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Abstract: The paper describes approximations properties of monotonically increasing sequences
of invariant subspaces of a self-adjoint operator, as well as their symmetric generalizations in a
complex Hilbert space, generated by its positive powers. It is established that the operator keeps
its spectrum over the dense union of these subspaces, equipped with quasi-norms, and that it is
contractive. The main result is an inequality that provides an accurate estimate of errors for the best
approximations in Hilbert spaces by these invariant subspaces.
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1. Introduction

Our purpose is to study the approximation properties of monotonically increasing family of
invariant subspaces

{
Lτ

p(A) : τ ≥ 1
}

relative to a given self-adjoint unbounded operator A in a

complex Hilbert space H. The monotonicity property of
{

Lτ
p(A) : τ ≥ 1

}
is crucial to obtain an

accurate error estimate for the best approximations in the space H using the A-invariant subspaces
Lτ

p(A). In the paper, we propose the construction of the increasing family Lτ
p(A) on the basis of positive

operator degrees As (s ≥ 0). Such subspaces have the following form:

Lτ
p(A) =

{
x ∈ H : ‖x‖Lτ

p(A) < ∞
}

, ‖x‖Lτ
p(A) =

(∫ ∞

0
‖(A/τ)sx‖p

H e−sds
)1/p

in the case 1 ≤ p < ∞ (specified also for p = ∞), where the index τ ≥ 1 appears as a parameter for the
monotonic ordering of these subspaces relative to the contractive inclusions

Lτ
p(A) # Lt

p(A), τ < t.

It is also examined the monotonically increasing symmetric family of interpolation subspaces in
H with the parameter 1 ≤ q < ∞,

Lτ
p,q(A) =

(
Lτ

p0
(A), Lτ

p1
(A)

)
ϑ,q

, 1 ≤ p0, p1 ≤ ∞, p = {p0, p1},

generated by a quadratic modified real interpolation method with 0 < ϑ < 1, as well as the increasing
family of Lorentz-type subspaces Lτ

p,q(A) = (Lτ
r (A), Lτ

∞(A))ϑ,q in H with a scalar index
p = r/ϑ (r ≥ 1).
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Each of the subspaces Lτ
p(A) (also their symmetric versions Lτ

q,p(A)) is complete and A-invariant.
Moreover, the restrictions A to Lτ

p(A) are bounded, namely
∥∥A |Lτ

p(A)

∥∥
L(Lτ

p(A))
≤ τ for all r ≥ 1

(see Theorem 1). On the quasi-normed union of these subspaces,

Lp(A) =
⋃

τ≥1

Lτ
p(A) with the quasi-norm |x|Lp(A) = inf

{
τ ≥ 1 : x ∈ Lτ

p(A)
}

the operator A is contractive and keeps its spectrum (see, Theorem 2), i.e.,

σ(A) =
⋃

τ≥1

σ
(

A |Lτ
p(A)

)
.

To estimate the best approximation errors in the Hilbert space H by monotonically increasing
family of invariant subspaces Lτ

p(A) (also their symmetric versions Lτ
q,p(A)), we apply the so-called

best approximation E-functional (more details in [1,2])

Ep
(
t, x; Lp(A), H

)
= inf

{
‖x− x0‖H : x ∈ Lp(A), ‖x0‖Lp(A) < t

}
and the corresponding quasi-normed approximative space

E2ϑ

(
Lp(A), H

)
=
{

x ∈ Lp(A) + H : ‖x‖E2ϑ
< ∞

}
,

‖x‖E2ϑ
=

(∫ ∞

0

[
t−1+1/ϑEp(t, x)

]2ϑ dt
t

)1/2ϑ

.

The main result is the following isomorphism of quasi-normed spaces

E2ϑ

(
Lp(A), H

)
=
(

Lp(A), H
)1/ϑ

ϑ,2 ,

where on the right-hand side is the 1/ϑ-power of best approximation space generated by the quadratic
modified real interpolation method with 0 < ϑ < 1. This isomorphism provides the validity of the
following estimation for approximation errors:

Ep
(
t, x; Lp(A), H

)
≤ t1−1/ϑ

(
(1/ϑπ) sin(ϑπ)

)1/2ϑ ‖x‖E2ϑ
, t > 0

for all elements x ∈ E2ϑ

(
Lp(A), H

)
(see Theorem 3 that is also true for symmetric spaces Lp,q(A)).

This inequality fully characterizes the subspace of elements from H in relation to rapidity
of approximations.

