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Abstract: Consider a compact manifold with boundary, homeomorphic to the N-dimensional disk,
and a Tonelli Lagrangian function defined on the tangent bundle. In this paper, we study the
multiplicity problem for Euler-Lagrange orbits that satisfy the conormal boundary conditions and
that lay on the boundary only in their extreme points. In particular, for suitable values of the energy
function and under mild hypotheses, if the Tonelli Lagrangian is reversible then the minimal number
of Euler-Lagrange orbits with prescribed energy that satisfies the conormal boundary conditions is N.
If L is not reversible, then this number is two.
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1. Introduction

Let Ω be a compact and connected N-manifold of class C3 with boundary ∂Ω ∈ C2, homeomorphic
to an N-dimensional disk DN ⊂ RN . For the sake of presentation, let Ω be embedded into
a larger N-manifold M, which is the closure of an open set containing Ω. Let L : TM → R
be a Tonelli Lagrangian, namely a fiberwise strictly convex and superlinear function of class C2.
The convexity assumption ensures that the Euler-Lagrange equation associated with L, which in local
coordinates reads

dqL(γ(t), γ̇(t))− d
dt

(
dvL(γ(t), γ̇(t))

)
= 0, (1)

defines a locally well-posed Cauchy problem.

Definition 1. An Euler-Lagrange chord is a curve γ : [0, T]→ Ω such that

• γ satisfies the Euler-Lagrange Equation (1);
• γ(]0, T[) ⊂ Ω and γ(0), γ(T) ∈ ∂Ω.

If γ also satisfies the conormal boundary conditions, namely

γ(i) ∈ ∂Ω, dvL (γ(i), γ̇(i))|Tγ(i)∂Ω = 0, i = 0, T, (2)

then it is called Euler-Lagrange conormal chord (ELCC).

This work provides some existence and multiplicity results for ELCCs with suitable values of the
energy function

E : TM→ R, E(q, v) = dvL(q, v)[v]− L(q, v).
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Indeed, along the solutions of the Euler-Lagrange equation, the energy function is constant,
namely if γ : [0, T] → M satisfies (1), then there exists a constant κ such that E(γ, γ̇) = κ. In our
theorem, the existence and the multiplicity of ELCCs depend on the non existence of certain orbits,
defined as follows.

Definition 2. An Euler-Lagrange conormal-tangent chord (ELCTC) is an Euler-Lagrange chord γ : [0, T]→ Ω
such that

dvL(γ(0), γ̇(0))|Tγ(0)∂Ω = 0 and γ̇(T) ∈ Tγ(T)∂Ω.

In other words, an ELCTC is an Euler-Lagrange chord that satisfies the conormal boundary
condition in its initial point and arrives tangentially on the boundary of Ω.

Let us define
m(L) = −min

q∈Ω
min

v∈TqM
L(q, v), (3)

which is well defined since Ω is compact and L is fiberwise convex. Finally, we say that two curves
γ1 : [0, T1] →M and γ2 : [0, T2] →M are geometrically distinct if γ([0, T1]) 6= γ([0, T2]). Now we are
ready to state our main theorem.

Theorem 1 (Main Theorem). Let Ω ⊂ M be an N-disk and L : TM → R a Tonelli Lagrangian.
Then, for every fixed κ > m(L), either:

• there exists an Euler-Lagrange conormal-tangent chord with energy κ

or

• if L is reversible, namely L(q, v) = L(q,−v) for all (q, v) ∈ TM, then there are at least N geometrically
distinct Euler-Lagrange conormal chords with energy κ; if L is not reversible, then there are at least two
Euler-Lagrange conormal chords with energy κ but with different values of the Lagrangian action.

This work generalizes the ones on orthogonal Riemannian and Finsler geodesic chords. When the
Lagrangian is the energy function of a Riemannian or Finsler metric, a solution of the Euler-Lagrange
equations is a geodesic and the conormal boundary conditions are nothing but the orthogonality
condition of the geodesic with the boundary. The Riemannian and Finsler geodesic chords on a
manifold with boundary are strictly related with the brake orbits in a potential well for a Hamiltonian
system of classical type, namely when the hamiltonian function is fiberwise even and convex (cf. [1]).
Indeed, using a Legendre transform and the Maupertuis-Jacobi principle, every brake orbit of a
Hamiltonian system of classical type corresponds to a geodesic in a disk with endpoints on the
boundary, where the disk is endowed with a Jacobi-Finsler metric. Seifert conjectured in [2] that
there are at least N brake orbits in an N-dimensional potential well of a natural Hamiltonian system,
hence where the brake-orbits correspond to the geodesics of a Riemannian metric. This conjecture
has been recently proved in [3], exploiting also some partial results achieved by the same authors in
different previous works (cf. [4–9]), while a preliminary result for the Finsler case is presented in [10].

The proof of the main theorem is based on a variational approach, seeing ELCCs as critical points
of the free-time Lagrangian action functional

Lκ(γ) =
∫ T

0
(L(γ(t), γ̇(t)) + κ) dt,

defined on the set of paths in Ω with endpoints in ∂Ω and of class H1,2, namely absolutely continuous
with derivative in L2. The existence and multiplicity results are then obtained through a minimax
approach, exploiting a particular version of the Ljusternik and Schnirelman category.
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This work directly extends the results achieved in [11], where the main differences are as follows.
Firstly, the main theorem is stated in [11] with the additional hypothesis that if ν : ∂Ω→ TM is a unit
normal vector field with respect along ∂Ω, then

dvL(q, ν)[ξ] = 0, ∀q ∈ ∂Ω, ∀ξ ∈ Tq∂Ω. (4)

This condition, which is trivially satisfied when L is the energy of a Riemannian metric (cf. [9]),
is a key ingredient to exploit the approach presented in [12] to prove that every critical curve of Lκ has
H2,∞ regularity. Instead, in this work we prove the desired regularity following a penalization method
and the hypothesis (4) is not required. Secondly, the geometric distinction of the ELCCs has not been
proved in [11]. Finally, the minimax method applied in this paper is more simple than the one in [11].
Indeed, we reduce our study on a fixed-time problem, so we can avoid to take care of the possible
sources of non-compactness of the time variable in the free-time Lagrangian action functional.

This work also extends [10], since Theorem 1 holds even when L = F2, where F : TM → R
is a Finsler metric on M. In this case, the ELCCs are actually orthogonal Finsler geodesic chords,
namely geodesics with respect the Finsler structure such that γ(0), γ(T) ∈ ∂Ω, γ(]0, T[) ⊂ Ω and

dvF2 (γ(i), γ̇(i))
∣∣∣
Tγ(i)∂Ω

= 0, i = 0, T.

Theorem 1 cannot be directly applied with L = F2, since in this case L is C∞ on TM\0 and
only C1 on the entire tangent bundle. However, for every fixed energy level κ > 0 = m(F2), we can
construct (cf. ([13] Corollary 2.3)) a C2 Tonelli Lagrangian L̃ : TΩ→ R such that L̃(q, v) = F2(q, v) if
F2(q, v) ≥ κ/2, with L̃ reversible if F is reversible. As a consequence, every Euler-Lagrange chord for
L̃ with energy κ is actually a Finsler geodesic.

2. Framework Setup and Notation

For the sake of presentation, we suppose that Ω is embedded into a N-manifoldM including
Ω. Using the Whitney embedding theorem, we can see M as a smooth (C3) submanifold of R2N ,
endowed with the Riemannian structure of the euclidean scalar product 〈·, ·〉 of R2N . A coordinate
system (qi) = (q1, . . . , qN) onM naturally induces a coordinate system (qi, vi), i = 1, . . . , N on the
tangent bundle TM. If f is a real-valued function defined on TM, then dq f and dv f will denote the
derivatives of f with respect to q and v respectively. In a local chart, the derivatives with respect to
qi and vi will be denoted by ∂qi and ∂vi . We will use the Einstein notation, implying summation over
a set of indexed terms in a formula. The norm ‖·‖ : TM → R is that one induced by the euclidean
product in R2N , while we denote by ‖·‖Lp the norm in a Lp space, for any 1 ≤ p ≤ ∞.

2.1. Geometry of Ω

There exists a function Φ : M→ R of class C2 such that Ω = Φ−1(]−∞, 0[), ∂Ω = Φ−1(0) and
dΦ(q) 6= 0 for every q ∈ ∂Ω. For all δ > 0, we set

Ωδ = Φ−1(]−∞, δ[).

By the C2 regularity of Φ, there exists a δ0 > 0 such that

dΦ(q) 6= 0, ∀q ∈ Φ−1([−δ0, δ0]), (5)

and such that Ωδ is compact for any δ ∈ [0, δ0]. We also set

K0 = max
q∈Ωδ0

‖∇Φ(q)‖. (6)
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2.2. Sobolev and Functional Spaces

For any [a, b] ⊂ R, we consider the Sobolev spaces

H1,2([a, b],R2N) =
{

x : [a, b]→ R2N : x is absolutely continuous and ẋ ∈ L2([a, b],R2N)
}

.

and
H1,2

0 ([a, b],R2N) =
{

x ∈ H1,2
(
[a, b],R2N

)
: x(0) = x(1) = 0

}
.

For S ⊂M, set

H1,2([a, b], S) =
{

x ∈ H1,2([a, b],R2N) : x(s) ∈ S for all s ∈ [0, 1]
}

.

It is well known that H1,2([a, b],M) is a manifold of class C2 and its tangent space at x is

TxM =
{

ξ ∈ H1,2([a, b],R2N) : ξ(s) ∈ Tx(s)M for all s ∈ [a, b]
}

.

Due to the presence of the boundary ∂Ω, not all the elements of TxM are always admissible
variations. So we give the following definition.

