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Abstract: A version of the configuration interaction method for atoms with open shells
(the Configuration Interaction with Perturbation Theory—CIPT method, PRA 95, 012503 (2017)) is
extended for calculation of static and dynamic polarizabilities. Its use is demonstrated by calculation
of the polarizabilities for the ground and excited states of Er, Tm and Yb. It is proved to be an useful
tool in designing a new generation of optical atomic clocks sensitive to new physics.
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1. Introduction

Polarizabilities are important characteristics of atoms which, together with ionisation potential,
determine their chemical properties. The values of static and dynamic atomic polarizabilities are also
needed for designing optical clocks. Static scalar polarizabilities determine the value of the black body
radiation (BBR) shift of the clock frequency, one of the major source of the clock uncertainty. For these
reasons, there is a large number of works which study atomic polarizabilities experimentally and
theoretically (see, e.g., the reviews [1–3] and references therein). In spite of this wealth of information
there are still gaps in the data, mostly for excited states of many-electron atoms, including states,
which are considered to be used as clock states. The aim of this paper is to develop a method which
might help to close these gaps. The method is an extension of the Configuration Interaction with
Perturbation Theory (CIPT) approach [4] which was developed for atoms with a large number of
electrons in open shells. We consider Er, Tm and Yb atoms. All these atoms have transitions which are
used or proposed to be used as clock transitions.

The 1S0 to 3Po
0 transition in Yb is used in a number of labs around the world as one of the most

accurate clock transition approaching relative uncertainty of 10−18 [5–8]. There is a large number of
measurements and calculations for both states of this transition. We use the data as a testing ground for
our method. It was suggested in Ref. [9,10] that the electric quadrupole transition between ground and
first excited state of Er can be used as a clock transition with suppressed BBR shift. It was demonstrated
in Ref. [11] both experimentally and theoretically that the fine structure (FS) transition between ground
and first excited state in Tm has similar features. The BBR shift is proportional to the differential
polarizability of the clock states. The later was measured in Ref. [11] and turned out to be exceptionally
small, ∆α0 = −0.063(30) a.u. The authors of Ref. [11] claim that their finding “allow the development
of lanthanide-based optical clocks with a relative uncertainty at the 10−17 level”. The lanthanide-based
optical clocks have another important feature, they are sensitive to new physics beyond the standard
model. For example, the FS clock transition in Fm is sensitive to the hypothetical time-variation of
the FS constant α. The FS ∼ (Zα)2, which means that if α changes in time, the FS interval changes
quadratically faster. The value of this so called enhancement factor , K ≈ 2, is larger than in any current
optical clocks based on neutral atoms. It is also competitive with recently suggested clock transitions in
Yb [12] and Au [13]. Moreover, the enhancement factors in Yb and Au are large but negative, while the
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enhancement factor in Tm is large and positive. Comparing two clock transitions with large values
and opposite sign of K brings further enhancement of the sensitivity to the variation of α.

The lanthanide-based optical clocks also sensitive to the local Lorentz invariance (LLI) violation.
It was demonstrated in Ref. [14] (see also [15]) that for strong sensitivity to the LLI violation one needs
long-living state with open f -shell and large value of the total angular momentum J, J ≥ 1. It was
suggested in Ref. [14] to use an excited metastable state of Yb+ . However, lanthanides satisfy these
conditions in the ground state.

The arguments presented above show that the lanthanide-based optical clocks deserve further
study. The electronic structure of Er was studied in our previous work [16] using the above mentioned
CIPT method. This included energy levels, transition amplitudes, hyperfine structure and polarizability
in the ground state. The polarizability was calculated by direct summation over physical states
using calculated transition amplitudes. Polarizability of the clock state was not considered. We also
study polarizabilities of Er in our earlier works [9,10]. In the approximations used in these works
the polarizabilities of ground and clock states were the same. The electronic structure of Tm was
studied in [17] the way similar to what we did for Er. However, polarizabilities were not considered.
The polarizabilities of the ground state of Er and Tm were studied theoretically and experimentally
in a number of works, see review [1] and references therein. However, we are not aware about such
works for excited states.

