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Abstract: In this article, we show that the presence of a torqued vector field on a Riemannian manifold
can be used to obtain rigidity results for Riemannian manifolds of constant curvature. More precisely,
we show that there is no torqued vector field on n-sphere Sn(c). A nontrivial example of torqued
vector field is constructed on an open subset of the Euclidean space En whose torqued function
and torqued form are nowhere zero. It is shown that owing to topology of the Euclidean space En,
this type of torqued vector fields could not be extended globally to En. Finally, we find a necessary and
sufficient condition for a torqued vector field on a compact Riemannian manifold to be a concircular
vector field.
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1. Introduction

Differential equations on complete and connected Riemannian manifolds were used by Obata
(cf. [1,2]), who observed that a necessary and sufficient condition for an m-dimensional complete and
connected Riemannian manifold (M, g) to be isometric to m-sphere Sm(c) of constant curvature c is
that it admits a nontrivial solution of the differential equation

H f = −c f g,

where H f is the Hessian of the smooth function f . It is well known that mathematical problems
involving the Hessian of unknown functions are tied to real models appearing in real applications.
We refer to [3,4] for analyses tied with real mechanical models involving Hessian matrices in the related
formulations. Similarly in [5], it has been observed that a necessary and sufficient condition for an
m-dimensional complete and connected Riemannian manifold (M, g) to be isometric to the Euclidean
space Em is that it admits a nontrivial solution of the differential equation

H f = cg,

for a nonzero constant c. Indeed differential equations have been used in various ways to predict
geometry as well as topology of a Riemannian manifold. In particular, differential equations
satisfied by certain vector fields such as conformal vector fields, Killing vector fields, Jacobi-type vector
fields, torse-forming vector fields, geodesic vector fields are useful in studying geometry of a Riemannian
manifolds (cf. [6–17]). There are special types of conformal vector fields known as concircular vector
fields, which are used both in geometry as well as in general theory of relativity (cf. [13,18–20]).
Professor Chen obtained an elegant characterization of generalized Robertson-Walker space-times,
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using concircular vector fields (cf. [18]). Recall that a smooth vector field ξ on a Riemannian
manifold (M, g) is called a concircular vector field if it satisfies the differential equation

∇Xξ = σX, X ∈ X(M), (1)

where ∇ denotes the Riemannian connection of (M, g), σ : M → R is a smooth function, and X(M)

is the Lie algebra of smooth vector fields on M. The function σ in Equation (1) is called the potential
function of ξ (cf. [6,21]).

In [17], Yano introduced the notion of torse-forming vector fields, which is a generalization
of concircular vector fields. A smooth vector field ξ on a Riemannian manifold (M, g) is called
torse-forming vector field if it satisfies the differential equation

∇Xξ = σX + α(X)ξ, X ∈ X(M), (2)

where α is a smooth 1-form on M. Torse-forming vector fields are important specially in physics
(cf. [13,22]). Chen in [23], initiated a special type of torse-forming vector fields called torqued vector
fields. A nowhere zero vector field u on a Riemannian manifold (M, g) is said to a torqued vector field
if it satisfies

∇Xu = σX + α(X)u, X ∈ X(M) and α(u) = 0. (3)

The smooth 1-form α and the smooth function σ in the definition of torqued vector field are called
torqued form and torqued function of the torqued vector field u (cf. [23,24]). Note that if the torqued
form α = 0, then a torqued vector field is a concircular vector field. In [23], it has been observed that
if the torqued vector field u is a gradient of a smooth function, then it is a concircular vector field.
It has been observed that the twisted product I × f M of an interval I and an (n− 1)-dimensional
Riemannian manifold M admits a torqued vector field which is not a concircular vector field (cf. [24]).

Most basic among special vector fields are geodesic vector fields. In [9,25,26] it has been shown
that geodesic vector fields are useful in characterizing spheres and Euclidean spaces.

One of the interesting questions in geometry of torqued vector fields is to find conditions under
which a torqued vector field on a Riemannian manifold is a concircular vector field. First, in this paper,
we show that there does not exist a torqued vector field on the m-sphere Sm(c). Then we construct a
torqued vector field on a proper open subset of a Euclidean space Em which is not a concircular vector
field with nowhere zero torqued function σ and nowhere zero torqued 1-form α. However, on the
Euclidean space Em, we show that such torqued vector field does not exist. Finally in the last section,
we find a necessary and sufficient condition for a torqued vector field on a compact Riemannian
manifold to be a concircular vector field.