Definition 3. Let Q be a non-empty subset of H1,2([a, b],M). Then ξ ∈ TxM is an admissible infinitesimal
variation of x in Q if there exists an ε > 0 and a differentiable function h : (−ε, ε)× [a, b]→M such that

• h(0, s) = x(s);
• h(τ, ·) ∈ Q for all τ ∈ (−ε, ε);

• ∂h
∂τ (τ, s)

∣∣∣
τ=0

= ξ(s).

The set of all admissible infinitesimal variation of x in Q is denoted by V−(x,Q).

We identify a curve γ : [0, T] → M with the pair (x, T) ∈ H1,2([0, 1],M) × (0,+∞),
where x(s) = γ(Ts). Thus, the main functional space of our variational problem is

M = {x ∈ H1,2([0, 1], Ω) : x(0), x(1) ∈ ∂Ω}.

If x ∈M, then

V−(x,M) =

{
ξ ∈ TxM : 〈∇Φ(x(0)), ξ(0)〉 = 〈∇Φ(x(1)), ξ(1)〉 = 0,

〈∇Φ(x(s)), ξ(s)〉 ≤ 0 for any s ∈ (0, 1) s.t. x(s) ∈ ∂Ω

}
.

In other words, a vector field ξ ∈ TxM is in V−(x,M) if ξ(0) and ξ(1) are tangent to ∂Ω and ξ(s)
points inside Ω whenever x(s) ∈ ∂Ω.

2.3. The Free-Time Action Functional

The main functional of our variational problem is

Lκ : M×]0,+∞[→ R, Lκ(x, T) = T
∫ 1

0

(
L
(

x(s),
ẋ(s)

T

)
+ κ

)
ds.

Remark 1. The functional Lκ is well-defined only if L(q, v) is quadratic at infinity. Since we are considering
the fixed energy problem for a Tonelli Lagrangian, the energy level E−1(κ) is a compact submanifold of TM and
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we can modify the Lagrangian outside a compact set K ⊇ E−1(κ) to achieve quadratic growth. In particular, we
assume that L(q, v) is quadratic at infinity, namely there is a constant R > 0 such that

L(q, v) =
1
2
‖v‖2 + ϑ(q)[v]−V(q), ∀‖v‖ ≥ R,

where ϑ is a smooth one-form and V is a smooth function onM.

Through all this work, we need the following lemma (cf. ([14], Lemma 3.1)), which provides
lower and upper bounds for the lagrangian function, its derivatives and the energy functions. Its proof
is based on the quadratic construction given in Remark 1 and the compactness of Ωδ0 .

Lemma 1. There exist four constants a0, a1, b1, A1, B1 > 0 such that for all (q, v) with q ∈ Ωδ0 and v ∈ TqM
we have ∥∥dqL(q, v)

∥∥ ≤ a0

(
1 + ‖v‖2

)
and ‖dvL(q, v)‖ ≤ a0 (1 + ‖v‖) ; (7)∥∥dqqL(q, v)

∥∥ ≤ a0

(
1 + ‖v‖2

)
and

∥∥dqvL(q, v)
∥∥ ≤ a0 (1 + ‖v‖) ; (8)

a1‖v‖2 − b1 ≤ L(q, v) ≤ A1‖v‖2 + B1; (9)

a1‖v‖2 − L(q, 0) ≤ E(q, v) ≤ A1‖v‖2 − L(q, 0); (10)

a1‖ξ‖2 ≤ d2
vvL(q, v)[ξ, ξ] ≤ A1‖ξ‖2, ∀ξ ∈ TqM. (11)

Proposition 1. The action functional Lκ is of class C1,1, namely it is continuously differentiable and its
differential dLκ is locally Lipschitz continuous.

Proof. See e.g., ([15] Theorem 2.3.2).

The derivative of Lκ in the x-direction is given by

dxLκ(x, T)[ξ] = T
∫ 1

0

(
dqL

(
x,

ẋ
T

)
[ξ] + dvL

(
x,

ẋ
T

) [
ξ̇

T

])
ds

for ξ ∈ Tx H1,2([0, 1],M). In the T-direction we have

∂Lκ

∂T
(x, T) =

∫ 1

0

(
κ + L

(
x,

ẋ
T

)
− dvL

(
x,

ẋ
T

) [
ẋ
T

])
ds =

∫ 1

0

(
κ − E

(
x,

ẋ
T

))
ds.

Hence, the differential of Lκ is

dLk(x, T)[ξ, H] = dxLκ(x, T)[ξ] +
∂Lκ

∂T
(x, T)H.

Definition 4. Set (x, T) ∈M×]0,+∞[. We say that (x, T) is a V−-critical curve for Lκ on M×]0,+∞[ if

dxLκ(x, T)[ξ] ≥ 0, ∀ξ ∈ V−(x,M),

and
∂Lκ

∂T
(x, T) = 0.

The following lemma will be useful in different parts of this paper, so we state it here for the
convenience of the readers.
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Lemma 2. Let [a, b] ⊂ [0, 1] and let (xn, Tn) ∈, H1,2([a, b], Ωδ0)×]0,+∞[ be a sequence such that Tn is
bounded from above, namely there exists T∗ > 0 such that Tn < T∗ for all n ∈ N. If there exists c ∈ R such that

Tn

∫ b

a

(
L
(

xn,
ẋn

Tn

)
+ κ

)
ds < c, ∀n ∈ N,

then ẋn is uniformly bounded in L2([a, b],R2N).

Proof. From (9) we have

c ≥ Tn

∫ b

a

(
a1
‖ẋn‖2

Tn
− b1 + κ

)
ds ≥ a1

‖ẋn‖2
L2([a,b],R2N)

T∗
− T∗ |b1 − κ| .

Hence

‖ẋn‖L2([a,b],R2N) ≤
(

T∗

a1
(c + T∗ |b1 − κ|)

)1/2
.

2.4. The Energy Critical Values

The behaviour of the free-time Lagrangian functional, hence of the Euler-Lagrangian flow induced
by the Tonelli-Lagrangian L, changes when k is greater then some specific energy levels, called critical
values. Here we only describe the critical values that affect our study; for more details about the
different critical values of a Tonelli Lagragian function we refer, for instance, to [14,16,17].

We denote by e0(L) be the maximal critical value of the energy function E. Since L is a fiberwise
convex and Ω is compact, we have

e0(L) = max
q∈Ω

E(q, 0). (12)

The importance of this critical value is quite clear, since the projection of E−1(κ) on Ω is surjective
if and only if κ ≥ e0(L). We will also prove that whenever κ > e0(L), for every path γ there
exists a unique minimum of Lκ among all the linear orientation preserving reparametrizations of γ

(see Section 4 for more details). As a consequence, we can reduce our analysis to a fixed time problem
and this simplifies the minimax approach that we will exploit to find the critical points.

Another important value which affects the behaviour of Lκ is the Mañé critical value c(L). In our
setting, c(L) can be defined as minus infimum of the mean Lagrangian action over all the closed curves
γ, hence

c(L) = inf {κ ∈ R : Lκ(x, T) ≥ 0, ∀(x, T) ∈M×]0,+∞[ s.t. x(0) = x(1)} .

This Mañé critical value c(L) marks an important changes in behaviour of the free-time action
functional because, whenever κ > c(L), Lκ is bounded from below and satisfies the Palais-Smale
condition. Moreover, if κ > c(L), then the Euler-Lagrange flow on E−1(κ) is conjugated up to a
time-reparametrization to the geodesic flow which is induced by a Finsler metric onM (see ([16]
Theorem 4.1)). However, our study cannot take advantage of this construction because the conormal
boundary conditions (2) may not be preserved by the time-reparametrization, as shown in the
following example.

Example 1. Let Ω be D2 = {q ∈ R2 : ‖q‖ ≤ 1} and

L(q, v) =
1
4
(v4

1 + v4
2) +

1
2
(v2

1 + v2
2), ∀q ∈ Ω, v ∈ R2,
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where vi indicates the component of v. Then for all q ∈ Ω and v ∈ R2 we have

E(q, v) =
3
4
(v4

1 + v4
2) +

1
2
(v2

1 + v2
2),

and
dvL(q, v) = (v3

1 + v1, v3
2 + v2).

Set an energy level κ and let F be the Finsler metric on Ω such that the Euler-Lagrange flow on E−1(κ)

is conjugated up to a time-reparametrization to the geodesic flow which is induced by F. Then (F2)−1(1) =
E−1(κ) and

dvF2(q, v)[ξ] = 0 ⇐⇒ dvE(q, v)[ξ] = 0, ∀v ∈ E−1(κ).

Hence the orthogonality condition for F on the boundary reads as

(3v3
1 + v1)ξ1 + (3v3

2 + v2)ξ2 = 0, ∀ξ ∈ Tq∂Ω,

that is different from the conormal boundary conditions for L

dvL(q, v)[ξ] = (v3
1 + v1)ξ1 + (v3

2 + v2)ξ2 = 0, ∀ξ ∈ Tq∂Ω.

As a consequence, if a curve is an orthogonal Finsler geodesic chord for F, it is an Euler-Lagrange chord for
L, but it may not satisfies the conormal boundary conditions (2).

We remark that the previous critical values satisfy the following chain of inequalities

e0(L) ≤ c(L) ≤ m(L).

Thus, all the results we are going to prove will be available when κ > m(L), as assumed in Theorem 1.
Moreover, all the previous critical values coincide when the Lagrangian is reversible. However, if the
reversibility assumption does not hold, all these values may be different.

3. Regularity of the V−-Critical Curves

Proposition 2. Let (x, T) be V−-critical for Lκ on M×]0,+∞[. Then x has H2,2 regularity, namely ẋ is
absolutely continuous and ẍ ∈ L2([0, 1],R2N).

Proposition 2 is the key ingredient of our variational approach to prove Theorem 1. Indeed,
if there are no ELCTC in Ω and κ > m(L), then the regularity of the V−-critical curves for Lκ on
M×]0,+∞[ implies that they are ELCCs.