In the present paper we develop an ab initio method of calculation of polarizabilities for complex
many-electron atoms. We use it to calculate static dipole polarizabilities of the ground and clock states
of Yb, Er and Tm.

2. Theory

2.1. Polarizabilities

The second-order Stark shift of the energy of an atom in state a is given by

∆Ea = −
1
2

α(a)E2, (1)

where E is the external electric field. The polarizability α(a) is the sum of scalar and tensor terms

α(a) = α0(a) +
3M2

a − Ja(Ja + 1)
Ja(2Ja − 1)

α2(a). (2)

Here Ja is the total angular momentum of the atom in state a and Ma is its projection on the
direction of the electric field. Both polarizabilities α0(a) and α2(a) can be expressed via sums over
complete sets of intermediate states involving matrix elements of the electric dipole operator F
(in length form F = −e ∑i ri)

α0(a) =
2

3(2Ja + 1) ∑
n

〈a||F||n〉2
Ea − En

, (3)

α2(a) = 2

√
10Ja(2Ja − 1)

3(2Ja + 3)(2Ja + 1)(Ja + 1) ∑
n
(−1)Ja+Jn

{
1 1 2
Ja Ja Jn

}
〈a||F||n〉2
Ea − En

. (4)

Here |a〉 and |n〉 are many-electron atomic states and Ea and En are corresponding energies.
Note that the sums over intermediate states at fixed values of Jn are the same in (3) and (4). Therefore,
calculation of both polarizabilities can be reduced to the calculation of these sums

SJn = ∑
n

〈a||F||n〉2
Ea − En

. (5)
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We use the Dalgarno and Lewis method to perform the calculations [18]. We introduce a correction
to the atomic wave function |a〉 caused by external field F

|δa〉 = ∑
n
|n〉 〈n||F||a〉

Ea − En
. (6)

The correction can be found by solving the equation

(H − Ea)|δa〉 = −F|a〉. (7)

When the correction is found, the sum (5) is reduced to

SJn = 〈δa||F||a〉 (8)

Then polarizabilities are calculated by substituting (8) into (3) and (4).
Note that the values of the calculated polarizabilities are sensitive to the energy intervals between

the state of interest and excited states of opposite parity, see Equations (3)–(5). The calculated energy
intervals are nor always sufficiently accurate in atoms with complicated electronic structure. One way
around this is to use direct summation and experimental energies in (5). However, summation over
physical states is possible only for few low-lying states while the Dalgarno–Lewis approach allows
summation over complete set of the many-electron states, including continuum. Therefore, we use a
different approach in which we look for a resonant term, i.e., the term which strongly dominates in
the sum (5) due to the small energy denominator. If such a term does exist (we use the n0 notation for
the corresponding state), we rescale its value using experimental energy interval. To remove resonant
term from (5) we impose the orthogonality condition

|δa′〉 = |δa〉 − 〈δa|n0〉〈n0|. (9)

This leads to a correction to the partial sum SJn

∆S = 〈δa||F||a〉 − 〈δa′||F||a〉. (10)

This correction is then added back with the rescaling coefficient

SJn = 〈δa′||F||a〉+ ∆S
∆ETheor
∆EExpt

. (11)

The rescaling procedure should only be used for resonant contributions. Rescaling of large
number of non-dominating contributions leads to inconsistencies between experimental energies and
calculated amplitudes, which may worsen the accuracy of the results.