Finally, note that inverse and direct theorems on best approximation estimates are proven in [3]
where, instead of the E-functional, the modulus of smoothness was used. Exact estimations for
approximation errors of spectral approximations for unbounded operators in Banach spaces, using the
Besov-type quasi-norms, as well as many examples of Besov-type spaces generated by various
unbounded operators, in particular elliptical operators, are given in the papers [4,5].

In the present paper, notions about interpolation and approximations tools are used without
additional mentions from well-known books [1,6].

2. Quadratic Real Interpolation of Invariant Subspaces

We assume everywhere that, on a Hilbert complex space H, endowed with the norm
‖ · ‖H := 〈· | ·〉1/2, a self-adjoint unbounded linear operator A with the dense domain D(A) is given.
By the spectral theorem, the operator A and its positive powers have the following spectral expansions:

A =
∫

σ(A)
λ dµA(λ), As =

∫
σ(A)

λs dµA(λ), s ∈ [0, ∞)
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such that A0x = x for all x ∈ H (see, e.g., [7]), where µA is a unique projection-valued measure
determined on its spectrum σ(A) ⊂ R with values in the Banach space of bounded linear operators
L(H) that can be extended on R \ σ(A) as zero. For any Borel set Ω ⊂ R, the spectral subspace is
defined to be the range

HΩ := R[µA(Ω)] ⊂ H.

Consider subspaces generated by domains of all powers As of the operator A

D∞(A) :=
⋂
s≥0
Ds(A), Ds(A) := {x ∈ H : Asx ∈ H} .

Let 1 ≤ τ < ∞ and 1 ≤ p ≤ ∞. The following mappings

D∞(A) 3 x 7−→ (A/τ)sx ∈ H, s ≥ 0

are well defined. Hence, for any τ ≥ 1, we can assign the linear subspace Lτ
p(A) ⊂ H which by

definition contains all elements x ∈ H such that the scalar function

xτ
A : [0, ∞) 3 s 7−→ ‖(A/τ)sx‖H

has the finite norm

‖x‖Lτ
p(A) :=


(∫ ∞

0
‖(A/τ)sx‖p

H e−sds
)1/p

if 1 ≤ p < ∞,

sup
s≥0
‖ e−s(A/τ)sx‖H if p = ∞.

This definition is correct, since, for any x, y ∈ H and α ∈ C, the following inequality holds:

‖x + αy‖Lτ
p(A) =

(∫ ∞

0
‖(A/τ)s(x + αy)‖p

H e−sds
)1/p

=

(∫ ∞

0
‖(A/τ)sx + α(A/τ)sy‖p

H e−sds
)1/p

≤ ‖x‖Lτ
p(A) + |α|‖y‖Lτ

p(A)

for any 1 ≤ p < ∞. The case p = ∞ is similar, which proves the linearity of Lτ
p(A).

We will apply a quadratic modified real interpolation method. Given a couple of normed spaces
Lτ

ı (A) (ı = 0, 1), (
Lτ

p0
(A), Lτ

p1
(A)

)
, 1 ≤ p0, p1 ≤ ∞,

where elements x = x0 + x1 of the algebraic sum Lτ
p0
(A) + Lτ

p1
(A) are such that xı ∈ Lτ

ı (A), we assign
the quadratic K-functional with t > 0

K(t, x) = K
(

t, x; Lτ
p0
(A), Lτ

p1
(A)

)
= inf

x=x0+x1

(
‖x0‖2

Lτ
p0 (A) + t2‖x1‖2

Lτ
p1 (A)

)1/2

(see [2] (Definition 3.3), [8] (p. 318)). Note that this couple of normed spaces with a fixed τ ≥ 1 and an
operator A can be considered as a subspace in Lτ

p0
(A) + Lτ

p1
(A) ⊂ H endowed with the quasi-norm

‖ f ‖Lτ
p0 (A)+Lτ

p1 (A) = inf
x=x0+x1

(
‖x0‖2

Lτ
p0 (A) + ‖x1‖2

Lτ
p1 (A)

)1/2
,

which guarantees its compatibility ([1] (3.11)).
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For any pair indexes {0 < ϑ < 1, 1 ≤ q < ∞} or {0 < ϑ ≤ 1, q = ∞} with the help of a quadratic
K-functional, we define the interpolation space(

Lτ
p0
(A), Lτ

p1
(A)

)
ϑ,q

=

{
x ∈ Lτ

p0
(A) + Lτ

p1
(A) : ‖x‖(Lτ

p0 (A),Lτ
p1 (A))