2. Preliminaries

In this section, we introduce the notions, concepts and basic results needed for proving results in
the subsequent sections. Let u be a torqued vector field on an n-dimensional Riemannian manifold
(M, g) with torqued function σ and torqued form α. We denote by v the smooth vector field dual to
the torqued 1 -form α, that is, α(X) = g (v, X), X ∈ X(M).

The curvature tensor field R and the Ricci tensor Ric of (M, g) are given respectively by

R(X, Y)Z = [∇X ,∇Y] Z−∇[X,Y]Z (4)

and

Ric(X, Y) =
n

∑
i=1

g (R(ei, X)Y, ei) , (5)

where {e1, . . . , en} is a local orthonormal.
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Using symmetry of the Ricci tensor Ric, we get a symmetric operator S called the Ricci operator
of M defined by

g(SX, Y) = Ric(X, Y)

for X, Y ∈ X(M). The scalar curvature τ of M is given by, τ = Tr S. Note that ∇τ the gradient of the
scalar curvature τ, satisfies

1
2
∇τ =

n

∑
i=1

(∇S) (ei, ei), (6)

where ∇S is the covariant derivative of S, defined by

(∇S) (X, Y) = ∇XSY− S∇XY.

Using Equations (3) and (4), we compute

R(X, Y)u = (Xσ)Y− (Yσ)X + σ (α (Y) X− α (X)Y) + dα (X, Y) u (7)

for X, Y ∈ X(M), which gives

Ric (Y, u) = −(n− 1)(Yσ) + (n− 1)σα (Y) + dα (u, Y) , (8)

where dα is differential of the torqued form α.
Now, using the vector field v dual to torqued form α, we define a symmetric operator A and a

skew-symmetric operator Ψ by

2g (AX, Y) = (£vg) (X, Y) , 2g (ΨX, Y) = dα (X, Y) , (9)

where £vg is the Lie derivative of g with respect to the vector field v. Then, we have

2g (AX, Y) = g (∇Xv, Y) + g (∇Yv, X) = 2g (∇Xv, Y)− 2g (ΨX, Y) ,

which gives
∇Xv = AX + ΨX, X ∈ X(M). (10)

Using Equations (8) and (9), we conclude

Su = −(n− 1) (∇σ− σv) + 2Ψu, (11)

where ∇σ is gradient of torqued function σ.
Note that using definition of torqued vector field, we have α (u) = 0, that is, g (v, u) = 0.

Using Equations (3) and (10) in Xg (v, u) = 0 , X ∈ X(M), we get

g (AX + ΨX, u) + g (v, σX + α(X)u) = 0,

that is,
Ψu = Au + σv. (12)

Taking the inner product in Equation (7) with u, we get

‖u‖2 dα (X, Y) = Y(σ)g (X, u)− X(σ)g (Y, u) + σ (α (X) g (Y, u)− α(Y)g (X, u)) ,

which in view of Equation (9), implies

2 ‖u‖2 ΨX = g (X, u)∇σ− X(σ)u + σα (X) u− σg (X, u) v. (13)
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Taking X = u, in Equation (13), we have

2 ‖u‖2 Ψu = ‖u‖2 (∇σ− σv)− u (σ) u. (14)

3. Torqued Vector Fields on Spheres and Euclidean Spaces

In this section, we study torqued vector fields on sphere Sn(c) of constant curvature c and the
Euclidean space En. Note that the curvature tensor and the Ricci tensor of the sphere Sn(c) are given by

R(X, Y)Z = c {g(Y, Z)X− g(X, Z)Y} , Ric(X, Y) = (n− 1)cg(X, Y). (15)

In the following result we show that there does not exist a torqued vector field on the sphere Sn(c).

Theorem 1. There does not exist a torqued vector field on the sphere Sn(c).