2.2. The RPA Method

The equations in the previous section are valid for any number of electrons in the many electron
states |a〉, |n〉. In practical calculations for many-electron atoms all electrons are divided into two
categories, core electrons and valence electrons. This brings the need to include an important effect
of core polarisation by external field, i.e., the effect of changing of atomic potential due to the effect
of external field on the core electrons.This is done with the use of the so called random-phase
approximation (RPA, see e.g., [19]). The RPA equation for the core has the form

(HHF − εc)δψc = −(F + δVF
core), (12)

where HHF is the relativistic Hartree–Fock (HF) Hamiltonian,



Symmetry 2020, 12, 1950 4 of 8

HHF = c−→α c · −→p c + (β− 1)mc2 + Vnuc(rc) + Vcore(rc). (13)

Here −→α and β are Dirac matrixes, −→p is an operator of electron momentum, Vnuc(rc) is nuclear
potential calculated with Fermi distribution of nuclear charge, Vcore(rc) is the self-consistent electronic
potential.

Index c in (12) and (13) numerates states in the core, δψc is the correction to the core function due to
the effect of external field F, and δVF

core is the correction to the core potential due to the change in all core
wave functions. It is important that the HF and RPA calculations are done with the same Hamiltonian
HHF. It is also important that the valence states calculated with the use of this Hamiltonian represent
good initial approximation for the valence states (see next section). Therefore, we use the VN−1

approximations for the HF and RPA calculations for Er, Tm and Yb, with one 6s electron removed.
Note that this leads to different definition of the core in the HF and RPA calculations on one side and
configuration interaction (CI) calculations on the other side. In the former case the 4 f and 6s electrons
are attributed to the core, while in the CI case they are attributed to valence space. In the end, the many
electron states |a〉, |n〉 in previous section are the fourteen to sixteen electron states, while the operator
of external field includes core polarisation correction F → F + δVF

core.

2.3. The CIPT Method

We use the CIPT method [4] to perform the calculations. It is based on the following assumptions:
(a) all many-electron basis states are ordered according to their energies; (b) a relatively small
number of low-energy states is sufficient to build a good approximation to the states of interest,
while contributions of all other states of higher energy can be considered as a small correction;
(c) off-diagonal CI matrix elements between high-energy states can be neglected. Keeping these
assumptions in mind we can write the total matrix CI equation in a block form(

Ax Bx

Cx Dx

)(
X1

X2

)
= Ea

(
X1

X2

)
. (14)

Here block Ax corresponds to low-energy states, block Dx corresponds to high-energy states,
and blocks Bx and Cx correspond to cross terms. Note that since the total CI matrix is symmetric we
have Cx = B′x, i.e., cij = bji. Finding X2 from the second equation of (14) and substituting it to the first
one leads to [

Ax + Bx(Ea I − Dx)
−1Cx

]
X1 = EaX1, (15)

where I is unit matrix. Neglecting the off-diagonal matrix elements in Dx leads to very simple
structure of the (Ea I − Dx)−1 matrix, (Ea I − Dx)

−1
ik = δik/(Ea − Ek), where Ek = 〈k|HCI|k〉 (see [4] for

more details).
The CIPT method described above was used in a number of calculations for many-electron atoms

(see, e.g., [16,17]) proving its usefulness. In present paper we go further applying similar approach to
Equation (7). Rewriting Equation (7) in a block form leads to(

Ay − Ea I By

Cy Dy − Ea I

)(
Y1

Y2

)
= −F

(
X1

X2

)
. (16)

Note that blocks Ay, By, Cy, Dy in (16) are different from blocks AxBx, Cx, Dx in (14). The later
correspond to the wave function, the former - to the correction to this wave function. Since electric
dipole operator F change parity, these sets of matrix blocks correspond to states of different parity.
Finding Y2 for second equation of (16) and substituting it to the first one leads to (we neglect high-order
term containing FX2) [

(Ay − Ea I) + By(Ea I − Dy)
−1Cy

]
Y1 = −FX1. (17)
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Here again neglecting the off-diagonal matrix elements in Dy leads to simple structure of the
(Ea I − Dy)−1 matrix, (Ea I − Dy)

−1
ik = δik/(Ea − Ek).