ϑ,q
< ∞

}
,

‖x‖(Lτ
p0 (A),Lτ

p1 (A))
ϑ,q

=


(∫ ∞

0

[
t−ϑK(t, x)

]q dt
t

)1/q
if 1 ≤ q < ∞

sup
0<t<∞

t−ϑK(t, x) if q = ∞

endowed with the norm ‖ · ‖(Lτ
p0 (A),Lτ

p1 (A))
ϑ,q

that is determined in the case q < ∞ using the Haar

measure dt/t on the multiplicative group (0, ∞). For this interpolation space, we will briefly denote

Lτ
p,q(A) :=

(
Lτ

p0
(A), Lτ

p1
(A)

)
ϑ,q

with a vector index p = (p0, p1). (1)

In particular, for any 1 ≤ r < ∞ and 1 ≤ q ≤ ∞, the Lorentz-type subspace in H can be defined
with the help of the following linear isomorphism (see, e.g., [1] (p. 109), [9] (Proposition 2))

Lτ
p,q(A) = (Lτ

r (A), Lτ
∞(A))ϑ,q with a scalar index p = r/ϑ. (2)

In accordance with this definition, the Lorentz subspace Lτ
p,q(A) ⊂ H contains all scalar functions

xτ
A(s) = ‖(A/τ)sx‖H in the variable s ∈ [0, ∞) belonging to Lq[0, ∞), i.e., such that

‖xτ
A‖Lp,q(A) :=

∥∥∥s1/p x̂τ
A(s)

∥∥∥
Lq [0,∞)

< ∞,

where the non-increasing rearrangement x̂τ
A of the function xτ

A,

x̂τ
A(s) := inf

{
$ : λ [z ∈ [0, ∞) : |xτ

A(z)| > $] ≤ s
}

,

is defined via the Lebesgue measure λ on [0, ∞). In other words, the function [0, ∞) 3 s 7→ s1/p x̂τ
A(s)

should be Lq-integrable.
Let us describe the basic properties of the normed spaces Lτ

p(A) and Lτ
q,p(A).

Theorem 1. (a) The subspaces Lτ
p(A) and Lτ

q,p(A) are invariant with respect to the operator A and the
following inclusions

Lτ
p(A) # H, Lτ

p,q(A) # H,

Lτ
p(A) # Lt

p(A), Lτ
p,q(A) # Lt

p,q(A)
(3)

for any t > τ ≥ 1 are contractive.
(b) The restrictions A |Lτ

p(A) and A |Lτ
p,q(A) of A on the subspaces Lτ

p(A) and Lτ
q,p(A), respectively,

are bounded operators satisfying the inequalities∥∥∥A |Lτ
p(A)

∥∥∥
L(Lτ

p(A))
≤ τ,

∥∥∥A |Lτ
p,q(A)

∥∥∥
L(Lτ

p(A))
≤ τ. (4)

(c) The spaces Lτ
p(A) and Lτ

p,q(A) with τ ≥ 1 are complete.
(d) Every spectral subspace HΩ with a Borel Ω ⊂ σ(A) is contained in some Lτ

p(A) and Lτ
p,q(A) with a

large enough τ ≥ 1.

Proof. (a) The inequality ‖x‖H ≤ sups≥0 e−s‖(A/τ)sx‖H = ‖x‖Lτ
∞(A) immediately yields the

contractive embedding Lτ
∞(A) # H.
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For 1 ≤ p < ∞, the following inequality with arbitrary ε > 0 holds:

‖x‖p
Lτ

p(A)
=
∫ ∞

0
‖(A/τ)sx‖p

H e−sds

=

(∫ ε

0
+
∫ ∞

ε

)
‖(A/τ)sx‖p

H e−sds ≥
∫ ε

0
‖(A/τ)sx‖p

H e−sds.

By Lagrange’s mean value theorem, for any ε, there exists 0 < c < ε such that∫ ε

0
‖(A/τ)sx‖p

H e−sds = ‖x‖p
H + εe−c‖(A/τ)cx‖p

H ≥ ‖x‖
p
H . (5)

This yields the contractive embedding Lτ
p(A) # H for any 1 ≤ p < ∞.

