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Abstract: This work applies an active control algorithm, using a macro fiber composite (MFC) to
mitigate the unwanted vibrations of a rotating blade. The algorithm is a second-order oscillator,
having the positive displacement signal of the blade for input and the suitable control force to
actuate the blade for output. This oscillator is linearly coupled with the blade, having in mind that
their natural frequencies must be in the vicinity of each other. The rotating blade is modeled by
representing two vibrational directions that are linearly coupled. An asymptotic analysis is considered
to understand the resulting nonlinear phenomena. Several responses are included to portray the
dynamical behavior of the system under control. From the results, we observe the asymmetry between
the blade’s vibrational directions. Moreover, a verification is included for comparing the analytical
and numerical results.
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1. Introduction

Rotating blades are important structures, being fundamental in many industrial fields like robotics,
aerospace engineering, turbomachinery, and others. Due to their high rotating speeds, they may suffer
from unwanted oscillations, causing disturbance and damage to, or even destruction of, the whole
mechanism. Consequently, many researchers have focused their attention on the analysis and control
of these vibrations to achieve maximum safety and optimum operation of such dynamical systems.

Yoo et al. [1] investigated, numerically, the effects of some dimensionless parameters on the
vibration characteristics of a rotating blade and considered combinatory effects among these parameters.
Lin and Chen [2] used a finite element analysis to study the stability problems of a rotating pre-twisted
blade with a viscoelastic core constrained by a laminated face layer and subjected to a periodic axial load.
They derived a system of equations of motion, governing the bending and extensional displacements
through the Hamilton principle. Oh et al. [3] developed a structural beam model accounting for the
fibrous composite material effects and the induced elastic couplings. Librescu et al. [4] considered the
modeling of a spinning, thin-walled beam made of functionally graded materials, featuring a pre-twist
and experiencing bending–bending coupled motion. Sinha [5] derived a complete set of coupled
dynamic equations to analyze the effect of a Coulomb damper near the blade tip with a flexible blade
mounted on a flexible rotating shaft. Hamdan and El-Sinawi [6] developed a slender, flexible arm
dynamic model undergoing relatively large planar flexural deformations with a setting angle and a
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rotating hub. They derived the model by assuming an inextensible Euler–Bernoulli beam while taking
into account the axial inertia and nonlinear curvature.

Other researchers focused on controlling the thin-walled rotating blades via other advanced
techniques. Choi et al. [7,8] improved the damping control behavior for suppressing the vibrations
of a rotating, composite, thin-walled beam by using macro fiber composite (MFC) actuators and
polyvinylidene fluoride (PVDF) sensors. They performed numerical studies based on finite element
analysis and investigated the dynamic responses of the beam. Fazelzadeh et al. [9] demonstrated the
applicability of the differential quadrature method as an efficient numerical method for analyzing
the vibrations of a rotating, thin-walled blade made of functionally graded materials. They obtained
the differential quadrature’s discretized form of the governing equations and the related boundary
conditions at the domain and boundary grid points. Vadiraja and Sahasrabudhe [10] described a
rotating, thin-walled composite blade with embedded MFC actuators and sensors using a dynamic
modeling method. Younesian and Esmailzadeh [11] concluded that the rotating blades were always
subjected to a variety of external excitations due to the vortex-shedding phenomenon. In the forced
vibration case, they assumed either a sinusoidal function or a random excitation with a white noise
time history to be the sources of external excitation, and then investigated the behavior of the passively
controlled blade.

Some researchers worked on controlling the vibration behavior by adjusting the blade’s physical
parameters. Yao et al. [12,13] investigated the complex dynamics and adopted a numerical approach to
analyze the periodic and chaotic motions of a rotating blade. They could control the blade responses,
changing from chaotic to periodic behavior, by adjusting the rotating speed. Latalski [14] discussed
the dynamics of a rotating rigid hub with a flexible, composite, thin-walled blade by taking into
account the moment of inertia of the hub mass. Rafiee et al. [15] presented a comprehensive review of
articles about rotating composite blades that were published in recent decades. The review addressed
analytical, semi-analytical, and numerical studies dealing with dynamical problems involving adaptive,
smart, or intelligent materials. Chen and Li [16] presented a dynamic model based on the shell
theory to investigate the vibration behavior of a pre-twisted, rotating, composite, laminated blade.
They considered the effects of Coriolis and centrifugal forces, due to the rotation motion of the blade.
Liu and Gong [17] proposed a theoretical model and vibration control for the divergent motion of a
thin-walled, pre-twisted wind turbine blade based on a linear quadratic Gaussian controller. Zhang et
al. [18–20] studied the saturation phenomena and the primary resonance of a rotating, pre-twisted,
laminated, composite blade subjected to a subsonic airflow excitation, using the Vortex lattice method
in the case of 1 : 2 internal resonance.