While in [18] the regularity is proved exploiting directly the definition of critical curve in a
manifold with boundary, we base our proof on a penalization method. We allow the curves to lay on an
open set which contains Ω, adding a penalization term that is different from zero only when the curve
does not lay on Ω. Since we are on an open set, the regularity of the critical curves can be obtained with
standard techniques. Then, we prove the regularity of the V−-critical curves of the functional taking
the limit to remove the penalization term. The penalization method in a manifold with boundary has
been exploited, for instance, in [19] for the Riemannian, in [20] for the Lorentzian and in [21] for the
Finsler case.

Let p, q ∈ Ω be such that p 6= q and [a, b] ⊂ [0, 1]. We set

C([a, b], p, q, Ωδ) =
{

γ ∈ H1,2([a, b], Ωδ) : γ(a) = p, γ(b) = q
}

,



Symmetry 2020, 12, 1917 8 of 28

for any δ ≤ δ0 , where δ0 has been defined in (5). For the sake of presentation, we denote
C([a, b], p, q, Ωδ) by Cδ when we have fixed [a, b] and p, q ∈ Ω and no confusion may arise. Then,
fixing [a, b] ⊂ [0, 1] and T > 0, we define the functional

J : H1,2([a, b],M)→ R by J (x) = T
∫ b

a
L
(

x,
ẋ
T

)
ds.

We remark that the energy level κ does not appear in the definition ofJ . Indeed, since [a, b] ⊂ [0, 1]
and T > 0 are fixed, T

∫ b
a κds is a constant and does not affect the behaviour of J . We consider on

C([a, b], p, q, Ωδ) the penalized functional

Jδ(x) = J (x) +
∫ b

a
χδ(Φ(x)) ds,

where the function χδ : ]−∞, δ[→ R is defined by

χδ(t) =

0, if t ≤ 0,
t2

(δ−t)2 , if 0 ≤ t < δ.

By definition of χδ we have

χ′δ(t) =
2δ

t(δ− t)
χδ(t). (13)

The regularity of critical points of Jδ in Cδ can be proved by a standard argument (see, for example,
([22] Theorem 4.1)) involving the global inversion theorem (cf. ([23] Theorem 1.8)), which is available
since dvvL(q, v) is positive definite. Thus, we have the following lemma.

Lemma 3. For any δ ∈ (0, δ0), let xδ be a critical curve for Jδ in Cδ. Then xδ is C2 and satisfies the equation

T
(

dqL
(

xδ,
ẋδ

T

)
− 1

T
dvL

(
xδ,

ẋδ

T

))
= −χ′δ(Φ(xδ))dΦ(xδ). (14)

Remark 2. If xδ is a critical curve for Jδ in Cδ, (14) implies the existence of a constant Exδ
∈ R such that

Exδ
= TE

(
xδ,

ẋδ

T

)
− χδ(Φ(xδ)) on [a, b]. (15)

Moreover, in local coordinates (14) reads as

ẍi
δ

T2 = `ij
(

xδ,
ẋδ

T

)(
∂qj L

(
xδ,

ẋδ

T

)
− ∂2

qkvj L
(

xδ,
ẋδ

T

)
ẋk

δ

T
+

1
T

χ′(Φ(xδ))∂qj Φ(xδ)

)
. (16)

The following result, known as Gordon’s lemma (cf. [24]), is a key ingredient to prove the
existence of a minimizer for Jδ in the open set Cδ. Indeed, it allows proving that Cδ contains at least a
minimizing sequence which converges in Cδ.

Lemma 4 (Gordon’s Lemma). Let (xn)n ⊂ Cδ such that

J (xn) ≤ c < +∞, (17)

for some c > 0. Then if there exists a sequence (sn)n ⊂ [a, b] such that

lim
n→∞

Φ(xn(sn)) = δ,
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then

lim
n→∞

∫ b

a
χδ(Φ(xn))ds = +∞.

Proof. By (17), the sequence

((xn, Tn))n ⊂ H1,2([a, b], Ωδ0)×]0,+∞[

with Tn = T for all n ∈ N, satisfies the hypothesis of Lemma 2, hence
∫ b

a ‖ẋn‖2ds is uniformly bounded.
As a consequence, recalling the definition of K0 in (6), for any s ∈ [a, sn] we have

Φ(xn(sn))−Φ(xn(s)) =
∫ sn

s
〈∇Φ(x(σ)), ẋn(σ)〉dσ ≤

∫ sn

s
K0‖ẋn(σ)‖dσ

≤ K0(sn − s)
1
2

(∫ b

a
‖ẋn‖2ds

) 1
2

≤ C(sn − s)
1
2 ,

(18)

for some strictly positive constant C that does not depend on n. Then

0 < δ−Φ(xn(s)) ≤ C(sn − s)
1
2 + (δ−Φ(xn(sn))) ,

and
1

(δ−Φ(xn(s)))
2 ≥

1

2
(

C2(sn − s) + (δ−Φ(xn(sn))
2
)

.
(19)

Since Φ(xn(sn)) → δ > 0, for n sufficiently large Φ(xn(sn)) >
2
3

δ and there exists a sequence
s̄n < sn such that

Φ(xn(s̄n)) =
1
3

δ.

From (18) we get that

(sn − s̄n)
1
2 ≥ 1

3C
δ > 0.

Clearly we can choose s̄n such that

Φ(xn(s)) >
1
3

δ, ∀s ∈ (s̄n, sn).

Thus, integrating both hands sides of (19) we obtain

∫ 1

0
χδ(xn(s)) ds ≥ 1

9

∫ sn

s̄n

δ2

2
(

C2(sn − s) + (δ−Φ(xn(sn))
2
)ds

and passing to the limit we get the thesis.

Lemma 5. For every δ ∈ (0, δ0), the following statements hold:

(i) for all c ∈ R, the sublevels
J c

δ = {x ∈ Cδ : Lδ(x) ≤ c}

are complete metric spaces;
(ii) Jδ satisfies the Palais-Smale condition, namely if a sequence (xn)n ⊂ Cδ is such that Jδ(xn) is bounded

and dJδ(xn)→ 0, then (xn)n admits a convergent subsequence.

Proof. (i) Fix δ ∈ (0, δ0). If (xn) is a Cauchy sequence in J c
δ , then it uniformly converges to a

curve x̄ with support in Ωδ. Arguing by contradiction, if there exists s̄ ∈ [a, b] such that x̄(s̄) lies
on the boundary of Ωδ, then there exists a sequence (sn)n ∈ [a, b] such that limn→∞ Φ(xn(sn)) = δ.
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By Lemma 4, Jδ(xn)→ +∞, which is absurd. As a consequence, x̄([a, b]) ∈ Cδ and, by the continuity
of Jδ, x̄ ∈ J c

δ .
(ii) Let (xn)n ⊂ Cδ be a sequence such that Jδ(xn) is bounded and dJδ(xn) → 0. By Lemma 2,

there exists a constant c1 > 0 such that
∫ b

a ‖ẋn‖2ds ≤ c1. Hence, for all [s1, s2] ∈ [a, b] we have

dist(xn(s1), xn(s2)) ≤
∫ s2

s1

‖ẋn‖2ds ≤ c1 (s2 − s1)
1/2 .

By the Ascoli-Arzelá theorem, there exists a subsequence (xn) that uniformly converges to a
curve y, and such that ẋn converges weakly to ẏ. By the completeness of the sublevels of Jδ, y ∈ Cδ.
It remains to prove that xn → y in H1,2([a, b], Ωδ), hence that ẋn → ẏ strongly in L2. Set

ξn(s) =
(

expxn(s)

)−1
y(s), ∀s ∈ [a, b],

where exp is the exponential map of the Riemannian structure ofM. Since xn → y uniformly, (ξn) is
well defined for n sufficiently large. Moreover, ξn converges uniformly to zero, hence

∫ b

a
χ′δ(Φ(xn))dΦ(xn)[ξn]→ 0.

As a consequence, dJδ(xn)→ 0 implies that

lim
n→∞

dJ (xn)[ξn] = lim
n→∞

T
∫ b

a

(
dqL

(
xn,

ẋn

T

)
[ξn] + dvL

(
xn,

ẋn

T

) [
ξ̇n

T

])
= 0. (20)

Since dqL(xn, ẋn/T) is bounded in L1 by (7) and ξn converges uniformly to zero, we have

lim
n→∞

∫ b

a
dqL

(
xn,

ẋn

T

)
[ξn]ds = 0.

Thus, from (20) we obtain

lim
n→∞

∫ b

a
dvL

(
xn,

ẋn

T

)
[ξ̇n]ds = 0.

Let [s0, s1] ⊂ [a, b] such that y([s0, s1]) is in a single chart. If n is sufficiently large, also xn([s0, s1])

is in this chart and
ξ̇n = ẏ− ẋn + ωn,

where wn converges to zero in L2. Then

lim
n→∞

∫ s1

s0

dvL
(

xn,
ẋn

T

)
[ẏ− ẋn]ds = 0. (21)

Since xn converges uniformly to y and ẋn converges weakly to ẏ, we have

lim
n→∞

∫ s1

s0

dvL
(

xn,
ẏ
T

)
[ẏ− ẋn]ds = 0. (22)

By (21) and (22) we obtain

lim
n→∞

∫ s1

s0

(
dvL

(
xn,

ẏ
T

)
− dvL

(
xn,

ẋn

T

))
[ẏ− ẋn]ds = 0.
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Since L is C2, we can apply the mean value theorem and, by (11), there exists a constant c2 > 0
such that

0 = lim
n→∞

∫ s1

s0

(
dvL

(
xn,

ẏ
T

)
− dvL

(
xn,

ẋn

T

))
[ẏ− ẋn]ds

= lim
n→∞

∫ s1

s0

ds
∫ 1

0
dvvL

(
xn,

ẋn + σ(ẏ− ẋn)

T

)
[ẏ− ẋn][ẏ− ẋn]dσ

≥ lim
n→∞

c2

∫ s1

s0

‖ẏ− ẋn‖2ds.