Consider the case of a vector index p = (p0, p1) with 1 ≤ p0, p1 < ∞. Let 1 ≤ q ≤ ∞. By the
known interpolation property of K-functionals (see [1] (p. 81) or [8] (Theorem B.2)), the contractive
inclusions Lτ

pı(A) # H with both indexes ı = 0, 1 imply that the inclusion(
Lτ

p0
(A), Lτ

p1
(A)

)
ϑ,q

# H with 0 < ϑ < 1

is contractive. In particular, it holds for the Lorentz-type spaces. Thus, as a summary result, we obtain
the inequality

‖x‖H ≤ ‖x‖Lτ
p,q(A), x ∈ Lτ

p,q(A). (6)

For any τ > t ≥ 1 and 1 ≤ p < ∞, we have ‖(A/τ)sx‖p
H ≤ ‖(A/t)sx‖p

H . Hence,

‖x‖p
Lτ

p(A)
=
∫ ∞

0
‖(A/τ)sx‖p

H e−sds

≤
∫ ∞

0
‖(A/t)sx‖p

H e−sds = ‖x‖p
Lt

p(A)

yields the contractive embedding Lt
p(A) # Lτ

p(A). Likewise,

‖x‖Lτ
∞(A) = sup

s≥0
e−s‖(A/τ)sx‖H

≤ sup
s≥0

e−s‖(A/t)sx‖H = ‖x‖Lt
∞(A).

Thus, Lt
p(A) # Lτ

p(A) for p = ∞ is also contractive.
Similarly, for the subspaces Lτ

q,p(A), we obtain the inequality

‖x‖Lτ
p,q(A) ≤ ‖x‖Lt

p,q(A), x ∈ Lt
p,q(A), t < τ. (7)

The inequality (6) and (7) together yield all inclusions (3).

(b) Since A(A/τ)sx = τ(A/τ)s+1x for all τ ≥ 1, we get

‖Ax‖p
Lτ

p(A)
=
∫ ∞

0
‖(A/τ)s Ax‖p

H e−sds =
∫ ∞

0
‖A(A/τ)sx‖p

H e−sds

= τp
∫ ∞

0
‖(A/τ)s+1x‖p

H e−sds

= τp
∫ ∞

1
‖(A/τ)sx‖p

H e−sds1/p ≤ τp‖x‖p
Lτ

p(A)
.

Applying the already mentioned interpolation property of K-functionals (see, [1] (p. 81) or [8]
(Theorem B.2)), we obtain the inequality
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‖Ax‖Lτ
p,q(A) ≤ τ‖x‖Lτ

p,q(A) for 1 ≤ q ≤ ∞

and any p = (p0, p1) with 1 ≤ p0, p1 < ∞. It at once follows (4).

(c) Let (xn) be a fundamental sequence in Lτ
p(A). For every ε > 0, there exists nε ∈ N such that

‖xn − xm‖Lτ
p(A) < ε for all n, m ≥ nε. By the inequality (5), for any ε > 0 and t ≥ 0, we find

‖(A/τ)tx‖p
Lτ

p(A)
=
∫ ∞

0
‖(A/τ)t+sx‖p

H e−sds

=

(∫ ε

0
+
∫ ∞

ε

)
‖(A/τ)t+sx‖p

H e−sds

≥
∫ ε

0
‖(A/τ)t+sx‖p

H e−sds ≥ ‖(A/τ)tx‖p
H .

In particular, this inequality hold for the indexes p = 1, ∞. Consequently, by the known interpolation
property (see, e.g., [9] (Theorem 4)), we obtain

‖(A/τ)sx‖Lτ
p,q(A) ≥ ‖(A/τ)sx‖H for 1 ≤ q ≤ ∞, s ≥ 0.

It follows that {xn : n ∈ N} and {(A/τ)sxn : n ∈ N}, for every s ≥ 0, are fundamental sequences
in H. By the completeness of H, there exist x, y ∈ H such that xn → x and (A/τ)sxn → y by the
norm in H. The graph of the operator As is a closed subspace in H × H; therefore, y = (A/τ)sx
and x ∈ Ds(A). Since, it holds for any s ≥ 0, we have x ∈ D∞(A). Hence, (A/τ)sxn → (A/τ)sx is
convergent by the norm in H for any s ≥ 0.

Furthermore, we may apply a standard reasoning. For every s ≥ 0, there exists the following
limits (A/τ)s(xn − xm)→ 0 and (A/τ)s(xm − x)→ 0 for all mε,k ≥ nε such that

‖(A/τ)s(xm − xn)‖H < ε e−s and ‖(A/τ)s(xm − x)‖H < ε e−s

for all m ≥ mε,k. From ‖(A/τ)sx‖H ≤ ‖(A/τ)sxnε‖H + ‖(A/τ)s(xm − xnε)‖H + ‖(A/τ)s(xm − x)‖H ,
it follows that

‖(A/τ)sx‖H < ‖(A/τ)sxnε‖H + 2ε e−s for all s ≥ 0.