Concerning the use of MFC, Wang et al. [21] proposed a reliability-based design optimization
approach for improving the buckling load of variable angle tow filament-wound cylinders subject
to axial compression. They showed a fast convergence by the metamodel, achieving an efficient
computational optimization for all cases. Almeida et al. [22] evaluated, both experimentally and
numerically, the notched strength and longitudinal tensile characteristics in unnotched and notched
composites. The notched strength decreased by about 50% when comparing the notched and unnotched
samples. Monticeli et al. [23] presented the importance of 3D characterization of the voids in composite
laminates via statistical approaches. They showed that carbon fibers have more tortuosity vis-a-vis the
glass fibers, which hindered flow impregnation.

Regarding active controllers, several researchers [24–26] controlled the vibrations of different
dynamical systems using an algorithm called positive position feedback (PPF). This strategy consists
of a second-order oscillator coupled to the system, which would be controlled at an internal resonance
of 1 : 1. It was verified that the PPF controller could be optimized by tuning its natural frequency
to the nearby excitation frequency. Hamed et al. [27] analyzed the nonlinear vibration control of a
dynamical system using a new, nonlinear modified PPF approach. The modified controller successfully
suppressed the vibrational amplitude when the excitation frequency equaled the blade’s natural
frequency (at σ = 0), and the classical PPF peaks were reduced significantly.
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The motivation of this work was to merge MFC and one of the active control algorithms. The PPF
active control algorithm is effective at suppressing mechanical vibrations. The role of MFC sensors is
to supply the PPF controller with the feedback signal, and the role of the MFC actuators is to receive
the control signal from the PPF controller. In this paper, we control the rotating blade vibrations
theoretically by applying the PPF control algorithm through MFC sensors and actuators, as presented in
Figure 1. The whole control process is pictured in Figure 1 to show how the MFC sensors acquired the
feedback signal to be processed and conditioned, and then create a control signal to be supplied to the
MFC actuators. The main difficulty was in finding a small-error approximate solution for the nonlinear
model of the blade. Using the multiple scales perturbation technique, we obtained an approximate
solution for the studied model in good agreement with the numerical simulations. Several response
curves are included to portray the dynamical behavior of the blade under control. Moreover, a section
of verification curves is included to compare the analytical and numerical results.
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Figure 1. Process of controlling the rotating blade via macro fiber composite (MFC).

The rest of the paper includes three sections. Section 2 presents the equations of motion of the
controlled rotating blade model and the approximate solutions to these equations. Section 3 analyzes
the different response curves of the blade vibrations before and after being controlled. Moreover,
verification of the responses is also included. Section 4 summarizes the conclusions of the work.

2. Equations of Motion and Their Approximate Solutions

The partial differential equations governing the horizontal and vertical deflections—p(t) and
q(t)—of the blade’s cross-section were derived briefly in Appendix A and are detailed in [12,13].
The equations were discretized by a one-term Galerkin’s procedure to have the ordinary differential
equations governing the temporal horizontal p(t) and vertical q(t) displacements of the blade’s
cross-section. The extracted equations of motion can be written as follows:

..
p + 2µ

.
p +ω2p + β13

.
q + β11q + β5pq2 + β5p3 = 2 f0 fβ14p cos(Ωt) + f 2β14p cos2(Ωt)+ fβ16Ω sin(Ωt) (1a)

..
q + 2µ

.
q +ω2q + β22

.
p + β21p + β5p2q + β5q3 = 2 f0 fβ24q cos(Ωt) + f 2β24q cos2(Ωt) (1b)

Applying the nonlinear PPF controller to Equation (1), the motion equations can be written as

..
p + 2µ

.
p +ω2p + β13

.
q + β11q + β5pq2 + β5p3 = 2 f0 fβ14p cos(Ωt) + f 2β14p cos2(Ωt)+ fβ16Ω sin(Ωt) + c1y (2a)

..
q + 2µ

.
q +ω2q + β22

.
p + β21p + β5p2q + β5q3 = 2 f0 fβ24q cos(Ωt) + f 2β24q cos2(Ωt) (2b)

..
y + 2µc

.
y +ω2

c y + αy3 = c2p (2c)
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The parameters of Equation (2) are suitably scaled such that

α = εα̂, β11 = εβ̂11, β13 = εβ̂13, β14 = εβ̂14, β16 = εβ̂16, β21 = εβ̂21, β22 = εβ̂22, β24 = εβ̂24,
β5 = εβ̂5, c1, 2 = εĉ1, 2, µ = εµ̂, µc = εµ̂c