Proof. Suppose u is a torqued vector field on the sphere Sn(c). Then using Equation (15), we have
R(v, u)u = c ‖u‖2 v and, Equation (7) gives

c ‖u‖2 v = v (σ) u− u (σ) v− σ ‖v‖2 u + dα(v, u)u. (16)

Taking the inner product in Equation (2) with v, we conclude

‖v‖2
(

c ‖u‖2 + u (σ)
)
= 0. (17)

As Sn(c) is connected Equation (17) implies either v = 0 or

u (σ) = −c ‖u‖2 . (18)

If v = 0, then α = 0. Thus, we shall concentrate on the case of Equation (18) and show that it also
gives the same conclusion. Using Equation (3), we have div u = nσ and using Equation (18), we have
div (σu) = −c ‖u‖2 + nσ2. Integrating this equation, we conclude

c
∫

Sn(c)
‖u‖2 = n

∫
Sn(c)

σ2. (19)

Note that on using Equation (3), we have

(£ug) (X, Y) = 2σg (X, Y) + α(X)g (u, Y) + α(Y)g (u, X) . (20)

Now, we use a local orthonormal frame {e1, . . . , en} on Sn(c) and Equations (3) and (20), to compute

|£ug|2 = ∑
i,j

(
(£ug) (ei, ej

)2
= 4nσ2 + 4 ‖u‖2 ‖v‖2 , (21)

where we have used α (u) = 0. Also, we have

‖∇u‖2 = ∑
i

g (∇ei u,∇ei u) = ∑
i
‖σei + α (ei) u‖2 = nσ2 + ‖u‖2 ‖v‖2 . (22)

Next, we use the following integral formula in [20]

∫
Sn(c)

(
Ric (u, u) +

1
2
|£ug|2 − ‖∇u‖2 − (div u)2

)
= 0



Symmetry 2020, 12, 1941 5 of 10

and on inserting Equations (21) and (22) and div u = nσ, Ric(u, u) = (n− 1)c ‖u‖2, we obtain∫
Sn(c)

(
(n− 1)c ‖u‖2 + ‖u‖2 ‖v‖2 − n(n− 1)σ2

)
= 0. (23)

Using Equation (19) in Equation (23), we conclude∫
Sn(c)
‖u‖2 ‖v‖2 = 0,

that is, ‖u‖2 ‖v‖2 = 0 and as u is nowhere zero, we get v = 0. This proves that the torqued form α = 0
and thus, the skew-symmetric operator Ψ = 0. Now, using Equations (14) and (18), we have

‖u‖2 (∇σ + cu) = 0.

Since, the torqued vector field u is nowhere zero, we get ∇σ + cu = 0. However, the sphere Sn(c)
being compact, ∇σp = 0 for a point p ∈ Sn(c) (critical point of σ). Consequently, we get u (p) = 0,
a contradiction to the fact that u is nowhere zero. Hence, there does not exist a torqued vector
field on Sn(c).

Remark 1. Note that the unit sphere Sn is isometric to the warped product I ×sin t Sn−1, where the interval
I = (0, π) and the isometry is given by the map f : I × Sn−1 → Sn defined by (cf. [27])

f (t, u) = (cos t, sin t, u) .

It is interesting to observe that the above warped product is short of being a twisted product and thus our
Theorem 1 strengthens that the conclusion of Theorem 3.1 in [25] is sharp.

In the rest of this section, we study torqued vector fields on the Euclidean space En. We denote by
g the Euclidean metric and by ∇ the Euclidean connection on En. The position vector field Γ on En is
given by

Γ = v1 ∂

∂v1 + . . . + vn ∂

∂vn ,

where v1, . . . , vn are Euclidean coordinates. First, we give the following example of a torqued vector
field on an open set of En.

Example 1. Consider the open subset

M =
{(

v1, . . . , vn
)
∈ En : v1vn > 0

}
and the smooth function f on M defined by

f = cosh
(

ln
v1

vn

)
.

Then it follows that on M, Γ ( f ) = 0 and that f > 0. Now define a smooth vector field u on the Riemannian
manifold (M, g) by

u = f Γ.

Then we see that u is nowhere zero vector field. Using the Euclidean connection ∇ restricted to the open subset
M, we get

∇Xu = f X + α(X)u, X ∈ X(M),
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where α(X) = X (ln f ). Moreover, we have α (u) = 0 and consequently, the vector field u is a torqued vector
field on the Riemannian manifold (M, g). Note that for this torqued vector field the torqued function f is
nowhere zero as well as the torqued form α is nowhere zero.