By integration with the weight e−s, we find

‖x‖Lτ
p,q(A) ≤ ‖xnε‖Lτ

p,q(A) + 4ε e−s.

Hence, x ∈ Lτ
p,q(A), which is the same in the case Lτ

p(A). Moreover, by integration with the weight
e−s, the inequality

‖(A/τ)s(xn − x)‖H ≤
∥∥∥(A/τ)s(xmε,k − x)

∥∥∥
H
+
∥∥∥(A/τ)s(xn − xmε,k )

∥∥∥
H

,

and we find that ‖xn − x‖Lτ
p,q(A) ≤ 4ε e−s for all n ≥ nε. Thus, Lτ

p,q(A) is complete. The case Lτ
p(A) is

fully similar.
An alternative reasoning can also be used. Since both spaces Lτ

p(A) and Lτ
∞(A) are

complete, the interpolation space Lτ
p,q(A) is also complete in accordance with ([1] (Theorem 3.4.2

& Lemma 3.10.2)), [6].

(d) Let 1 ≤ sup{|λ| : λ ∈ Ω} ≤ τ and 1 ≤ p < ∞. In accordance with the spectral theorem,
the restriction A|HΩ is a bounded operator on the spectral subspace HΩ. Hence, using the inequality
‖Ax‖H ≤ ‖A|HΩ‖‖x‖H , we get∫ ∞

0
‖(A/τ)sx‖p

H e−sds ≤
(
‖A|HΩ‖‖x‖H

)p
∫ ∞

0
τ−sp e−sds
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for any x ∈ HΩ, where ∫ ∞

0
τ−sp e−sds =

1
1 + p ln τ

and ‖A|HΩ‖ < ∞.

Thus, every spectral subspace HΩ is contained in some Lτ
p(A) with a large enough τ.

For p = ∞, we similarly obtain

sup
s≥0
‖(A/τ)sx‖H ≤ ‖A|HΩ‖‖x‖H sup

s≥0
(1/τ)s e−s ≤ ‖A|HΩ‖‖x‖H

for all x ∈ HΩ, i.e., HΩ ⊂ Lτ
∞(A) for a large enough τ ≥ 1.

3. Dense Quasi-Normed Invariant Subspaces

Now, we consider the union

Lp(A) :=
⋃

τ≥1

Lτ
p(A) with the quasi-norm |x|Lp(A) := inf

{
τ ≥ 1 : x ∈ Lτ

p(A)
}

which is a linear subspace in H, in view of the monotonicity of subspaces resulting from Theorem 1(a).
Similarly, we define the linear subspace in H

Lp,q(A) :=
⋃

τ≥1

Lτ
p,q(A) with the quasi-norm |x|Lp,q(A) := inf

{
τ ≥ 1 : x ∈ Lτ

p,q(A)
}

.

The correctness of these definitions follows from the elementary considerations that

|x + y|Lp,q(A) = inf
{

τ ≥ 1 : x + y ∈ Lτ
p,q(A)

}
= inf

{
t + s ≥ 1 : x + y ∈ Lt+s

p,q (A)
}

≤ inf
{

t + s ≥ 1 : x ∈ Lt
p,q(A), y ∈ Ls

p,q(A)
}
≤ |x|Lp,q(A) + |y|Lp,q(A)

for all x ∈ Lt
p,q(A), y ∈ Ls

p,q(A). Obviously, |x|Lp,q(A) = | − x|Lp,q(A). As a result, | · |Lp,q(A) is
a quasi-norm.

In the following statements, we describe the basic properties of quasi-normed spaces Lp(A)

and Lp,q(A).

Theorem 2. (a) The linear subspaces Lp(A) and Lp,q(A) are dense in H and the restrictions of A to these both
subspaces are contractive.

(b) The spectrum σ(A) of the operator A allows the following decompositions:

σ(A) =
⋃

τ≥1

σ
(

A |Lτ
p(A)

)
=
⋃

τ≥1

σ
(

A |Lτ
p,q(A)

)
.