(3)

where ε is a bookkeeping parameter. If we apply the multiple scales method [28], then the asymptotic
expansions of p, q, and y can be expressed as

p(t; ε) = p0(T0, T1) + εp1(T0, T1) + O
(
ε2

)
(4a)

q(t; ε) = q0(T0, T1) + εq1(T0, T1) + O
(
ε2

)
(4b)

y(t; ε) = y0(T0, T1) + εy1(T0, T1) + O
(
ε2

)
(4c)

where Tn = εnt (n = 0, 1) are the fast and slow time scales, respectively. The time derivatives in
Equation (2) can be rewritten as

d
dt

= D0 + εD1 + O
(
ε2

)
(5a)

d2

dt2 = D2
0 + 2εD1D0 + O

(
ε2

)
(5b)

where Dn = ∂/∂Tn (n = 0, 1). After inserting Equations (3)–(5) into Equation (2) and comparing the
terms of ε for similar power coefficients, we get the following.

For O
(
ε0

)
:

D2
0p0 +ω2p0 = 0 (6a)

D2
0q0 +ω2q0 = 0 (6b)

D2
0y0 +ω2

c y0 = 0 (6c)

For O
(
ε1

)
:

D2
0p1 +ω2p1

= −2D1D0p0 − 2µ̂D0p0 − β̂13D0q0 − β̂11q0 − β̂5p0q2
0 − β̂5p3

0 + f0 f β̂14p0
(
eiΩT0 + e−iΩT0

)
+

f 2β̂14
4 p0

(
eiΩT0 + e−iΩT0

)2
− i f β̂16Ω

2

(
eiΩT0 − e−iΩT0

)
+ ĉ1y0

(7a)

D2
0q1 +ω2q1

= −2D1D0q0 − 2µ̂D0q0 − β̂22D0p0 − β̂21p0 − β̂5p2
0q0 − β̂5q3

0 + f0 f β̂24q0
(
eiΩT0 + e−iΩT0

)
+

f 2β̂24
4 q0

(
eiΩT0 + e−iΩT0

)2
(7b)

D2
0y1 +ω2

c y1 = −2D1D0y0 − 2µ̂cD0y0 − α̂y3
0 + ĉ2p0 (7c)

Based upon the theory of linear differential equations, the complex form solutions of Equation (6) are

p0 = A1(T1)eiωT0 + A1
(
T1)e

−iωT0 (8a)

q0 = A2(T1)eiωT0 + A2
(
T1)e

−iωT0 (8b)

y0 = A3(T1)eiωcT0 + A3
(
T1)e

−iωcT0 (8c)

Preliminary numerical simulations of the controlled blade model revealed that the worst resonance
occurred for cases where Ω � ω and ωc � ω. Therefore, the parameters σ1 and σ2 were imposed to
express the detuning of the considered resonance case so that

Ω = ω+ σ1 (9a)
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ωc = ω+ σ2 (9b)

To avoid any unbounded solutions, and from the theory of linear differential equations, we can
eliminate the secular terms in Equation (7) by equalizing the coefficients of eiωT0 and eiωcT0 to zero.
Equations (8) and (9) are inserted into Equation (7). Then, using Equation (3), we can return every
parameter to the real time t, which leads to

−2iω
.

A1 − 2iµωA1 − iωβ13A2 − β11A2 − 2β5A1A2A2 − β5A1A2
2 − 3β5A2

1A1 +
β14 f 2

2 A1

+
β14 f 2

4 A1e2iσ1t
−

i
2β16Ω f eiσ1t + c1A3eiσ2t = 0

(10a)

−2iω
.

A2 − 2iµωA2 − iωβ22A1 − β21A1 − 2β5A1A1A2 − β5A2
1A2 − 3β5A2

2A2

+
β24 f 2

2 A2 +
β24 f 2

4 A2e2iσ1t = 0
(10b)

− 2iωc
.

A3 − 2iµcωcA3 − 3αA2
3A3 + c2A1e−iσ2t = 0 (10c)

The functions An (n = 1, 2, 3) can be formulated in a polar form as

An =
an

2
eiδn ⇒

.
An =

.
an

2
eiδn + i

an

2

.
δneiδn (11)

where an and δn are the amplitudes and phases of the blade vibrational directions and controller
signal, respectively. Inserting Equation (11) into Equation (10), separating real and imaginary parts,
and simplification gives us

.
a1 = −µa1 −

β13
2 a2 cosφ2 −

β11
2ω a2 sinφ2 −

β5
8ωa1a2

2 sin(2φ2) +
β14 f 2

8ω a1 sin(2φ1)

−
β16Ω f

2ω cosφ1 +
c1
2ωa3 sinφ3

(12a)

.
φ1 = σ1 +

β13
2

a2
a1

sinφ2 −
β11
2ω

a2
a1

cosφ2 −
β5
4ωa2

2 −
β5
8ωa2

2 cos(2φ2) −
3β5
8ω a2

1 +
β14 f 2

8ω cos(2φ1)