Since the above inequality holds for in every local chart, ẋn converges to ẏ in L2 and this ends
the proof.

Remark 3. Since Jδ satisfies the Palais-Smale condition and it is bounded from below, Jδ has a minimum
point xδ ∈ Cδ.

Lemma 6. For all δ ∈ (0, δ0), let xδ be a minimum of Jδ on Cδ. Then there exist two constants k1, k2 ∈ R
such that for all δ ∈ (0, δ0)

Jδ(xδ) ≤ k1 < +∞ (23)

and
Exδ
≤ k2 < +∞, (24)

where Exδ
are the constants defined in (15).

Proof. Let y be a curve in M such that y(a) = p and y(b) = q. Then y ∈ Cδ for all δ ∈ (0, δ0). Hence

Jδ(xδ) ≤ Jδ(y) = J (y) = k1 < +∞, ∀δ ∈ (0, δ0).

By (10) and (9), for all δ ∈ (0, δ0) we have the following chain of inequalities

(b− a)Exδ
= T

∫ b

a
E
(

xδ,
ẋδ

T

)
ds−

∫ b

a
χδ(Φ(xδ))ds ≤ T

∫ b

a

(
A1

∥∥∥∥ ẋδ

T

∥∥∥∥2
− L(xδ, 0)

)
ds

≤ T
∫ b

a

(
A1

a1

(
L
(

xδ,
ẋδ

T

)
+ b1

)
− L(xδ, 0)

)
ds ≤ A1

a1
k1 + 2

A1

a1
b1T(b− a).

(25)

As a consequence, from (25) we infer there exists a constant k2 such that (24) holds.

By Lemma 6, if (xδn)n is a sequence such that xδn is a minimum for Jδn ∀n, then there exists a
subsequence that is uniformly convergent to a curve y with support in Ω. However, we need the
following two intermediate results to prove that y is a minimum for J , which is a key ingredient to
prove Proposition 2.

Lemma 7. Let (xδ)δ∈(0,δ0)
be a family in H1,2([a, b],M) such that for any δ ∈ (0, δ0), xδ is a minimum of Jδ

on C([a, b], p, q, Ωδ). For any δ ∈ (0, δ0), set

λδ(s) = −χ′δ(Φ(xδ(s))), s ∈ [a, b]. (26)

Then there exists δ1 ∈ (0, δ0) such that

sup
δ∈(0,δ1)

‖λδ‖∞ = sup
δ∈(0,δ1)

max
s∈[a,b]

|λδ(s)| < +∞. (27)
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Proof. For any δ ∈ (0, δ0), set ρδ(s) = Φ(xδ(s)) and let sδ be a maximum point for ρδ. Since the
derivative of χδ is non-decreasing and χ′δ(t) = 0 for any t ≤ 0, then

0 ≤ χ′δ(Φ(γδ(s))) ≤ χ′δ(Φ(γδ(sδ))), ∀s ∈ [a, b].

Thus, it suffices to prove (27) assuming that

Φ(γδ(sδ)) ∈]0, δ[.

We will prove the existence of a constant C > 0 such that

χ′δ(Φ(γδ(sδ))) ≤ C
(

1 + χδ(Φ(γδ(sδ)))

)
, for any δ ∈ (0, δ0), (28)

from which we infer the thesis. Indeed, by (13) we obtain(
2δ

Φ(γδ(sδ))(δ−Φ(γδ(sδ)))
− C

)
χδ(Φ(γ(sδ))) ≤ C.

Since
inf

t∈(0,δ)

2δ

(t(δ− t))
=

8
δ

,

then setting δ1 = 8/C we obtain (27).
By Lemma 3, xδ is twice differentiable. Since sδ is a maximum for ρδ we have

ρ̈δ(sδ) = ∂2
qiqj Φ(xδ(sδ))ẋi

δ ẋj
δ + ∂qi Φ(xδ(sδ))ẍi

δ(sδ) ≤ 0.

By (16) we have

∂2
qiqj Φ(xδ)ẋi

δ ẋj
δ + T∂qi Φ(xδ)`

ij
(

xδ,
ẋδ

T

) [
T∂qj L

(
xδ,

ẋδ

T

)
− ∂2

qkvj L
(

xδ,
ẋδ

T

)
ẋk

δ + χ′(Φ(xδ))∂qj Φ(xδ)

]
≤ 0,

(29)

where we omitted the dependency on sδ for the sake of presentation. Since we are on a compact subset
ofM, there exists a constant c1 > 0 such that

∂2
qiqj Φ(xδ)ẋi

δ ẋj
δ ≥ −c1‖ẋδ‖2. (30)

By (11), we have

`ij(q, v)ξiξ j ≥
1

A1
‖ξ‖2, ∀q ∈ M, ∀ξ ∈ T∗qM. (31)

As a consequence, there exists a constant c2 > 0 such that

χ′δ(Φ(xδ))`
ij
(

xδ,
ẋδ

T

)
∂qi Φ(xδ)∂qj Φ(xδ) ≥ χ′δ(Φ(xδ))c2. (32)

By (7) and (8), there exists a constant c3 > 0 such that

∂qj L
(

xδ,
ẋδ

T

)
− ∂2

qkvj L
(

xδ,
ẋδ

T

)
ẋk

δ

T
≥ −c3

(
1 +

∥∥∥∥ ẋδ

T

∥∥∥∥+ ∥∥∥∥ ẋδ

T

∥∥∥∥2
)

.
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Then, using (31) and the compactness of Ωδ0 , there exists a constant c4 > 0 such that

∂qi Φ(xδ)`
ij
[

∂qj L
(

xδ,
ẋδ

T

)
− ∂2

qkvj L
(

xδ,
ẋδ

T

)
ẋk

δ

T

]
≥ −c4

(
1 +

∥∥∥∥ ẋδ

T

∥∥∥∥+ ∥∥∥∥ ẋδ

T

∥∥∥∥2
)

. (33)

Now, using (30), (32) and (33), from (29) we have

−c1‖ẋδ‖2 + Tc2χ′δ(Φ(xδ))− T2c4

(
1 +

∥∥∥∥ ẋδ

T

∥∥∥∥+ ∥∥∥∥ ẋδ

T

∥∥∥∥2
)
≥ 0.

Hence, there exists a constant c > 0 such that

χ′δ(Φ(xδ)) ≤ Tc

(
1 +

∥∥∥∥ ẋδ

T

∥∥∥∥+ ∥∥∥∥ ẋδ

T

∥∥∥∥2
)

. (34)

By (10) and (24), we have

T

(
a1

∥∥∥∥ ẋδ

T

∥∥∥∥2
− L(xδ, 0)

)
− χδ(Φ(xδ))

≤ T
(

dvL
(

xδ,
ẋδ

T

) [
ẋδ

T

]
− L

(
xδ,

ẋδ

T

))
− χδ(Φ(xδ)) = Eδ ≤ k2

and, consequently,

a1T
∥∥∥∥ ẋδ

T

∥∥∥∥2
≤ k2 + χδ(Φ(xδ)) + TL(xδ, 0).

Since Ωδ0 is compact, L(q, 0) is a bounded function, so there exists a constant c5 > 0 such that

T
∥∥∥∥ ẋδ

T

∥∥∥∥2
≤ c5

(
1 + χδ(Φ(xδ))

)
. (35)

Since χδ(φ(q)) ≥ 0 for all δ ∈ (0, δ0) and q ∈ Ωδ0 , from (35) we also deduce that there exists a
constant c6 > 0 such that

T
∥∥∥∥ ẋδ

T

∥∥∥∥ ≤ c6

(
1 + χδ(Φ(xδ))

)
. (36)

Finally, using (35) and (36), from (34) we infer that there exists a constant C > 0 such that (28)
holds, and this ends the proof.

Lemma 8. Let (xn)n be a sequence in H1,2([a, b],M) such that xn → y ∈ H1,2([a, b],M). Let ξ ∈ TyM
and set ξn(s) = Pxn(s)(ξ(s)), where Pq(·) : R2N → TqM is the orthogonal projection on TqM. Then ξn

converges to ξ in H1,2([a, b],R2N).

Proof. For any s ∈ [a, b], let (U, ϕ) be a local chart such that U is a neighbourhood of y(s). If we denote
by (ei)i=1,...,N the canonical basis of RN , then

ei
n(s) = d(ϕ−1)(ϕ(xn(s)))[ei], i = 1, . . . , N

is a basis for Txn(s)M, if n is sufficiently large. Applying the Gram-Schmidt process to (ei
n(s))i∈1,...,N ,

we obtain an orthonormal basis êi
n(s) for Txn(s)M. Similarly, let us denote by êi(s) the orthonormal

basis of Ty(s)M obtained from d(ϕ−1)(ϕ(y(s)))[ei]. With this notation, we can write

ξn(s) =
N

∑
i=1
〈ξ(s), êi

n(s)〉êi
n(s) ∀n. (37)
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Since xn and y has H1,2 regularity, êi and êi
n are in H1,2([a, b],R2N) for all n. Moreover, since xn → y

in H1,2([a, b],M), we have that êi
n converges to êi in H1,2([a, b],R2N). As a consequence, by (37) we

obtain the thesis.

Lemma 9. Let (xδ)δ∈(0,δ0)
be a family in H1,2([a, b],M) such that for any δ ∈ (0, δ0), xδ is a minimum of Jδ

on C([a, b], p, q, Ωδ). Then there exists a subsequence (δn)n in (0, δ0) such that

1. (xδn)n strongly converges to a curve y ∈ C([a, b], p, q, Ω);
2. the sequence of functions (λδn)n weakly converges to a function λ ∈ L2([a, b],R);
3. the limit curve y satisfies

T
(

dqL
(

y,
ẏ
T

)
− 1

T
d
ds

dvL
(

y,
ẏ
T

))
= λ ∇Φ(y) a.e.; (38)

and y ∈ H2,2([a, b],M);
4. the limit curve y is a minimum of J on C([a, b], p, q, Ω).