Observe that, as in Example 1, we could construct several torqued vector fields on such open
subsets of the Euclidean space En with the property that corresponding torqued function and torqued
form are nowhere zero on this open subset. However, in the following result, we see that the topology
of the Euclidean space does not allow it to hold globally on En for n > 2.

Theorem 2. There does not exist a torqued vector field on the Euclidean space En, n > 2, having nowhere zero
torqued function and nowhere zero torqued form.

Proof. Suppose there is a torqued vector field u on En, n > 2, with torqued function σ nowhere zero
and torqued form α nowhere zero. As the Euclidean space is flat, Equation (8) implies

2Ψu = (n− 1) (∇σ− σv) . (24)

Taking the inner product with u in Equation (24), we conclude

u (σ) = 0. (25)

In view of Equation (25), Equation (14) takes the form

2 ‖u‖2 Ψu = ‖u‖2 (∇σ− σv)

and as u is nowhere zero by definition of a torqued vector field, we have

2Ψu = ∇σ− σv. (26)

Combining Equation (26) with Equation (24), we conclude (n − 2) (∇σ− σv) = 0 and as n > 0,
we have

∇σ = σv. (27)

Note that owing to the conditions on the torqued function σ and the torqued form α, the vector field
σv is nowhere zero on the Euclidean space En. Thus, as ∇σ nowhere zero, the smooth function
σ : En → E is a submersion and each level set Mx = σ−1 {σ(x)}, x ∈ En, is an (n− 1)-dimensional
smooth manifold and that it is compact. Now, define the smooth vector field

ς =
∇σ

‖∇σ‖2

on the Euclidean space En. Then it follows that ς (σ) = 1 and therefore the local one-parameter group
of local transformations { fs} of ς has the property

σ ( fs(x)) = σ(x) + s. (28)

Using escape Lemma (cf. [28] p. 446) for the Euclidean space En and Equation (28), we conclude
that the vector field ς is complete and that { fs} is one-parameter group of transformations on En.
Now, define ϕ : E×Mx → En by

ϕ(s, u) = fs(u).

It follows that ϕ is a smooth map and for each u ∈ En, we find s ∈ E such that fs(u) = y ∈ Mx

satisfying u = f−s(y). Thus, ϕ(−s, y) = u, that is, ϕ is an on-to map. Also, for (s1, u1), (s2, u2) in
E × Mx such that ϕ(s1, u1) = ϕ(s2, u2), we have fs1(u1) = fs2(u2), which on using Equation (28),
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gives σ(u1) + s1 = σ(u2) + s2. Since, u1, u2 ∈ Mx, we have σ(u1) = σ(u2), and we get s1 = s2.
Consequently, from fs1(u1) = fs2(u2), we conclude u1 = u2. This proves that the map ϕ is one-to-one.
Also, the map

ϕ−1(u) = (−s, y) = (−s, fs(u))

is smooth. Hence, ϕ : E × Mx → En is a diffeomorphism, where Mx is a compact subset of En.
Note that En is diffeomorphic to E× En−1 and this will imply that Mx is diffeomorphic to En−1,
which is a contradiction. Hence, there does not exist a torqued vector field on En with nowhere zero
torqued function and nowhere zero torqued form.

4. Torqued Vector Fields on Compact Spaces

In this section, we study torqued vector fields on compact Riemannian manifolds. Let u be torqued
vector field with torqued function σ and torqued form α on n-dimensional compact Riemannian
manifold (M, g). Recall that a smooth vector field ξ on a Riemannian manifold (M, g) is said to
be incompressible vector field (also known as a solenoidal vector field) if div ξ = 0. Indeed any
vector field on a Riemannian manifold is sum of a gradient vector field and an incompressible vector
field. As we are interested in finding conditions under which a torqued vector field on a Riemannian
manifold is a concircular vector field, we prove the following result for torqued vector fields on a
compact Riemannian manifold.

Theorem 3. Let u be a torqued vector field with torqued form α on an n-dimensional compact Riemannian
manifold (M, g). Then the dual vector field v to torqued form α is incompressible if and only if u is a concircular
vector field.