+
β14 f 2

4ω +
β16Ω f

2ω
1
a1

sinφ1 +
c1
2ω

a3
a1

cosφ3
(12b)

.
a2 = −µa2 −

β22

2
a1 cosφ2 +

β5

8ω
a2

1a2 sin(2φ2) +
β24 f 2

8ω
a2 sin(2φ1 − 2φ2) +

β21

2ω
a1 sinφ2 (12c)

.
φ2 =

β22
2

a1
a2

sinφ2 +
β21
2ω

a1
a2

cosφ2 +
β5

4ω a2
1 +

β5
8ω a2

1 cos(2φ2) +
3β5
8ω a2

2

−
β24 f 2

8ω cos(2φ1 − 2φ2) −
β24 f 2

4ω +
β13

2
a2
a1

sinφ2 −
β11
2ω

a2
a1

cosφ2 −
β5

4ω a2
2

−
β5
8ω a2

2 cos(2φ2) −
3β5
8ω a2

1 +
β14 f 2

8ω cos(2φ1) +
β14 f 2

4ω +
β16Ω f

2ω
1
a1

sinφ1

+ c1
2ω

a3
a1

cosφ3

(12d)

.
a3 = −µca3 −

c2

2ωc
a1 sinφ3 (12e)

.
φ3 = σ2 +

3α
8ωc

a2
3 −

c2
2ωc

a1
a3

cosφ3 +
β13
2

a2
a1

sinφ2 −
β11
2ω

a2
a1

cosφ2 −
β5
4ωa2

2 −
β5
8ωa2

2 cos(2φ2)

−
3β5
8ω a2

1 +
β14 f 2

8ω cos(2φ1) +
β16Ω f

2ω
1
a1

sinφ1 +
β14 f 2

4ω + c1
2ω

a3
a1

cosφ3
(12f)

where φ1 = σ1t− δ1, φ2 = δ2 − δ1, and φ3 = σ2t+ δ3 − δ1. The steady-state form of Equation (12) can be
reached by imposing the condition that

.
an =

.
φn = 0 (n = 1, 2, 3), but the resulting expressions cannot

be solved explicitly, at which point we should resort to the Newton–Raphson numerical technique.
A stability analysis needs to be done to examine whether the steady-state solutions are stable or not.
Suppose that the amplitudes an are composed of perturbation amplitudes anp added to the steady-state
amplitudes ans. Similarly, suppose that the phases φn are composed of perturbation phases φnp added
to the steady-state phases φns. This can be formulated as follows:

an = anp + ans ⇒
.
an =

.
anp (13a)
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φn = φnp + φns ⇒
.
φn =

.
φnp (13b)

Inserting Equation (13) into Equation (12) and linearizing give us

.
a1p.
φ1p
.
a2p.
φ2p
.
a3p.
φ3p


= J



a1p
φ1p
a2p

φ2p

a3p

φ3p


=



r11 r12 r13 r14 r15 r16

r21 r22 r23 r24 r25 r26

r31 r32 r33 r34 r35 r36

r41 r42 r43 r44 r45 r46

r51 r52 r53 r54 r55 r56

r61 r62 r63 r64 r65 r66





a1p
φ1p
a2p

φ2p

a3p

φ3p


(14)

where J is the Jacobian matrix whose elements are given in Appendix B. The characteristic equation of
J is a sixth degree equation in the following form:

λ6 + γ1λ
5 + γ2λ

4 + γ3λ
3 + γ4λ

2 + γ5λ+ γ6 = 0 (15)

where γi (i = 1, · · · , 6) are given in Appendix B. The roots λ of Equation (15) are the eigenvalues of J,
and they determine whether the system solutions are stable or not. If the real parts of the eigenvalues λ
are negative, then the steady state solution will be asymptotically stable; otherwise, it will be unstable.
To guarantee the stability of the solutions, the Routh–Hurwitz theorem is considered to derive the
criteria for stable solutions:

(γ1)

(γ1γ2 − γ3)(
−γ2

1γ4 + γ1γ2γ3 + γ1γ5 − γ2
3

)(
γ2

1γ2γ6 − γ2
1γ

2
4 − γ1γ2

2γ5 + γ1γ2γ3γ4 − γ1γ3γ6 + 2γ1γ4γ5 + γ2γ3γ5 − γ2
3γ4 − γ2

5

)(
−γ3

1γ
2
6 + 2γ2

1γ2γ5γ6 + γ2
1γ3γ4γ6 − γ2

1γ
2
4γ5 − γ1γ2

2γ
2
5 − γ1γ2γ2

3γ6 − γ3
5 − 3γ1γ3γ5γ6

+2γ1γ4γ2
5 + γ2γ3γ2

5 + γ3
3γ6 − γ2

3γ4γ5 + γ1γ2γ3γ4γ5

)
(γ6)