Proof. (a) By the spectral theorem, the collection of spectral subspaces HΩ with all Borel subsets
Ω ⊂ σ(A) is total in H. Hence, from Theorem 1(c), it immediately follows that the union
Lp,q(A) =

⋃
τ≥1 Lτ

p,q(A) is dense in H.
Since A[Lτ

p,q(A)] ⊂ Lτ
p,q(A) and Lτ

p,q(A) ⊂ Lt
p,q(A) for all t ≥ τ, we find that

|Ax|Lp,q(A) = inf
{

τ ≥ 1 : Ax ∈ Lτ
p,q(A)

}
≤ inf

{
τ ≥ 1 : x ∈ Lτ

p,q(A)
}
= |x|Lp,q(A).

The case of spaces Lτ
p,q(A) is similar.
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(b) For any λ ∈ C \ σ(A) and x ∈ Lτ
p(A), the equality

(λ− A)−1(A/τ)sx = (A/τ)s(λ− A)−1x, s ≥ 0

holds. Thus, in the case 1 ≤ p < ∞, we get

‖(λ− A)−1x‖p
Lτ

p(A)
=
∫ ∞

0
‖(λ− A)−1(A/τ)sx‖p

H e−sds

≤ ‖(λ− A)−1‖p
L(H)

∫ ∞

0
‖(A/τ)sx‖p

H e−sds

= ‖(λ− A)−1‖p
L(H)
‖x‖p

Lτ
p(A)

.

Thus, λ ∈ C \ σ(A|Lτ
p(A)). It follows that σ

(
A |Lτ

p(A)

)
⊂ σ(A) for any τ ≥ 1. For p = ∞, the reasoning

is similar.
Let Ω ⊂ σ(A) be a Borel set. By Theorem 1(c) for the corresponding spectral subspace HΩ,

there exists τ ≥ 1 such that Ω ⊂ [−τ, τ]. Then, for any λ ∈ C \ σ(A|Lτ
p(A)), we have

‖(λ− A)−1x‖p
Lτ

p(A)
≤ ‖(λ− A)−1‖L(Lτ

p(A))‖x‖Lτ
p(A).

If (xn) is a fundamental sequence in Lτ
p(A) with the limit x ∈ Lτ

p(A), then the following sequences(
(λ− A)−1(A/τ)sxn

)
for every s ≥ 0 are fundamental in H and

lim
n→∞

(λ− A)−1(A/τ)sxn = (λ− A)−1(A/τ)sx

by the closeness of operators (A/τ)s on H.
By Theorem 1(c) HΩ ⊂ Lτ

p(A), hence the resolvent (λ− A)−1 is well defined and closed on HΩ.
By the closed graph theorem, the resolvent (λ− A)−1 is bounded on HΩ for any λ ∈ C \ σ(A|Lτ

p(A)),
i.e., λ ∈ C \ σ(A|HΩ). As a result,

σ(A|HΩ) ⊂ σ(A|Lτ
p(A)) if Ω ⊂ [−τ, τ].

The inclusions that are implied from the spectral theorem still need to be used. As a result,

σ(A) =
⋃

Ω⊂σ(A)

σ(A|HΩ) ⊂
⋃

τ≥1

σ
(

A |Lτ
p(A)

)
⊂ σ(A).

The case of the space Lτ
p,q(A) with 1 ≤ q < ∞ is completely similar.

Remark 1. Since At−s(A/τ)sx = τt−s(A/t)rx for all t > s ≥ 0, we can rewrite the first inequality (4) as

‖At−sx‖Lτ
p(A) =

(∫ ∞

0
‖At−s(A/τ)sx‖p

H e−sds
)1/p

= τt−s
(∫ ∞

0
‖(A/τ)s+t−sx‖p

H e−sds
)1/p

= τt−s
(∫ ∞

t−s
‖(A/τ)sx‖p

H e−sds
)1/p

≤ τt−s‖x‖Lτ
p(A).

4. Estimates of Best Approximation Errors

We study in this section the case of best approximation, where the compatible pairs are
quasi-normed invariant subspaces Lp,q(A) in the initial Hilbert space H, generated by a given
self-adjoint operator

A : D(A) 3 x 7→ Ax ∈ H.
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Let 0 < ϑ < 1. For the pair indexes 1 ≤ τ, q < ∞, we assign the Banach spaces

Lτ
p,q(A) =


(

Lτ
p0
(A), Lτ

p1
(A)

)
ϑ,q

, p = (p0, p1), 1 ≤ p0, p1 ≤ ∞,

(Lτ
r (A), Lτ

∞(A))ϑ,q , p = r/ϑ, 1 ≤ r < ∞.

