ (t)

)′
+ θ (h (t))

(
b (t)
r1 (t)

+
pα

0

(τ0)
1
α

b (τ (t))
r1 (τ (t))

)

− ck
µ

q̃ (t) η1 (h (t) , σ (t)) (θ (h (t)))
1
α−1 θ (h (t)) .

Taking into account that is θ′ (t) ≤ 0 and α ≥ 1, there exists positive constant c such that

(θ (h (t)))
1
α−1 ≥ c. Thus

(
r2 (t) θ′ (t)

)′ ≥ τ0

τ0 + pα
0

(
ck
µ

q̃ (t) η1 (h (t) , σ (t))−
pα

0

(τ0)
1
α

b (τ (t))
r1 (τ (t))

− b (t)
r1 (t)

)
θ (h (t)) .

This implies (
r2 (t) θ′ (t)

)′ ≥ Q̃ (t) θ (h (t)) . (28)

From (28) we see that r2θ′ is increasing, we get

θ (t) = θ (t2) +
∫ t

t2

r2 (s) θ′ (s)
r2 (s)

ds > θ (t2) + r2 (t2) θ′ (t2)
∫ t

t2

1
r2 (s)

ds

= θ (t2) + r2 (t2) θ′ (t2) η2 (t, t1) .

Thus, θ′ (t2) < 0 otherwise we imply limt→0 θ (t) = ∞ a contradiction to the boundedness of θ. So for
t2 ≥ t, we have

θ > 0 θ′ < 0
(
r2θ′

)′
> 0.

Therefor, for v ≥ u ≥ t1, we find

θ (u) > θ (u)− θ (v) = −
∫ v

u
θ′ (s)ds = −

∫ v

u

r2 (s) θ′ (s)
r2 (s)

ds.

Since r2θ′ is increasing

θ (u) > −r2 (v) θ′ (v)
∫ v

u

1
r2 (s)

ds = −η2 (v, u) r2 (v) θ′ (v) . (29)
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In (29), setting u = h (s) and v = h (t) , we have

θ (h (s)) > −η2 (h (t) , h (s)) r2 (h (t)) θ′ (h (t)) .

By Integrating (28) from h(t) ≥ t1 to t, we get

−r2 (h(t)) θ′ (h(t)) >
∫ t

h(t)
Q̃ (s) θ (h (s))ds

> −r2 (h (t)) θ′ (h (t))
∫ t

h(t)
Q̃ (s) η2 (h (t) , h (s)) r2 (h (t)) θ′ (h (t)) .

Thus, ∫ t

h(t)
Q̃ (s) η2 (h (t) , h (s))ds < 1,

which contradicts (26). The proof is complete.

Theorem 6. Assume (A) holds and α ≥ 1, there is function h ∈ C1(I,R) such that σ (t) < h (t) < t, h′ (t) ≥
0. If

lim sup
t→∞

∫ t

h(t)

(
1

r2 (u)

∫ t

u
Q̃ (s)ds

)
du > 1 (30)

holds with Q̃ (t) defined as in Theorem 5, then N2 = ∅ or £2y (t) is oscillatory.

Proof. Let x be a positive solution of (1) and y ∈ N2. Then there exists t1 ≥ t0 such that x (σ (t)) > 0
and x (g (t)) > 0. As in Theorem 5 ,we obtain (28) and

θ > 0 θ′ < 0
(
r2θ′

)′
> 0.

Integrating (28) from u to t, we get

−r2 (u) θ′ (u) >
∫ t

u
Q̃ (s) θ (h (s))ds ≥ θ (h (t))

∫ t

u
Q̃ (s)ds,

that is

−θ′ (u) >
1

r2 (u)
θ (h (t))

∫ t

u
Q̃ (s)ds.

Integrating from h (t) to t, we have

θ (h (t)) > θ (h (t))
∫ t

h(t)

(
1

r2 (u)

∫ t

u
Q̃ (s)ds

)
du.

Thus ∫ t

h(t)

(
1

r2 (u)

∫ t

u
Q̃ (s)ds

)
du < 1,

which contradicts (30). The proof is complete.

Note that the conditions (14), (23) and (25) eliminate solutions from the class N1, while conditions
(26) and (30) eliminate solutions from the class N2. By combining condition eliminate solutions from
the class N1 and condition eliminate solutions from the class N2, we ensure that the solutions of (1) are
oscillatory. Therefore, we get the following theorem

Theorem 7. Assume that (A) holds and there is a function h ∈ C1(I,R) such that σ (t) < h (t) < t
and h′ (t) ≥ 0. Let one of the following statements are true:
(a) α ≤ 1, σ′ (t) > 0 and there exists a function δ (t) ∈ C1 ([t0, ∞) , (0, ∞)) such that (14) and (26) hold;
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(b) α ≤ 1, σ′ (t) > 0 and there exists a function δ (t) ∈ C1 ([t0, ∞) , (0, ∞)) such that (14) and (30) hold;
(c) α ≥ 1, (26) and (23) hold;
(d) α ≥ 1, (30) and (23) hold.
Then every solution of (1), or £2y (t), is oscillatory.

Theorem 8. Assume that (A) holds and there is a function h ∈ C1(I,R) such that σ (t) < h (t) < t
and h′ (t) ≥ 0. Let one of the following statements are true:
(a) α ≥ 1, (2) is oscillatory and (26) holds;
(b) α ≥ 1, (2) is oscillatory and (30) holds;
(c) α ≥ 1, (25) is oscillatory and (26) holds;
(d) α ≥ 1, (25) is oscillatory and (30) holds.
Then every solution of (1), or y′ (t), is oscillatory.

Example 1. Consider the damped neutral differential equation

y′′′ (t) +
1
2

y′ (t) +
1
2

x
(

t− 3π

2

)
= 0,

where y (t) = x (t) + p0x (τ0) , α = 1. Let h (t) = (t− π) , we see that

σ (t) < h (t) < t, h′ (t) ≥ 0,

also

Q̃ (t) =
τ0

τ0 + pα
0

(
ck
µ

1
2

η1

(
t− π, t− 3π

2

)
−

pα
0

(τ0)
1
α

b (τ (t))
r1 (τ (t))

− 1

)
,

where

η1

(
t− π, t− 3π

2

)
=

3π

2
− π.

By Theorem 6, condition (30) becomes

cτ0π + 2p0 + 4τ0π2

8 (τ0 + p0)
> 1. (31)

If (31) hold, then it is clear that all conditions of Theorem 5 are satisfied, and hence every solution of (1), or y′ (t),
is oscillatory.
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