> 0 (16)

Moreover, if there is a sign change in a real eigenvalue, then a saddle–node bifurcation point will
appear. This corresponds to the condition γ6 = 0. Additionally, if there is a sign change in the real parts
of a pair of complex conjugate eigenvalues, then a Hopf bifurcation point will appear. This corresponds
to the following conditions:

(γ5)

(γ6)

(γ4γ5 − (γ3γ6)(
γ3γ4γ5 − γ2γ2

5 − γ
2
3γ6 + γ1γ5γ6

)(
γ2γ3γ4γ5 − γ1γ2

4γ5 + 2γ1γ2γ5γ6 − γ2
2γ

2
5 + γ4γ2

5 − γ3γ5γ6 − γ2γ2
3γ6 + γ1γ3γ4γ6 − γ2

1γ
2
6

)


> 0 (17a)

γ1γ2γ3γ4γ5 − γ2
3γ4γ5 + 2γ1γ4γ2

5 − γ
2
1γ

2
4γ5 − γ1γ2

2γ
2
5 + γ2γ3γ2

5 + 2γ2
1γ2γ5γ6 − γ3

5 − 3γ1γ3γ5γ6

−γ1γ2γ2
3γ6 + γ3

3γ6 + γ2
1γ3γ4γ6 − γ3

1γ
2
6 = 0

(17b)

3. Results and Discussion

In this section, we analyze the different responses of the blade vibrations and the control signal
to variations of the excitation frequency and force amplitude. These responses are plotted using
Equations (2) and (12), with the aid of the stability criteria in Equation (16).
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3.1. Effects of the Parameter Variation on the Blade Steady-State Vibrational Amplitudes

Hereafter, we adopt the parameter values µ = 0.5, µc = 0.005, Ω = ω = ωc, β11 = −0.003,
β21 = −0.001, β13 = β22 = −0.82, β14 = 0.55, β24 = 0.5, β5 = 0.9, β16 = 6.55, f0 = 7, f = 2, α = 0,
c1 = c2 = 1000, and σ1 = σ2 = 0. The saddle–node bifurcation and Hopf bifurcation points are
denoted by SN and H, respectively. These points were explored due to the criteria in Equation (17).
Figure 2 shows how the blade’s horizontal and vertical amplitude responded to the excitation frequency
detuning σ1 before control. It is clear that the blade was in a stable motion until it got into the range
of 0 < σ1 < 3, where jumps may happen due to the existence of bifurcation points. After control,
the blade’s horizontal and vertical amplitudes responded to the excitation frequency detuning σ1,
as shown in Figure 3, achieving a stable motion all over the range of σ1. The bifurcation points
disappeared, and no jumps were present. The blade is preferred to operate in the region of σ1 ∈ [−4, 4],
especially at the point σ1 = 0, for which the blade is at its minimum vibratory level.Symmetry 2020, 12, x FOR PEER REVIEW 8 of 27 
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Figure 2. The blade’s horizontal and vertical amplitude responses to the excitation frequency detuning
σ1 before control: (a) horizontal, (b) vertical.

Figures 4 and 5 show the various effects of both the control signal gain c1 and the feedback
signal gain c2 on the blade and controller amplitude responses to the excitation frequency detuning
σ1. When we departed from σ1 = 0, the blade vibration amplitudes begin to rise. We can see the
important role of c1 and c2 in controlling the bandwidth between the high amplitude peaks shown in
the figure. This leads to increased safety if the blade’s excitation frequency Ω deviates from its natural
frequency ω.
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Figure 4. Effect of the control signal gain c1 on the blade and the controller amplitude responses to the
excitation frequency detuning σ1: (a) horizontal, (b) vertical, (c) controller.

Figure 6 demonstrates the effect of the controller damping µc on the blade and the controller
responses to the excitation frequency detuning σ1. Increasing µc suppressed the high amplitude peaks
of the blade vibrations. However, the minimum amplitudes at σ1 = 0 begin to rise slightly, since the
energy bridge between the controller and the blade was choked.
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Figure 7 shows how the variation of the controller frequency detuning σ2 affected the blade and
the controller responses to the excitation frequency detuning σ1. We verified that the blade and the
controller were at minimum vibratory values when −5 ≤ σ1 = σ2 ≤ +5. This can be achieved only by
equalizing the controller natural frequency ωc and the blade excitation frequency Ω.Symmetry 2020, 12, x FOR PEER REVIEW 12 of 27 
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Figure 7. Effect of the controller frequency detuning σ2 on the blade and the controller amplitude
responses to the excitation frequency detuning σ1: (a) horizontal, (b) vertical, (c) controller.