We will investigate the compatible couple of spaces
(

Lp,q(A), H
)

in which

Lp,q(A) =
⋃

τ≥1

Lτ
p,q(A), endowed with |x|Lp,q(A) := inf

{
τ ≥ 1 : x ∈ Lτ

p,q(A)
}

,

is a quasi-normed subspace in the Hilbert space H. This couple is compatible, since the sum
Lp,q(A) + H possesses the well defined quasi-norm

‖x‖Lp,q(A)+H = inf
x=x0+x1

(
|x0|2Lp,q(A) + ‖x1‖2

H

)1/2
.

Apply now to this compatible couple
(

Lp,q(A), H
)

the quadratic modified real interpolation
method. Let us define the suitable quadratic K-functional with t > 0

Kp,q(t, x) = Kp,q
(
t, x; Lp,q(A), H

)
= inf

x=x0+x1

(
|x0|2Lp,q(A) + t2‖x1‖2

H

)1/2
.

Using this functional, we define the corresponding real interpolation space

(
Lp,q(A), H

)
ϑ,2 =

{
x ∈ Lp,q(A) + H : ‖x‖(Lp,q(A),H)ϑ,2

< ∞
}

,

‖x‖(Lp,q(A),H)ϑ,2
:=
(∫ ∞

0

[
t−ϑKp,q(t, x)

]2 dt
t

)1/2
,

endowed with the quasi-norm ‖ · ‖(Lp,q(A),H)ϑ,2
.

Furthermore, we will deal with the problem of estimating the best approximations of elements of
the Hilbert space H by invariant subspaces Lp,q(A) of the operator A.

To estimate these best approximation errors, we apply (see, e.g., [1] (Chapter 7)), the so-called
approximation E-functional Eq,p(t, x; Lp,q(A), H) with x ∈ Lp,q(A) and t > 0 in the following form:

Eq,p(t, x) := Eq,p(t, x; Lp,q(A), H)

= inf
{
‖x− x0‖H : x ∈ Lp,q(A), ‖x0‖Lp,q(A) < t

}
.

(8)

For each index 0 < ϑ < 1, we assign the quadratic approximation subspace

E2ϑ

(
Lp,q(A), H

)
⊂ Lp,q(A) + H

endowed with the quasi-norm ‖ · ‖E2ϑ
, where

E2ϑ := E2ϑ

(
Lp,q(A), H

)
=
{

x ∈ Lp,q(A) + H : ‖a‖E2ϑ
< ∞

}
,

‖x‖E2ϑ
:=
(∫ ∞

0

[
t−1+1/ϑEq,p(t, x)

]2ϑ dt
t

)1/2ϑ

.
(9)

Following ([1] (Exercise B.5)) (see also [8] (Appendix B, p. 329)), we use the normalization factor

Nϑ,2 : =
(∫ ∞

0
t1−2ϑ/(1 + t2) dt

)−1/2
= ((2/π) sin(πϑ))1/2 .
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The following theorem contains the main result:

Theorem 3. (a) The following isomorphism with equivalent quasinorms

E2ϑ

(
Lp,q(A), H

)
=
(

Lp,q(A), H
)1/ϑ

ϑ,2 (10)

holds, where
(

Lp,q(A), H
)1/2ϑ

ϑ,2 means the real interpolation space
(

Lp,q(A), H
)

ϑ,2 endowed with the quasi-norm

‖x‖1/2ϑ

(Lp,q(A),H)ϑ,2
.

(b) The following estimation of best spectral approximation errors

Ep,q(t, x) ≤ t1−1/ϑ
(
(1/ϑπ) sin(ϑπ)

)1/2ϑ ‖x‖E2ϑ
t > 0 (11)

is achieved for all elements x ∈ E2ϑ

(
Lp,q(A), H

)
.

Proof. (a) First, note that t−1+1/ϑEp,q(t, x)→ 0 as t→ 0 and as t→ ∞ (see [1] (Section 7.1)).
Let us define

K∞(t, x) := inf
x=x0+x1

max
(
‖x0‖Lp,q(A), t‖x1‖H

)
, t > 0.

Then, similarly as the above, t−ϑK∞(t, x)→ 0 as t→ 0 and as t→ ∞ (see [1] (Section 7.1)). Integrating
by parts with the change of variables v = t/Ep,q(t, x), we similarly to [4] get that

∫ ∞

0

(
v−ϑK∞(v, x)

)2 dv
v

= − 1
2ϑ

∫ ∞

0
K∞(v, x)2dv−2ϑ

=
1

2ϑ

∫ ∞

0
v−2ϑdK∞(v, x)2 =

1
2ϑ

∫ ∞

0

(
t/Ep,q(t, x)

)−2ϑ dt2

=
1

4ϑ

∫ ∞

0

(
t−1+1/ϑEp,q(t, x)

)2ϑ dt
t

.