Proof. (1) Since xδ is a minimum of Lδ for all δ ∈ (0, δ0), then there exists k1 > 0 such that (23) holds.
By Lemma 2, ‖ẋδ‖L2 is bounded and by the Ascoli-Arzelá theorem we obtain a decreasing sequence
(δn)n ⊂ (0, δ0) that converges to 0 such that xδn uniformly converges to a curve y and ẋδn weakly
converges to ẏ. By an argument analogous to that used in Lemma 5, xδn strongly converges to y in
H1,2([a, b],M). Since xδn(s) ⊂ Ωδn for all n ∈ N and δn → 0, the support of y is in Ω.

(2) Since δn → 0, we can assume that δn ∈ (0, δ1) and by Lemma 7, λδn is bounded in
L∞([a, b],R) ⊂ L2([a, b],R). Then, going if necessary to a subsequence, λδn weakly converges to
a function λ ∈ L2([a, b],R).

(3) For any ξ ∈ TyM such that ξ(a) = ξ(b) = 0, set ξn = Pxδn
(ξ) ∈ Txδn

M. By Lemma 8,
ξn converges to ξ in H1,2([a, b],R2N). Since xδn is a minimum for Jδn we obtain

dJδn(xδn)[ξn] = T
∫ b

a

(
dqL

(
xδn ,

ẋδn

T

)
[ξn] + dvL

(
xδn ,

ẋδn

T

) [
ξ̇n

T

])
ds

+
∫ b

a
χ′δn

(Φ(xδn))dΦ(xδn)[ξn]ds = 0.

Since λδn = −χ′δn
(xδn) weakly converges to λ in L2([a, b],R), taking the limit in the above

equation gives

T
∫ b

a

(
dqL

(
y,

ẏ
T

)
[ξ] + dvL

(
y,

ẏ
T

) [
ξ̇

T

])
ds−

∫ b

a
λ dΦ(y)[ξ]ds = 0. (39)

Since ξ ∈ H1,2
0 ([a, b],R2N), we obtain (38) by a partial integration. From (39), by a standard

argument involving the implicit function theorem we obtain that ÿ has the same regularity of λ, so it is
in L2([a, b],R2N) and y ∈ H2,2([a, b],M).

(4) Recalling (13), by Lemma 7 there exists a constant c1 > 0 such that

sup
s∈[a,b]

|χδn(Φ(γδn(s)))| = sup
s∈[a,b]

∣∣∣∣χ′δn
(Φ(γδn(s)))

Φ(γδn(s)) (δn −Φ(γδn(s)))
2δn

∣∣∣∣
≤ k sup

t∈(0,δn)

∣∣∣∣ t(δn − t)
2δn

∣∣∣∣ = k
8

δn → 0.

Consequently,

lim
n→∞

∫ b

a
χδn(Φ(xδn(s))) ds = 0,
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and since C([a, b], p, q, Ω) ⊂ C([a, b], p, q, Ωδn) for all δn, then

J (y) = lim
n→∞

Jδn(xδn) ≤ lim
n→∞

Jδn(x) = J (x), for all x ∈ C([a, b], p, q, Ω).

Proof of Proposition 2. It suffices to prove the regularity of x when it touches the boundary ∂Ω.
Indeed, when x lies on Ω, it satisfies the Euler-Lagrange equations and it is C2. Since the regularity is
a local property, we can restrict our analysis on a single chart (U, ϕ) in a neighbourhood of a point
x(t̄) ∈ ∂Ω. Let (a, b) be a neighbourhood of t̄ such that x([a, b]) ⊂ U and x(a) 6= x(b). If t̄ = 0, then set
a = 0 and, similarly, if t̄ = 1, then set b = 1. Please note that, for our purpose,s we can choose a and b
as close as we desire.

Choosing T as in (x, T), for any δ ∈ (0, δ0), consider the functional Jδ defined on
C([a, b], x(a), x(b), Ωδ). By Lemma 9, there exists a curve y ∈ H2,2([a, b],M) that is a minimum
of J on C([a, b], x(a), x(b), Ω). We shall prove that x has H2,2 regularity by showing that x = y.

As a first step, let us show that if a and b are sufficiently close, then y([a, b]) ⊂ U. Looking for a
contradiction, we assume that this is not true. Then, for every ε > 0 there exists s̄ ∈ (t̄− ε, t̄ + ε) such
that yε(s̄) /∈ U, where

yε ∈ C([t̄− ε, t̄ + ε], x(t̄− ε), x(t̄ + ε), Ω) = Cε

is the curve that minimizes J on Cε. By the Cauchy-Schwarz inequality and (9) we have

dist(x(a), ∂U) ≤
∫ s̄

t̄−ε
‖ẏε‖ds ≤

√
2ε

(∫ t̄+ε

t̄−ε
‖ẏε‖2ds

)1/2

≤ T
√

2ε

(∫ t̄+ε

t̄−ε

1
a1

(
L
(

yε,
ẏε

T

)
+ b1

)
ds
) 1

2

≤ 2T
√

ε

a1
J (x) + 2Tε

√
|b1|,

for every ε > 0. As a consequence, dist(x(a), ∂U) = 0, and this is absurd.
Now choose the map ϕ such that

dϕ

(
∇Φ(q)
‖∇Φ(q)‖

)
∈ RN

is constant on the chart. Then ξ = y − x is an admissible variation of x in C([a, b], x(a), x(b), Ω),
since 〈ξ(s),∇Φ(x(s))〉 ≤ 0 if x(s) ∈ ∂Ω. Now define f : [0, 1]→ R by

f (t) = J (x + tξ).

Since y is a minimum for J on C([a, b], x(a), x(b), Ω), we have that

f (1)− f (0) = J (y)−J (x) ≤ 0.

Setting ξ(s) = 0 for any s ∈ [0, 1]\[a, b], we have that ξ ∈ V−(x,M). Since x is a V−-critical curve
for L on M, we obtain

f ′(0) = dJ (x)[ξ] = dxLκ(x)[ξ] ≥ 0.

Looking for a contradiction, we set y 6= x and show that if a and b are sufficiently close, then

∫ 1

0

(
f ′(t)− f ′(0)

)
dt > 0. (40)
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As a consequence,

0 ≥ f (1)− f (0) = f ′(0) +
∫ 1

0

(
f ′(t)− f ′(0)

)
dt ≥

∫ 1

0

(
f ′(t)− f ′(0)

)
dt > 0,

which is an absurd. By definition of f , we have

f ′(t)− f ′(0) = dJ (x + tξ)[ξ]− dJ (x)[ξ]

= T
∫ b

a

[(
dqL

(
x + tξ,

ẋ + tξ̇
T

)
− dqL

(
x,

ẋ
T

))
[ξ]+(

dvL
(

x + tξ,
ẋ + tξ̇

T

)
− dvL

(
x,

ẋ
T

))[
ξ̇

T

] ]
ds.

(41)

By the mean value theorem and (8), we have(
dqL

(
x + tξ,

ẋ + tξ̇
T

)
− dqL

(
x,

ẋ
T

))
[ξ]

= t
∫ 1

0

(
dqqL

(
x + tξ,

ẋ + σtξ̇
T

)
[ξ, ξ] + dqqL

(
x + tξ,

ẋ + σtξ̇
T

) [
ξ,

ξ̇

T

])
dσ

≥ −a0t
∫ 1

0

[(
1 +

∥∥∥∥ ẋ + σtξ̇
T

∥∥∥∥2)
‖ξ‖2 +

1
T

(
1 +

∥∥∥∥ ẋ + σtξ̇
T

∥∥∥∥) ‖ξ‖‖ξ̇‖
]

dσ.

(42)

Similarly, using also (11), we have(
dvL

(
x + tξ,

ẋ + tξ̇
T

)
− dvL

(
x,

ẋ
T

))[
ξ̇

T

]
≥ t

∫ 1

0

[
a1
‖ξ̇‖2

T2 −
a0

T

(
1 +

∥∥∥∥ ẋ + σtξ̇
T

∥∥∥∥) ‖ξ‖‖ξ̇‖
]

dσ.

(43)

Hence, by (42) and (43), from (41) we obtain

f ′(t)− f ′(0) ≥ Tt
∫ b

a
ds
∫ 1

0

[
a1
‖ξ̇‖2

T2 −
2a0

T

(
1 +

∥∥∥∥ ẋ + σtξ̇
T

∥∥∥∥) ‖ξ‖‖ξ̇‖
− a0

(
1 +

∥∥∥∥ ẋ + σtξ̇
T

∥∥∥∥2)
‖ξ‖2

]
dσ.

(44)

Let us show that there exists a constant c1 > 0, which depends only on x, such that

∫ b

a

∥∥∥∥ ẋ + σtξ̇
T

∥∥∥∥2

ds ≤ c1.
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Indeed, by (9) and since y is a minimum for La,b
T , we have

∫ b

a

∥∥∥∥ ẋ + σtξ̇
T

∥∥∥∥2

≤ 2
∫ b

a

(∥∥∥∥ ẋ
T

∥∥∥∥2
+

∥∥∥∥ ẏ− ẋ
T

∥∥∥∥2
)

ds

≤ 2
T2

∫ b

a

(
‖ẋ‖2 + 2(‖ẏ‖2 + ‖ẋ‖2)

)
ds

≤ 6
T2

∫ b

a
‖ẋ‖2 +

4
a1

∫ b

a

(
L
(

y,
ẏ
T

)
+ b1

)
ds

≤ 6
T2

∫ b

a
‖ẋ‖2 +

4
a1

∫ b

a

(
L
(

x,
ẋ
T

)
+ b1

)
ds = c1 < +∞.