Figures 8 and 9 illustrate the hardening or softening effects that could be imposed on the blade and
the controller responses to the excitation frequency detuning σ1 by varying the controller nonlinearity
parameter α. However, the bifurcation points, which led to the problem of jump phenomena, emerged
again. Based on Figures 8 and 9, we verified that the value of α should be within the range α ∈ [−3, 3].
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Figure 9. Effect of the controller nonlinearity parameter α on the blade and the controller amplitude
responses to the excitation frequency detuning σ1 for α = {−3, 0, +3}: (a) horizontal, (b) vertical,
(c) controller.
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Figure 10 portrays the blade’s horizontal and vertical responses to the excitation amplitude f
before and after control at σ1 = σ2 = 0. The blade vibration amplitudes were very sensitive to small
rises of the excitation amplitude before control. After control, the blade vibrations were saturated
at a vibration level of almost zero, and most of the vibration energy was channeled from the blade
sections to the controller. From Figures 2–10, we can notice the asymmetry between the blade’s
vibrational directions.Symmetry 2020, 12, x FOR PEER REVIEW 15 of 27 
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discussed before. 
  

Figure 10. The blade’s horizontal and vertical amplitude responses to the excitation amplitude f before
and after control at σ1 = σ2 = 0: (a) horizontal, (b) vertical, (c) controller.

3.2. Time Responses

The blade’s horizontal and vertical temporal displacements, before and after control,
are represented in Figures 11 and 12, respectively. The simulation was conducted using MATLAB and
the ODE45 package to integrate Equation (2) numerically. From the figures, we can see that the control
algorithm was successful in suppressing the blade vibrations to almost a level of zero. This optimum
level can be the best approach if the tuning condition σ1 = σ2 is guaranteed, as was discussed before.
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3.3. Validation Curves

This section shows the closeness between the analytical and numerical solutions in Figures 13–19
for the responses shown above. These results confirm the validity of the proposed modeling and
control strategy.
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4. Conclusions

This work addressed the control of the rotating blade vibrations via MFC sensors and actuators by
applying the PPF algorithm. An asymptotic analysis extracted the equations governing the nonlinear
dynamics of the controlled blade. Several responses were included to portray the dynamical behavior
of the blade under control. Moreover, an extensive comparison was fulfilled to show the closeness
between the analytical and numerical results.

We can summarize the results as follows:

1. Before control, the blade suffered from severe vibrations and jumps due to the existence of
bifurcation points. After control, the blade exhibited stable solutions without jumps due to the
absence of bifurcation points;

2. The blade vibrations reached minimum levels in the range of σ1 ∈ [−3, 3], especially at σ1 = 0;
3. The minimum amplitude bandwidth could be adjusted via the control signal gain c1 or the

feedback signal gain c2;
4. If we guaranteed that σ1 = σ2, then the blade operated safely in the range of σ1 ∈ [−5, 5];
5. The controller damping µc was inversely proportional with the minimum vibratory level reached

at σ1 = σ2;
6. The controller nonlinearity parameter α should stay in the range of α ∈ (−3, 3), either for hardening

or softening effects in the response curves without creating new jumps;
7. The blade vibration amplitudes were very sensitive to small rises in the excitation amplitude f

before control. However, after control, they became saturated at a level of almost zero thanks to
channeling most of the vibration energy to the controller.
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Abbreviations

p, q, p, q, p, q
Horizontal and vertical displacements, velocities, and accelerations of the blade’s
cross-section.

..
y ,

.
y , y Acceleration, velocity, and displacement of the PPF controller.

µ , µc Damping coefficients of the blade and controller.
ω , ωc Linear natural frequencies of the blade and controller.
β11 , β21 , β13 , β22 , β5 Coupling factors between the blade’s vibrational directions.
β5 , α Cubic nonlinearity coefficients of the blade and controller.
β14 , β24 Parametric excitation coefficients.
f0 , f Amplitudes of the excitation force.
Ω , σ1 , σ2 Excitation frequency and detuning parameters.
c1 , c2 Gains of the control and feedback signals.

Appendix A

The considered thin-walled blade of length L and thickness h, shown in Figure A1, is connected
to a rigid hub, which spun with an angular velocity Ω. A harmonic excitation F = f0 + f cos(Ωt)
may affect the blade’s rotation. Due to the blade’s flexural vibration, an angle γ appeared, and for
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twisting, another angle β = β0z/L appeared. A bunch of assumptions should be imposed to continue
the analysis:

1. There will be no deformation in the cross-section for the long-term operation;
2. The blade’s thickness is very small, compared with its radius of gyration;
3. The blade can be considered an Euler–Bernoulli beam to neglect the shear force transversally;
4. In addition, we can neglect the elongation axially compared to the shown deflections.
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Figure A1. Cross-section plane of the studied blade.