When Y1 is found from (17) the partial sum (8) is calculated by

SJn = Y1FX1. (18)

Correcting this value by rescaling the resonant contribution using (9)–(11) is possible if
corresponding state n0 is included into the Ay matrix. Other words, the resonant state n0 should be
considered as a low-energy state in the basis for the correction to the wave function |a〉.

3. Results and Discussions

3.1. Ytterbium

We used ytterbium as a testing ground for the method. Polarizabilities of ytterbium are very well
studied both theoretically and experimentally (see, e.g., reviews [1,2]) motivated by the use of Yb as one
of the most precise optical clock. We used the VN−1 approximations for the HF and RPA calculations
with one 6s electron removed, i.e., the initial calculations were done for the 4 f 146s configuration of
external electrons. The single-electron basis states were then calculated in the frozen VN−1 potential
using the B-spline technique [20]. The 4 f and 6s electrons were attributed to valence space in the CIPT
calculations. This allowed us to include configurations with excitations from 4 f subshell. However,
correlations with core electrons below 4 f were not included. As was explained in our previous
work [21], for the sake of calculation of polarizabilities, the mixing with states containing excitations
from 4 f was not important, and Yb could be treated as a two-valence-electron atom. All most accurate
calculations for Yb are done this way (see [1,2,21] and references therein). The aim of the current
calculations was not to improve accuracy but to test the technique which then could be used for atoms
with more complicated electronic structure, like Er and Tm (see next section).

The results of the calculations for Yb are presented in Table 1 and compared to other data.
Note that we present only those other data which are sufficient to illustrate the accuracy of present
calculations. For example, the recommended values from a review [1] are based on the analysis of a
large amount of data. We also cite our previous calculations where detailed analysis of the uncertainty
was performed. These calculations were more accurate than in the present work but the method can
be used for Yb but not for Er or Tm. The Ref. [22] is cited as the only experimental paper which reports
the polarizability of the clock state (3Po

0).
The ground state polarizability of Yb was strongly dominated by the single term corresponding

to the 6s2 1S0 to 6s6p1Po
0 transition. The calculated energy interval was about 15% smaller than in

the experiment. As a result, the calculated polarizability was overestimated. The ab initio value was
152 a.u. When we apply the rescaling procedure (9)–(11) the polarizability went down to 143 a.u.
This value is presented in the Table. It is in very good agreement with other data.

Similar to the ground state, the polarizability of the clock state of Yb was strongly dominated
by the single term corresponding to the 6s6p3Po

0 to 5d6s3D1 transition. The ab initio value of the
polarizability was 378 a.u. After rescaling procedure this value goes down to 340 a.u. This was still
about 10% larger than other most accurate data (see Table 1). This is a feature of the CIPT method,
accuracy is lower for higher states. This is because configuration mixing was stronger for higher states
which means that it was harder to build a good initial approximation for the wave function using only
low-energy basis states. One way around this is to increase the size of the effective CI matrixes Ax and
Ay (see Equations (14) and (16)). In the end, given the complexity of the targeted systems, the 10%
accuracy was acceptable. We stress that the accuracy for the low-lying states is likely to be higher.
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Table 1. Static scalar polarizabilities of the ground and clock states of Yb (in a.u.).

1S0
3Po

0 Source

143 340 this work
141(6) 302(14) Ref. [21]
139(6) Ref. [1], Recommended value

From 134.4(1.0) to 144.2(1.0) From 280.1(1.0) to 289.9(1.0) Ref. [22], Experimental values

3.2. Erbium and Thulium

The calculations for Er and Tm were very similar to the case of Yb. Initial HF and RPA calculations
were done for the 4 f 126s configurations of Er and the 4 f 136s configuration of Tm. There were no
obvious resonant contributions, therefore, the rescaling procedure was not used. Energy levels of Er
and Tm, relevant to the calculation of polarizabilities, are presented in Table 2. It was demonstrated
in Ref. [9,10] that calculated polarizabilities of lanthanoids were strongly dominated by the 6s to 6p
transitions. Therefore, only states of the 4 f n6s6p (n = 12 for Er and n = 13 for Tm) were included
into the low-energy matrix Ay (see Equation (16)). States with excitations from the 4 f subshell were
also included but to the high-energy blocks By, Cy, Dy, which means that off-diagonal matrix elements
between these states were neglected. The results are presented in Table 3.