As a consequence, there exists a strictly positive constant c2 such that

I1 =
2a0

T

∫ b

a

( ∫ 1

0

(
1 +

∥∥∥∥ ẋ + σtξ̇
T

∥∥∥∥)‖ξ‖‖ξ̇‖dσ

)
ds

=
2a0

T

∫ b

a
‖ξ‖‖ξ̇‖ds +

2a0

T

∫ 1

0

( ∫ b

a

∥∥∥∥ ẋ + σtξ̇
T

∥∥∥∥ ‖ξ‖‖ξ̇‖ds
)

dσ

≤ 2a0

T
‖ξ‖L∞‖ξ̇‖L2 +

2a0

T
‖ξ‖L∞‖ξ̇‖L2

∫ 1

0

( ∫ b

a

∥∥∥∥ ẋ + σtξ̇
T

∥∥∥∥2

ds
)1/2

dσ ≤ c2‖ξ‖L∞‖ξ̇‖L2 ,

where we applied the Tonelli’s theorem and the Hölder inequality. Similarly, there exists a constant
c3 > 0 such that

I2 = a0

∫ b

a

( ∫ 1

0

(
1 +

∥∥∥∥ ẋ + σtξ̇
T

∥∥∥∥2 )
‖ξ‖2dσ

)
ds

≤ a0‖ξ‖2
L∞

∫ 1

0

( ∫ b

a

(
1 +

∥∥∥∥ ẋ + σtξ̇
T

∥∥∥∥2 )
ds
)

dσ ≤ c3‖ξ‖2
L∞ .

Then, by (44) we obtain

f ′(t)− f ′(0) ≥ T t
( a1

T2 ‖ξ̇‖
2
L2 − c2‖ξ‖L∞‖ξ̇‖L2 − c3‖ξ‖2

L∞

)
.

Since ξ(a) = 0, we have

‖ξ(s)‖ =
∥∥∥∥ξ(a) +

∫ s

a
ξ̇(σ)dσ

∥∥∥∥ ≤ ∫ s

a
‖ξ̇(σ)‖dσ ≤

√
s− a ‖ξ̇‖L2 ,

therefore
‖ξ‖L∞ ≤

√
b− a ‖ξ̇‖L2 .

We have
f ′(t)− f ′(0) ≥ T t

( a1

T2 − c2
√

b− a− c3(b− a)
)
‖ξ̇‖2

L2 .

As a consequence, if b− a is sufficiently small, there exists a constant c4 > 0 such that

f ′(t)− f ′(0) ≥ c4t‖ξ̇‖2
L2 .

If y 6= x, then ‖ξ̇‖2
L2 > 0 and, consequently, (40) holds and this leads to a contradiction.

To state our next result we need the following definition.
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Definition 5. We define the Hessian of Φ with respect to L in (q, v) ∈ TM by

HL
Φ(q, v)[v, v] =

d2

ds2

∣∣∣∣
s=0

Φ(γ(s)),

where γ : ]− ε, ε[→ M is the unique solution of the Euler-Lagrange equation associated with L such that
γ(0) = q and γ̇(0) = v. In local coordinates the Hessian of Φ with respect to L in (q, v) ∈ TM is given by

HL
Φ(q, v)[v, v] = ∂2

qiqj Φ(q)vivj + ∂qi Φ(q)`ij(q, v)
(

∂qj L(q, v)− ∂2
qkvj L(q, v)vk

)
, (45)

where `ij(q, v) denote the components of the matrix
(
d2

vvL(q, v)
)−1 .

Corollary 1. Let (x, T) be V−-critical for Lκ on M. Then x ∈ H2,∞([0, 1], Ω) regularity. Moreover,
setting Cx = {s ∈ [0, 1] : x(s) ∈ ∂Ω} there exists a function λ ∈ L∞([0, 1],R) such that

i. λ ≤ 0 a.e. in [0, 1], λ(s) = 0 if s /∈ Cx and

λ = T
HL

Φ
(
x, ẋ

T
) [ ẋ

T , ẋ
T
]

`ij
(

x, ẋ
T
)

∂qi Φ(x)∂qj Φ(x)
a.e. in Cx; (46)

ii. x satisfies the following equation

T
(

dqL
(

x,
ẋ
T

)
− 1

T
d
ds

dvL
(

x,
ẋ
T

))
= λ∇Φ(x) a.e.. (47)

Moreover, (x, T) satisfies the conservation law

E
(

x(s),
ẋ(s)

T

)
= κ, ∀s ∈ [0, 1]. (48)

Proof. By the proof of Proposition 2, in every chart the curve x coincides with the curve y obtain from
Lemma 9. Then x satisfies (47) a.e., where λ ∈ L2([0, 1],R) is the limit of functions defined in (26).
Consequently, λ(s) = 0 for all s /∈ Cx and λ ≤ 0 a.e.. Set ρ(s) = Φ(x(s)). Since ρ(s) = 0 on Cx and ρ̇ is
a H1,2 function, by ([25] Lemma 7.7) we have

ρ̈(s) = ∂2
qiqj Φ(x)ẋi ẋj + ∂qj Φ(x)ẍi = 0, a.e. on Cx. (49)

Using (38) in local coordinates, we get that x satisfies the equations

ẍi

T2 = `ij
(

x,
ẋ
T

)(
∂qj L

(
x,

ẋ
T

)
− ∂qkvj L

(
x,

ẋ
T

)
ẋk

T
− 1

T
λ ∂qj Φ(x)

)
. (50)

Substituting the expression of ẍi of (50) in (49) and using (45), we obtain (46). By (46) and since ẋ
is a continuous function, also λ is a continuous function in [0, 1]. Then λ ∈ L∞([0, 1],R) and using (50)
we obtain that ẍ ∈ L∞([0, 1],RN).

In order to prove (48), we can contract both terms of (47) with ẋ/T. Since λ = 0 on [0, 1]\Cx and
〈∇Φ(x), ẋ,=〉0 on Cx, we have

d
ds

E
(

x,
ẋ
T

)
= T

(
dqL

(
x,

ẋ
T

)
− 1

T
d
ds

dvL
(

x,
ẋ
T

)) [
ẋ
T

]
= 0, on [0, 1],

thus E(x, ẋ/T) is a constant. Since ∂Lκ
∂T (x, T) = 0, we obtain (48).
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Lemma 10. If (x, T) is a V−-critical curve for Lκ on M×]0,+∞[, then it satisfies the conormal boundary
conditions (2).

Proof. Take any vector field ξ ∈ V−(x,M) such that

〈∇Φ(x(s)), ξ(s)〉 = 0, for all s such that Φ(x(s)) = 0.

In this case, also −ξ is in V−(x,M) and, by the V−-critical assumption on x, we obtain
dxLκ(x, T)[ξ] = 0. Integrating by parts and using (47), we have

dxLκ(x, T)[ξ] =
[

1
T

dvL
(

x,
ẋ
T

)
[ξ]

]1

0
+
∫ 1

0

(
dqL

(
x,

ẋ
T

)
− 1

T
d
ds

dvL
(

x,
ẋ
T

))
[ξ]ds = 0,

then

dvL
(

x(1),
ẋ(1)

T

)
[ξ(1)]− dvL

(
x(0),

ẋ(0)
T

)
[ξ(0)] = 0.

Since ξ(0) and ξ(1) are arbitrary tangent vectors to ∂Ω, then (x, T) satisfies the conormal
boundary conditions.

Proposition 3. For every κ > m(L), one and only one of the following statements holds:

i. there exists at least one ELCTC with energy κ

or

ii. every V−-critical curve for Lκ on M×]0,+∞[ is an ELCC.

Proof. Let (x, T) be a V−-critical curve for Lκ on M×]0,+∞[. Since κ > m(L) ≥ e0(L), by (48) we
infer that ẋ(s) 6= 0 for all s ∈ [0, 1]. Since x([0, 1]) ∈ Ω, ẋ(0) cannot point outside Ω. By Lemma 10,
(x, T) satisfies the conormal boundary conditions (2). Hence, if ẋ(0) ∈ Tx(0)∂Ω, then by (2) we have

κ = E
(

x(0),
ẋ(0)

T

)
= dvL

(
x(0),

ẋ(0)
T

) [
ẋ(0)

T

]
− L

(
x(0),

ẋ(0)
T

)
= −L

(
x(0),

ẋ(0)
T

)
< κ,

which is absurd. Thus, ẋ(0) points inside Ω. Let us suppose that Cx = {s ∈]0, 1[: x(s) ∈ ∂Ω} 6= ∅ and
set s0 = min(Cx), namely the first positive time at which x(s) ∈ ∂Ω. By Proposition 2, x is of class
C1, then ẋ(s0) must be tangent to ∂Ω. Then x (T·)|[0,s0]

is an ELCTC. Otherwise, if Cx = ∅, (x, T) is
an ELCC.

4. The Functional Fκ

In this section, we prove that if κ > e0(L), then we can restrict our analysis on a fixed-time
variational problem, since for every x which is not constant there exists one and only one T(x) ∈]0,+∞[

such that ∂Lκ
∂T (x, T(x)) = 0. This result will simplify the construction of a descent vector field that will

allow using our minimax approach to prove the existence of V−-critical curves (cf. [11]).
Let us denote by C0 the subset of M that are constant curves in ∂Ω, thus

C0 =
{

x ∈M : ∃q ∈ Ω s.t. x(s) = q ∀s ∈ [0, 1]
}

.

We remark that if x ∈M\C0, then ‖ẋ‖L2 > 0.

Proposition 4. Set κ > e0(L), where e0(L) is defined in (12). Then for every x ∈M\C0 there exists an unique
T(x) > 0 such that

∂Lκ

∂T
(x, T(x)) = 0. (51)
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Moreover,
Lκ(x, (T(x)) ≤ Lκ(x, T), ∀T ∈]0,+∞[. (52)

Proof. In order to prove the existence and uniqueness of a T(x) > 0 such that (51) holds, we are going
to prove that for every x ∈M\C0 the function

f : ]0,+∞[→ R, f (T) =
∂Lκ

∂T
(x, T) =

∫ 1

0

(
κ − E

(
x,

ẋ
T

))
ds

is strictly increasing,

lim
T→0+

f (T) = lim
T→0+

∂Lκ

∂T
(x, T) = −∞, (53)

and
lim

T→+∞
f (T) = lim

T→+∞

∂Lκ

∂T
(x, T) > 0.