According to axes rotation rules, the rotary axes xp and yp could be related to the stationary axes x
and y. The extended Hamilton principle was used for deriving the equations of motion. Considering
K and U are the kinetic and strain energies, respectively, W is the virtual work due to external forces,
and δ is the variation operator, we have

t∫
0

(δK − δU + δW)dt = 0 (A1)

In [12,13], detailed substitutions and extractions have been fulfilled to get the normalized equations
of motion as

..
u0 − F2u0 − F2

[
R(z)u′′0 + R′(z)u′0

]
+ α∆Tu′′0 −

[
α3(z)v

′′

0 − α6(z)u
′′

0

]
′′

= u′0
(
u′0u′′0 + v′0v′′0

)
+ u′′0

[
1
2

(
u′0

)2
+ 1

2

(
v′0

)2
]
−

.
F(R0 + z) + px

(A2a)

..
v0 − F2

[
R(z)v′′0 + R′(z)v′0

]
+ α∆Tv′′0 −

[
α3(z)u

′′

0 − α4(z)v
′′

0

]
′′

= v′0
(
u′0u′′0 + v′0v′′0

)
+ v′′0

[
1
2

(
u′0

)2
+ 1

2

(
v′0

)2
]
+ py

(A2b)

The single-term Galerkin procedure is applied to Equation (A2) to represent the vibrational
modes as

u0 = G(z) p(t) (A3a)

v0 = G(z) q(t) (A3b)

where p(t), and q(t) are the temporal deflections of the blade. The linear free undamped mode G(z)
takes the form

G(z) = cosh(Γz) − cos(Γz) −
[cosh Γ + cos Γ

sinhΓ + sin Γ

]
[sinh(Γz) − sin(Γz)] (A4)
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where Γ is the solution of the equation cosh Γ cos Γ + 1 = 0. Inserting Equations (A3) and (A4) into
Equation (A2), then continuing with the Galerkin procedure and simplifying yields the system

..
p + 2µ

.
p +ω2p + β13

.
q + β11q + β5pq2 + β5p3 = 2 f0 fβ14p cos(Ωt) + f 2β14p cos2(Ωt) + fβ16Ω sin(Ωt) (A5a)

..
q + 2µ

.
q +ω2q + β22

.
p + β21p + β5p2q + β5q3 = 2 f0 fβ24q cos(Ωt) + f 2β24q cos2(Ωt) (A5b)

where all the parameters are given in detail in [12,13].

Appendix B

The elements ri j (i, j = 1, · · · , 4) of the Jacobian matrix J given in Equation (14) are as follows:

r11 = −µ−
β5

8ω
a2

2s sin(2φ2s) +
β14 f 2

8ω
sin(2 φ1s)

r12 =
β14 f 2

4ω
a1s cos(2 φ1s) +

β16Ω f
2ω

sinφ1s

r13 = −
β13

2
cosφ2s −

β11

2ω
sinφ2s −

β5

4ω
a1sa2s sin(2φ2s)

r14 =
β13

2
a2s sinφ20 −

β11

2ω
a2s cosφ2s −

β5

4ω
a1sa2

2s cos(2φ2s)

r15 =
c1

2ω
sinφ3s

r16 =
c1

2ω
a3s cosφ3s

r21 = −
β13
2

a2s
a2

1s
sinφ2s +

β11
2ω

a2s
a2

1s
cosφ2s −

3β5
4ω a1s −

β16Ω f
2ω

1
a2

1s
sinφ1s

−
c1
2ω

a3s
a2

1s
cosφ3s

r22 = −
β14 f 2

4ω
sin(2φ1s) +

β16Ω f
2ω

1
a1s

cosφ1s

r23 =
β13

2
1

a1s
sinφ2s −

β11

2ω
1

a1s
cosφ2s −

β5

2ω
a2s −

β5

4ω
a2s cos(2φ2s)

r24 =
β13

2
a2s

a1s
cosφ2s +

β11

2ω
a2s

a1s
sinφ2s +

β5

4ω
a2

2s sin(2φ2s)

r25 =
c1

2ω
1

a1s
cosφ3s

r26 = −
c1

2ω
a3s

a1s
sinφ3s

r31 = −
β22

2
cosφ2s +

β21

2ω
sinφ2s +

β5

4ω
a1sa2s sin(2φ2s)

r32 =
β24 f 2

4ω
a2s cos(2φ1s − 2φ2s)

r33 = −µ+
β5

8ω
a2

1s sin(2φ2s) +
β24 f 2

8ω
sin(2φ1s − 2φ2s)

r34 =
β22
2 a1s sinφ2s +

β21
2ω a1s cosφ2s +

β5
4ωa2

1sa2s cos(2φ2s)