(12)

The following inequalities are a consequence of definitions K∞ and Kp,q (see [2] (3.1)),

K∞(t, x) ≤ Kp,q(t, x) ≤ 21/2K∞(t, x). (13)

According to the above equality (12) and the left inequality from (13), we have

1
4ϑ
‖x‖2ϑ

E2ϑ
=

1
4ϑ

∫ ∞

0

(
t−1+1/ϑEp,q(t, x)

)2ϑ dt
t

=
∫ ∞

0

(
v−ϑK∞(v, x)

)2 dv
v

≤
∫ ∞

0

(
v−ϑKp,q(v, x)

)2 dv
v

= ‖x‖2
(Lp,q(A),H)ϑ,2

.

(14)

On the other hand, from the right inequality (13), it follows that

‖x‖2
(Lp,q(A),H)ϑ,2

=
∫ ∞

0

(
v−ϑKp,q(v, x)

)2 dv
v
≤ 2

∫ ∞

0

(
v−ϑK∞(v, x)

)2 dv
v

=
2

4ϑ

∫ ∞

0

(
t−1+1/ϑEp,q(t, x)

)2ϑ dt
t
=

2
4ϑ
‖x‖2ϑ

E2ϑ
.

As a result, from the previous inequalities, we get

‖x‖2
(Lp,q(A),H)ϑ,2

≤ 2(4ϑ)−1‖x‖2ϑ
E2ϑ
≤ 2‖x‖2

(Lp,q(A),H)ϑ,2
(15)

for all x ∈ Lp,q(A). Hence, the isomophism (10) holds. The statement (a) is proved.
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(b) Let us use the auxiliary function

f (v/t) = (v/t)
(

1 + (v/t)2
)−1/2

, t, v > 0.

By integrating both sides of f (v/t)2Kp,q(t, x)2 ≤ Kp,q(v, x)2, we find

∫ ∞

0

(
v−ϑ f (v/t)

)2 dv
v

Kp,q(t, x)q ≤
∫ ∞

0

(
v−ϑKp,q(v, x)

)2 dv
v

= ‖x‖2
(Lp,q(A),H)ϑ,2

,

as well as ∫ ∞

0
v−2ϑ(v/t)2

(
1 + (v/t)2

)−1 dv
v

=
∫ ∞

0

(
v−ϑ f (v/t)

)2 dv
v

= (tϑ Nϑ,2)
−2.

It follows that ( ∫ ∞

0

(
v−ϑ f (v/t)

)2 dv
v

Kp,q(t, x)2
)1/2

=
Kp,q(t, x)

tϑ Nϑ,2
≤ ‖x‖(Lp,q(A),H)ϑ,2

.

Thus, Kp,q(t, x) ≤ tϑ Nϑ,2‖x‖(Lp,q(A),H)ϑ,2
and, taking into account (13), we have

K∞(t, x) ≤ tϑ Nϑ,2‖x‖(Lp,q(A),H)ϑ,2
.

Applying the known inequality from [1] (Lemma 7.1.2), we get that, for a given v > 0, there exists
t > 0 such that

v1−ϑEp,q(v, x)ϑ ≤ t−ϑK∞(t, x) ≤ Nϑ,2‖x‖(Lp,q(A),H)ϑ,2
.

As a result, from (15), we obtain v1−ϑEp,q(v, x)ϑ ≤ 21/2(4ϑ)−1/2Nϑ,2‖x‖ϑ
E2ϑ

or

Ep,q(v, x) ≤ v−1+1/ϑ21/2ϑ(4ϑ)−1/2ϑ N1/ϑ
ϑ,2 ‖x‖E2ϑ

.

Substituting values of the normalisation factor Nϑ,2, we get the inequality (11).

5. Conclusions

The motivation of a given publication is to present precise estimates of best quadratic spectral
approximations for self-adjoint operators in Hilbert space. The solution to this problem is included
in the main Theorem 3. This is our first quick publication in this direction. In the future, we plan
to analyze the connection of our results with various already known studies in the near areas of
the best spectral approximations theory. At the moment, the analysis of such connections is not yet
complete—in particular, towards the research presented in publications from recent years [10,11].
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