The above properties prove also (52).
The following inequality shows that f is strictly increasing

f ′(T) =
∂2Lκ

∂T2 (x, T) =
1
T

∫ 1

0
d2

vvL
(

x,
ẋ
T

) [
ẋ
T

,
ẋ
T

]
ds ≥ α

T3

∫ 1

0
‖ẋ‖2ds > 0.

By (10) we have

f (T) ≤
∫ 1

0

(
L(x, 0) + κ − a1

2T2 ‖ẋ
2‖
)

ds =
∫ 1

0
(L(x, 0) + κ) ds− a1

2T2 ‖ẋ‖
2
L2 .

Consequently, (53) holds. Now let (Tn)n be a sequence such that Tn → ∞. As a consequence,

ẋ
Tn
→ 0 a.e. and

∥∥∥∥ ẋ
Tn

∥∥∥∥ ≤ ‖ẋ‖ ∈ L2([0, 1],R).

By definition of e0(L), we have that if κ > e0(L), then L(q, 0) + κ > 0, ∀q ∈ Ω.
By (7), we can apply the dominated convergence theorem and we obtain

lim
n→∞

f (Tn) =
∫ 1

0
(L(q, 0) + κ) ds > 0,

and this ends the proof.

Lemma 11. There exist two constant c1, c2 > 0 such that for all x ∈M\C0 we have

c2

A1
≤
‖ẋ‖2

L2

T2(x)
≤ c1

a1
. (54)

As a consequence, for every sequence (xn)n ⊂M\C0, we have that T(xn)→ 0 if and only if ‖ẋn‖2
L2 → 0.

Proof. By definition of T(x) and by (10) we have

0 = κ −
∫ 1

0
E
(

x,
ẋ
T

)
ds ≤ κ −

∫ 1

0

(
a1
‖ẋ‖2

T2(x)
+ L(x, 0)

)
ds ≤ −a1

‖ẋ‖2
L2

T2(x)
+ c1,

from which the right-hand side inequality of (54) follows at once. Similarly we have

0 = κ −
∫ 1

0
E
(

x,
ẋ
T

)
ds ≥ κ −

∫ 1

0

(
A1
‖ẋ‖2

T2(x)
+ L(x, 0)

)
ds ≥ −A1

‖ẋ‖2
L2

T2(x)
+ c2,
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and we get the left-hand side inequality of (54). We remark that, since κ > e0(L) = −minq∈Ω L(q, 0),
c2 can be chosen strictly positive.

Lemma 12. Let (xn) ∈ M\C0 such that xn → x0 ∈ C0 with respect to the H1,2-convergence.
Then Fκ(xn)→ 0.

Proof. By Lemma 11 we have T(xn)→ 0. Moreover, by (9) and (54) we obtain

Fκ(xn) ≥ T(xn)
∫ 1

0

(
a1
‖ẋn‖2

T2(x)
− b1 + κ

)
ds ≥ T(xn)

(
a1

A1
c2 + κ − b1

)
→ 0.

Similarly,

Fκ(xn) ≤ T(xn)
∫ 1

0

(
A1
‖ẋn‖2

T2(x)
+ B1 + κ

)
ds ≤ T(xn)

(
A1

a1
c1 + κ + B1

)
→ 0.

By Proposition 4 and Lemma 12, we can define the continuous functional F : M→ R+ by

Fκ(x) =

{
Lκ(x, T(x)), if x /∈ C0,

0, if x ∈ C0.

Moreover, Fκ is a C1 functional on M\C0, and its differential is

dFκ(x)[ξ] = dxLκ(x, T(x))[ξ], ∀x ∈M\C0, ∀ ∈ ξ ∈ V−(x,M). (55)

Accordingly to the definition of V−-critical curves for the functional Lκ , we give the
following definition.

Definition 6. We say that a curve x ∈M\C0 is a V−-critical curve for Fκ on M\C0 if

dFκ(x)[ξ] ≥ 0, ∀ξ ∈ V−(x,M).

A number c > 0 is a V−-critical value for Fκ if there exists x ∈M that is a V−-critical curve for Fκ on M\C0

such that J (x) = c. Otherwise, c is said V−-regular value for Fκ on M.

From (55) and the definition of T(x) we can infer the following result.

Proposition 5. A curve x is V−-critical for Fκ on M\C0 if and only if (x, T(x)) is a V−-critical for Lκ on M.

As a consequence, exploiting also Proposition 3, we can find ELCCs by looking for the V−-critical
curves of Fκ on M\C0.

5. V−-Palais-Smale Condition

Let ‖·‖∗ : H1,2([0, 1],R2N)→ R be the norm given by

‖ξ‖∗ = max{‖ξ(0)‖, ‖ξ(1)‖}+
(∫ 1

0
‖ξ̇(s)‖2ds

) 1
2

.

Definition 7. A sequence (xn)n ⊂M\C0 is said V−-Palais-Smale sequence for Fκ at level c ∈ R if

i. Fκ(xn)→ c;
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ii. for all (sufficiently large) n ∈ N and for all ξn ∈ V−(xn,M) such that ‖ξn‖∗ = 1,

dFκ(xn)[ξn] ≥ −εn,

where εn → 0+.

In this section, we shall prove the following result.

Proposition 6. If κ > c(L), then any V−-Palais-Smale sequence xn for Fκ at level c 6= 0 admits a strongly
convergent subsequence.

Lemma 13. Let (xn)n ⊂M\C0 be a V−-Palais-Smale sequence for Fκ at level c ∈ R with 0 < T∗ ≤ T(xn) ≤
T∗ < +∞. Then (xn)n admits a strongly convergent subsequence.

Proof. See ([11] Proposition 4.3).

Lemma 14. Let (xn)n ⊂ M\C0 be a V−-Palais-Smale sequence for Fκ at level c ∈ R. If T(xn) → 0,
then c = 0.

Proof. It is an immediate consequence of Lemma 11. Indeed, for all (xn) ∈M\C0 we have

Fκ(xn) ≥ T(xn)

(
a1

A1
c2 + κ − b1

)
→ 0

and

Fκ(xn) ≤ T(xn)

(
A1

a1
c1 + κ + B1

)
→ 0.

Lemma 15. If κ ≥ c(L), then Fκ is bounded from below.

Proof. By definition of Fκ , it suffices to prove that Lκ is bounded from below.
For any (p, q) ∈ ∂Ω× ∂Ω, we can choose a curve xp,q ∈M such that x(0) = p and x(1) = q. Then we
define f : ∂Ω× ∂Ω→ R by

f (p, q) = Lκ(xp,q, 1).

Since ∂Ω× ∂Ω is compact, there exists a constant C such that f (p, q) ≤ C, for all p, q ∈ ∂Ω. Now
let (x, T) be an element in M×]0,+∞[. Then the curve

y =

x
(

T+1
T s
)

, if s ∈ [0, T/(T + 1)] ,

xx(1),x(0)((T + 1)s− T), if s ∈ [T/(T + 1), 1] ,

is a closed curve. By definition of the Mañé critical value c(L), since κ ≥ c(L) we have Lκ(y, T + 1) ≥ 0.
As a consequence

0 ≤ Lκ(y, T + 1) = Lκ(x, T) + Lκ(xx(1),x(0), 1) ≤ Lκ(x, T) + C,

so Lκ(x, T) ≥ −C. By the arbitrariness of (x, T), we have the thesis.

Lemma 16. If κ > c(L), then for any V−-Palais Smale sequence (xn)n ⊂ M\C0 there exists T∗ > 0 such
that T(xn) < T∗ for all n ∈ N.
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Proof. Let c ∈ R such that Fκ(xn)→ c. Then we have

c + 1 ≥ Fκ(xn) = Fc(L)(xn) + (κ − c(L))T(xn).

Hence
T(xn) ≤

1
κ − c(L)

(
c + 1−Fc(L)(xn)

)
.

By Lemma 15, Fc(L) is bounded from below, and the thesis follows at once.

Proof of Proposition 6. By Lemma 16, there exists T∗ such that T(xn) < T∗ for all n ∈ N. On the other
hand, since c 6= 0, by Lemma 14 there must exists T∗ such that T(xn) > T∗. Hence, Lemma 13 applies
and there exists a subsequence of (xn) that strongly converges.

6. Proof of the Main Theorem

In the following we assume that κ > m(L) ≥ c(L) ≥ e0(L). Hence, all the previous results are
available and

Fκ(x) ≥ 0, ∀x ∈M, Fκ(x) = 0 ⇐⇒ x ∈ C0.

Moreover, for every c > 0, we denote the sublevel of Fκ at c by

F c
κ = {x ∈M : Fκ(x) ≤ c} .

Definition 8. Let x ∈M\C0 and µ > 0 be fixed. We say that Fκ has V−-steepness greater than or equal to µ

if there exists ξ ∈ V−(x,M) such that ‖ξ‖∗ = 1 and dFκ(x)[ξ] ≤ −µ.

Lemma 17. Let M > m > 0 be such that C = F−1
κ ([m, M]) does not contain any V−-critical curves for Fκ .

Then there exists µC such that every x ∈ C has V−-steepness greater than or equal to µC.

Proof. This is a consequence of Proposition 6. Indeed, if such µC does not exist, we can choose a
εn → 0+ and a sequence (xn) ∈ C such that

dFκ(xn)[ξn] ≥ −εn, ∀ξn ∈ V−(xn,M), ‖ξn‖∗ = 1.

Since Fκ(xn) ⊂ [m, M], Fκ(xn) → c 6= 0, going if necessary to a subsequence. Hence, (xn) ⊂
M\C0 is a V−-Palais-Smale sequence and, by Proposition 6, there is a V−-critical curve in C, that
is absurd.