−
β24 f 2

4ω a2s cos(2φ1s − 2φ2s)
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r35 = r36 = 0

r41 =
β22
2

1
a2s

sinφ2s +
β21
2ω

1
a2s

cosφ2s +
β5

2ω a1s +
β5
4ωa1s cos(2φ2s) −

3β5
4ω a1s −

β13
2

a2s
a2

1s
sinφ2s

+
β11
2ω

a2s
a2

1s
cosφ2s −

β16Ω f
2ω

1
a2

1s
sinφ1s −

c1
2ω

a3s
a2

1s
cosφ3s

r42 =
β24 f 2

4ω
sin(2φ1s − 2φ2s) −

β14 f 2

4ω
sin(2φ1s) +

β16Ω f
2ω

1
a1s

cosφ1s

r43 = −
β22
2

a1s
a2

2s
sinφ2s −

β21
2ω

a1s
a2

2s
cosφ2s −

β5
2ωa2s −

β5
4ωa2s cos(2φ2s) +

3β5
4ω a2s +

β13
2

1
a1s

sinφ2s−
β11
2ω

1
a1s

cosφ2s

r44 =
β22
2

a1s
a2s

cosφ2s −
β21
2ω

a1s
a2s

sinφ2s −
β5
4ωa2

1s sin(2φ2s) −
β24 f 2

4ω sin(2φ1s − 2φ2s)

+
β13
2

a2s
a1s

cosφ2s +
β11
2ω

a2s
a1s

sinφ2s +
β5
4ωa2

2s sin(2φ2s)

r45 =
c1

2ω
1

a1s
cosφ3s

r46 = −
c1

2ω
a3s

a1s
sinφ3s

r51 = −
c2

2ωc
sinφ3s

r52 = r53 = r54 = 0

r55 = −µc

r56 = −
c2

2ωc
a1s cosφ3s

r61 = −
c2

2ωc

1
a3s

cosφ3s −
β13

2
a2s

a2
1s

sinφ2s +
β11

2ω
a2s

a2
1s

cosφ2s −
3β5

4ω
a1s −

β16Ω f
2ω

1
a2

1s

sinφ1s−
c1

2ω
a3s

a2
1s

cosφ3s

r62 = −
β14 f 2

4ω
sin(2φ1s) +

β16Ω f
2ω

1
a1s

cosφ1s

r63 =
β13

2
1

a1s
sinφ2s −

β11

2ω
1

a1s
cosφ2s −

β5

2ω
a2s −

β5

4ω
a2s cos(2φ2s)

r64 =
β13

2
a2s

a1s
cosφ2s +

β11

2ω
a2s

a1s
sinφ2s +

β5

4ω
a2

2s sin(2φ2s)

r65 =
3α
4ωc

a3s +
c2

2ωc

a1s

a2
3s

cosφ3s +
c1

2ω
1

a1s
cosφ3s

r66 =
c2

2ωc

a1s
a3s

sinφ3s −
c1

2ω
a3s

a1s
sinφ3s

The elements of the stability criteria given in Equation (16) are as follows:

γ1 = −
6∑

i=1

rii

γ2 =
1
2!

6∑
i=1

6∑
j=1

riir j j − ri jr ji

γ3 = −
1
3!

6∑
i=1

6∑
j=1

6∑
k=1

riir j jrkk − 3riir jkrkj + 2ri jr jkrki
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γ4 =
1
4!

6∑
i=1

6∑
j=1

6∑
k=1

6∑
l=1

riir j jrkkrll − 6riir j jrklrlk + 8riir jkrklrl j + 3ri jr jirklrlk − 6ri jr jkrklrli

γ5 = 1
5!

6∑
i=1

6∑
j=1

6∑
k=1

6∑
l=1

6∑
m=1

(riir j jrkkrllrmm − 10riir j jrkkrlmrml + 20riir j jrklrlmrmk

−20ri jr jirklrlmrmk + 15riir jkrkjrlmrml − 30riir jkrklrlmrmj + 24ri jr jkrklrlmrmi)

γ6 = 1
6!

6∑
i=1

6∑
j=1

6∑
k=1

6∑
l=1

6∑
m=1

6∑
n=1

(riir j jrkkrllrmmrnn − 15riir j jrkkrllrmnrnm

+40riir j jrkkrlmrmnrnl − 90riir j jrklrlmrmnrnk + 144riir jkrklrlmrmnrnj
+45riir j jrklrlkrmnrnm − 15ri jr jirklrlkrmnrnm − 120ri jr jkrklrlmrmnrni
+40ri jr jkrkirlmrmnrnl + 90ri jr jirklrlmrmnrnk − 120riir jkrkjrlmrmnrnl)
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