Table 2. Energies of the lowest states of Er and Tm (cm−1) which contribute the most to the
polarizabilities. Er states belong to the 4 f 126s6p configuration while Tm states belong to the 4 f 136s6p
configuration. Jn = Ja, Ja ± 1, where Ja the the total angular momentum of the clock states; Ja = 6, 4 for
Er and Ja = 7/2, 5/2 for Tm.

Er Tm

Jn NIST CIPT Jn NIST CIPT

6 0 0 7/2 0
4 6958 6370 5/2 8771 8350

3 22,269 23,280 3/2 19,132 19,574
4 18,816 18,595 5/2 17,752 18,336
5 17,347 16,581 7/2 16,742 15,799
6 17,073 15,500 9/2 17,613 18,195
7 17,157 16,315

Table 3. Static scalar and tensor polarizabilities of the ground and clock states of Er and Tm (in a.u.).

3H6
3F4

2Fo
7/2

2Fo
5/2

Jn α0 α2 Jn α0 α2 Jn α0 α2 Jn α0 α2

5 47.10 -47.10 3 42.73 −42.73 5/2 38.37 −38.37 3/2 34.20 −34.20
6 55.28 86.88 4 55.02 77.03 7/2 50.77 67.70 5/2 50.86 58.12
7 64.29 −40.41 5 67.23 −34.23 9/2 63.87 −29.81 7/2 68.22 −24.36

Total 166.67 −0.63 164.98 0.07 153.02 −0.48 153.28 −0.45
Ref. [9] 150.2 150.2 144.3 144.3
Ref. [1] 150(10) 144(15)

The results for the ground state are in good agreement with the recommended values of Ref. [1].
These values were based on the analysis of the large amount of theoretical and experimental data.
There was also about 10% agreement with our previous calculations [9]. In the approximation used in
Ref. [9] the polarizabilities of all states of the same configuration were the same. Present calculations
showed that the polarizabilities were close but not exactly the same. The experimental differential
polarizability of the clock transition in Tm is ∆α0 = −0.063(30) a.u. [11]. The accuracy of present
calculations was lower than the accuracy of this result. We can probably only say that in our calculations
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∆α0 < 1 a.u. This is still in agreement with the experimental value. Both results, for Er and Tm,
showed that the differential polarizability of the clock transitions was small. This means that the BBR
shift of the frequencies of these transitions was strongly suppressed.

3.3. Further Developments and Applications

The method presented in this paper can be used for calculation of dynamic polarizabilities.
All one needs to do is to replace Ea in (16) and (17) by Ea ± h̄ω, where ω is the frequency of the laser
field. One has to keep in mind that when the energy Ea + h̄ω comes close to one of the energies En,
(see Equations (5) and (6)) the rescaling of the resonant contribution might be needed for accurate
results (see Equations (9)–(11)).

The method can also be used for atoms and ions with open d or p shells. In principle, it can
be used for atoms with open f -shell which have more vacancies in it than the Er and Tm atoms.
However, it is numerically chalanging task because of the large number of many-electron basis states
generated by exciting electrons from an open f -shell. Using supercomputers with parallel calculations
is adviceable in this case.

In the end we state that a method of calculating atomic polarizabilities for complicated systems
with open shells has beed developed. The method is validated by calculating static polarizabilites of
ground and excited clock states of Yb, Er, and Tm. Comparison with other data shows reasonably
good agreement. Calculation for clock states of Er and Tm confirm an important claim that these
polarizabilities are almost the same as in ground state. This makes the clock transitions to be insensitive
to the BBR shift.
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