Thanks to the previous lemma, we can construct a pseudogradient vector field for Fκ (cf. [10,11]),
that is the key ingredient to prove two deformation lemmas on the sublevels of Fκ which are necessary
for our minimax approach. We need some preliminary definitions to state these lemmas.

We define the backward parametrization mapR : M→M by

(Rx)(s) = x(1− s), ∀s ∈ [0, 1].

We say that N ⊂ M is R-invariant if R(N ) = N . On any R-invariant set N , the backward
parametrization map R induces an equivalence relation and we denote by Ñ the quotient space.
Through this equivalence relation, we identify any element x of M with its backward parametrization.
The mapR induces a mapR : V−(x,M)→ V−(Rx,M) defined by

(Rξ)(s) = ξ(1− s).

Remark 4. If L is reversible, then x is a V−-critical curve for Fκ if and only ifRx is a V−-critical curve for Fκ .
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Definition 9. Let N be a subset of M. Then a continuous function h : [0, 1]×N → N is said admissible
homotopy if

(i) h(0, x) = x for all x ∈ N ;
(ii) h(τ, x) ∈ C0 for all x ∈ N ∩ C0 and τ ∈ [0, 1];

(iii) if x /∈ N ∩ C0, then h(τ, x) /∈ N ∩ C0 , for all τ ∈ [0, 1];
(iv) if L is a reversible, N must beR-invariant and h(τ,Rx) = Rh(τ, x) for every τ ∈ [0, 1].

We are ready to state the first following lemma.

Lemma 18. Let c > 0 be a V−-regular value for Fκ on M\C0. Then there exists an ε > 0 and an admissible
homotopy h : [0, 1]×F c+ε

κ → F c+ε
κ such that h(1,F c+ε

κ ) ⊂ F c−ε
κ .

Proof. See ([10] Lemma 6.3).

We need some other definitions in order to state the other deformation lemma.
For every x, y ∈M, set

dist∗(x, y) = max {‖x(0)− u(0)‖, ‖x(1)− y(1)‖}+
(∫ 1

0
‖x(s)− y(s)‖2 ds

) 1
2

,

and for every x ∈M and r > 0 set

Br(x) = {y ∈M : dist∗(y, x) ≤ r} .

Now assume that the number of V−-critical curves of Fκ on M\C0 is finite, say (yi)i∈I .
Then we can fix an r∗ > 0 such that

• Br∗(yi) ∩ Br∗(yj) = ∅ for every i 6= j;

• any Br∗(yi) is contractible in itself;
• any Br∗(yi) does not include constant curves.

Thus, we define
O∗ =

⋃
i∈I

Br∗(xi).

We remark that, if L is reversible, then O∗ isR-invariant by Remark 4.

Lemma 19. Assume that the number of non-constant V−-critical curves for Fκ on M\C0 is finite and let c > 0
be a V−-critical value for Fκ . Then there exists an ε > 0 and an admissible homotopy h : [0, 1]×F c+ε

κ → F c+ε
κ

such that h(1,F c+ε
κ \O∗) ⊂ F c−ε

κ .

Proof. See ([10] Lemma 6.4).

Lemma 20. If k > m(L), then there exists δ1 such that, if x ∈ F δ1
κ , then

|Φ(x(s))| ≤ δ0, ∀s ∈ [0, 1], (56)

that is, every curve of the sublevel F δ1
κ lies on a tubular neighbourhood of ∂Ω.

Proof. Since Ω is compact and L is quadratic at infinity, for every κ > m(L) there exist two constants
ακ , δκ > 0 such that

L(q, v) + κ ≥ ακ‖v‖2 + δκ > 0, ∀q ∈ Ωδ0 , ∀v ∈ TqM.
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Set δ > 0. As a consequence, for every (x, T) ∈ Lδ
κ ⊂M×]0,+∞[ we have

δ ≥ Fκ(x) = T(x)
∫ 1

0

(
L
(

x,
ẋ

T(x)

)
+ κ

)
ds ≥ T(x)δκ ,

and

δ ≥ Fκ(x) ≥ ακ

T(x)

∫ 1

0
‖ẋ‖2ds,

from which we infer
‖ẋ‖L2 ≤

δ√
ακδκ

.

Since x(0) ∈ ∂Ω, then Φ(x(0)) = 0 and we obtain

|Φ(x(s))| = |Φ(x(s))−Φ(x(0))| ≤
∫ s

0
|〈∇Φ(σ), ẋ(σ)〉| dσ

≤ K0

∫ s

0
‖ẋ‖dσ ≤ K0‖ẋ‖L2 ≤ K0

δ√
ακδκ

,

where we used the Cauchy-Schwarz inequality twice. By the arbitrariness of δ, there exists δ1 > 0 such
that (56) holds for every x ∈ F δ1

κ .

Lemma 21. There exists an admissible homotopy h : [0, 1]×F δ1
κ →M such that h(1,F δ1

κ ) ⊂ C0.

Proof. By Lemma 20, x([0, 1]) ⊂ Φ−1([0, δ0]) for every x ∈ F δ1
κ . By (5), there exists a retraction

r : Φ−1([0, δ0]) → ∂Ω of class C1 defined in terms of flow of ∇Φ. Hence, there exists a homotopy g
such that g(1, x)(s) ∈ ∂Ω, for all x ∈ F δ1

κ . Now define the homotopy k(τ, x)(s) = x((1− τ)s + τ/2),
so that k(1, x)(s) = x(1/2) ∈ ∂Ω for every curve that lies in ∂Ω. Combining the two homotopies g and
k we define

h(τ, x) =

{
g(2τ, x), if τ ∈ [0, 1/2] ,

k(2τ − 1, h(1, x)), if τ ∈ [1/2, 1] ,

which is anR-invariant homotopy such that h(1,F δ1
κ ) ⊂ C0.

We require one last definition to complete our proof, which is actually a relative Ljusternik and
Schnirelmann category.

Definition 10. Let X be a topological space and Y a closed subset of X. A closed subset Z of X has relative
category equal to k ∈ N,

catX,Y(Z) = k,

if k is the minimal positive integer such that Z ⊂ ⋃k
i=0 Ai, where {Ai}k

i=0 is a family of open subset of
X satisfying:

• Z ∩Y ⊂ A0;
• if i 6= 0, Ai is contractible in X\Y;
• if i = 0, there exists h0 ∈ C0([0, 1]× A0, X) such that h0(1, A0) ⊂ Y and h0([0, 1], A0 ∩Y) ⊂ Y.

Proof of Theorem 1. Let L be a reversible Tonelli Lagrangian. By Lemma 4, we can identify each
curve with its backward reparametrization and we can study our variational problem in M̃. To prove
our existence and multiplicity result, we exploit the relative category

cat
M̃,C̃0

M̃ ≥ N,

that has been proved in [6]. Let D be the set of all closedR-invariant subsets of M and define
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Γi =
{

D ∈ D : cat
M̃,C̃0

D̃ ≥ i
}

, i = 1, . . . , N.

Since each Γi is non-empty, the following quantities are well defined

ci = inf
D∈Γi

sup
x∈D
J (x), for any i = 1, . . . , N.

With similar arguments applied in [11], by Lemma 21 we have that c1 > δ1, by Lemma 18 we
have that each ci is a critical value for Fκ in M\C0 and by Lemma 19 we have that ci < ci + 1 for
all i = 1, . . . , N − 1. Hence there are at least N V−-critical curves for Fκ on M\C0. By Propositions
3 and 5, either there exists an ELCTC or they are all ELCCs with energy κ. It remains to prove the
geometric distinction of the ELCCs. Let us denote by xi the V−-critical curve such that Fκ(xi) = ci.
Seeking a contradiction, let us assume that xi([0, 1]) = xj([0, 1]), with i 6= j. Then either xi(0) = xj(0)
or xi(0) = xj(1). If xi(0) = xj(0) = q, then ẋi(0) and ẋj(0) have the same direction and since the
two curves (xi, T(xi)) and (xj, T(xj)) have the same energy κ, it must be ẋi/T(xi) = ẋj/T(xj). As a
consequence, the two curves γi : [0, T(xi)]→M and γj : [0, T(xj)]→M defined by

γi(t) = xi(t/T(xi)) and γj(t) = xj(t/T(xj))

have the same initial velocity γ̇i(0) = γ̇j(0) = v ∈ TqM. By the uniqueness of the solution of the
Cauchy problem 

dqL(γ(t), γ̇(t))− d
dt

(
dvL(γ(t), γ̇(t))

)
= 0,

γ(0) = q,

γ̇(0) = v ∈ TqM,

we infer that γi = γj. Since γi and γj satisfy the conormal boundary conditions and since k > m(L),
the same argument applied in Proposition 3 shows that γ̇i(T(xi)) and γ̇j(T(xj)) point outside Ω. As
a consequence, T(xi) = T(xj) and xi = xj. If xi(0) = xj(1), the same argument shows that xi = Rxj.
As a consequence, it must be Fκ(xi) = Fκ(xj), so ci = cj, which is absurd.

If L is not reversible, we get the thesis by applying the same minimax argument and the
relative category

catM,C0M ≥ 2,

that has been proved in [8]. However, in this case the geometric distinction of two ELCCs with different
values of the energy functional cannot be ensured.

7. Conclusions

In this paper, we proved the existence and multiplicity of ELCCs with fixed energy κ > m(L) in a
compact manifold with boundary Ω, where m(L) is defined in (3). As previously stated, this work
generalizes [11], since it does not require (4) to hold, and [10], where only the energy functional of a
Finsler metric is considered.

Moreover, we proved that if κ > e0(L), where e0(L) is given by (12), then the non-constant critical
curves of the free-time action functional Lκ can be searched among the critical curves of a fixed-time
action functional, simplifying the problem by avoiding the compactness issues that arise from the time
variable T ∈]0,+∞[. This result could be applied in similar contexts to simplify the proofs of some
known results (cf. [15–17]).
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