Proof. Let u be a torqued vector field on an n-dimensional compact Riemannian manifold (M, g) such
that div v = 0. Then using Equation (10), we conclude

TrA = 0, (29)

where we have used the fact that Ψ is skew-symmetric. Define a skew-symmetric operator F on M by

FX = α(X)u− g (X, u) v, X ∈ X(M). (30)

Using Equations (3) and (10), we have

∇XFY = X (α (Y)) u + α (Y) (σX + α (X) u)− g (∇XY, u) v

−g (Y, σX + α(X)u) v− g (Y, u) (AX + ΨX)

= g (AX + ΨX, Y) u + α (∇XY) u + σα (Y) X + α (X) α (Y) u

−g (∇XY, u) v− g (Y, σX + α(X)u) v− g (Y, u) AX− g (Y, u)ΨX

Thus,

(∇F) (X, Y) = g (AX, Y) u + g (ΨX, Y) u + σα (Y) X + α (X) α (Y) u

−σg (X, Y) v− α(X)g (Y, u) v− g (Y, u) AX− g (Y, u)ΨX.

Now, taking a local orthonormal frame {e1, . . . , en}, and using Equation (29), we obtain

∑
i
(∇F) (ei, ei) = σv + ‖v‖2 u− nσv− Au−Ψu. (31)
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We compute the divergence of the vector field Fu to find

div (Fu) = ∑
i

g (∇ei Fu, ei) = ∑
i

g ((∇F) (ei, u) + F (∇ei u) , ei) . (32)

Using skew-symmetry of the operator F and Equation (3) in Equation (32) , we obtain

div (Fu) = −∑
i

g (u, (∇F) (ei, ei))−∑
i

g (σei + α (ei) u, Fei) ,

that is,
div (Fu) = −∑

i
g (u, (∇F) (ei, ei)) + g (Fu, v) . (33)

Inserting Equation (31) in Equation (33) , we have

div (Fu) = −‖v‖2 ‖u‖2 + g (Au, u) , (34)

where we have used α(u) = 0 and that Ψ is skew-symmetric. Now, using Equation (10), we have
∇uv = Au + Ψu and taking the inner product with u in this equation, we conclude

g (Au, u) = g (∇uv, u) . (35)

As α(u) = 0, using Equation (3) in Equation (35) , we get

g (Au, u) = −g (v,∇uu) = −g (v, σu + α (u) u) = 0.

Thus, the Equation (34) takes the form

div (Fu) = −‖v‖2 ‖u‖2 . (36)

Integrating Equation (36), we conclude ∫
M
‖v‖2 ‖u‖2 = 0,

that is, ‖v‖2 ‖u‖2 = 0. Since, the torqued vector field u is nowhere zero, we get v = 0, that is, α = 0.
This proves that u is concircular vector field.

The converse is trivial, as for the concircular vector field the torqued form is zero and therefore
the dual vector field being zero is incompressible.

Note that an interesting question on torqued vector fields is to find conditions under which they
are concircular vector field. In [23], it is shown that a gradient torqued vector field is a concircular
vector field. Our Theorem 3 characterizes concircular vector fields using torqued vector fields.

As a consequence of above result we get the following.

Theorem 4. Let u be a torqued vector field on an n-dimensional compact Riemannian manifold (M, g) with
torqued form α. If dual vector field v to torqued form α is incompressible, then there exists a point p ∈ M,
such that Ric (u, u) (p) = 0.

Proof. Suppose u is a torqued vector field on an n-dimensional compact Riemannian manifold (M, g)
with torqued form α such that div v = 0. Then by the previous theorem, we have α = 0 and Equation (9)
implies Ψ = 0. Using Equation (11), we conclude

S(u) = −(n− 1)∇σ. (37)
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Since, M is compact, at the critical point p of σ, we get (∇σ) (p) = 0. Thus, Equation (37) implies
Ric (u, u) (p) = 0.

5. Conclusions

As a particular case of Theorem 4, we observe that there is no torqued vector field with dual vector
field to torqued form incompressible on compact Riemannian manifold of positive Ricci curvature.
The Riemannian product Sn(c1)× Sm(c2) is a compact Riemannian manifold which does not have
positive sectional curvature. A natural question is to know whether there exists a torqued vector field
on this product with incompressible dual vector field to the torqued form. Further, it will be interesting
to know whether there exists a torqued vector field on the hyperbolic space Hn(−c), c > 0.
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