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Abstract: Departing from a general stochastic model for a moving boundary problem, we consider
the density function of probability for the first passing time. It is well known that the distribution
of this random variable satisfies a problem ruled by an advection–diffusion system for which very
few solutions are known in exact form. The model considers also a deterministic source, and the
coefficients of this equation are functions with sufficient regularity. A numerical scheme is designed to
estimate the solutions of the initial-boundary-value problem. We prove rigorously that the numerical
model is capable of preserving the main characteristics of the solutions of the stochastic model, that is,
positivity, boundedness and monotonicity. The scheme has spatial symmetry, and it is theoretically
analyzed for consistency, stability and convergence. Some numerical simulations are carried out
in this work to assess the capability of the discrete model to preserve the main structural features
of the solutions of the model. Moreover, a numerical study confirms the efficiency of the scheme,
in agreement with the mathematical results obtained in this work.

Keywords: moving boundary problem; probability distribution function of the first hitting time;
advection–diffusion problem; implicit finite-difference model; spatially symmetric discrete model;
theoretical analysis
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1. Preliminaries

In this manuscript, we let B = {Bs : s ≥ 0} be the Brownian motion, and we assume that
b, f , σ : [0, ∞) → R are functions. More concretely, we will suppose that f is continuous on [0, ∞),
b ∈ L1([0, ∞)) and σ ∈ L2([0, ∞)). The purpose of this work is to investigate the stochastic model

Xx
t = x +

∫ t

0
b(s)ds +

∫ t

0
σ(s)dB(s), ∀t ≥ 0. (1)

Here, x is some fixed (though arbitrary) real number. It is easy to check that the process
{Xx

t : t ≥ 0} is Gaussian, and it has mean equal to
∫ t

0 b(s)ds and variance
∫ t

0 σ2(s)ds. Associated
with this process, we define the first hitting time at the boundary f by

τ
f

x = inf{t ≥ 0 : Xx
t = f (t)}, x < f (0). (2)

It is indispensable to remember here that the variable τ
f

x has a continuous density if f has
continuous derivatives up to the first order [1,2].
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The class of stochastic processes considered in this investigation is a type of time-homogeneous
Gauss-Markov diffusion process. As a consequence, the sample paths are continuous functions
(which are nowhere differentiable) and, therefore, the concept of first hitting time through a boundary
coincides with that of first passage time (see [3], for instance). In particular, this means that the random
variable τ

f
x can be defined equivalently as

τ
f

x = inf{t ≥ 0 : Xx
t ≥ f (t)}, x < f (0). (3)

Interestingly, the literature on the determination of first passage times in diffusion processes is
vast. As examples, there are important research avenues which link the calculation of first passage
time probability densities to the resolution of certain Volterra equations of the second kind for
homogeneous [4] and non-homogeneous [5] diffusion processes that arise from Wiener processes.

The following result provides an analytical description of the probability density function of the
first hitting time of the process Xx

t . In that result, we will employ the differential operator

At =
(x2σ(t))2

2
∂2

∂x2 +
[
(b(t)− f ′(t))x2 + x3(σ(t))2

] ∂

∂x
. (4)

Theorem 1 (Macías-Díaz and Villa-Morales [6]). Let u : R× [0, ∞)→ R be bounded, and suppose that it
satisfies the following parabolic problem with initial-boundary conditions:

∂u
∂t

(x, t) = Atu(x, t), ∀(x, t) ∈ R×R+,{
u(x, 0) = 0, ∀x ∈ R,
u(∞, t) = 1, ∀t > 0.

(5)

Then P[τ f
x ≤ t] = u(( f (0)− x)−1, t), for each x < f (0) and t > 0.

It is important to point out that, for the stochastic model considered in this work, the associated
parabolic initial-boundary-value problem (5) is obtained from the Volterra integral equation of the
second kind satisfied by the probability density of the first hitting time by making use of Itô’s formula
and some properties on continuous martingales. The details on this relationship are provided in
reference [6]. On the other hand, some exact solutions of this model are known in exact form [6].
More precisely, let α, β ∈ R, Xt = x + Bt and f (t) = α + βt. For each x < α,

P
[
τ

f
x ≤ t

]
= 1−Φ

(
βt + α− x√

t

)
+ e−2(α−x)βΦ

(
βt− α + x√

t

)
. (6)

Here, Φ is the cumulative distribution of a standard normal random variable. It is easy to
check that

u(x, t) = 1−Φ
(

βt + x−1
√

t

)
+ e−2βx−1

Φ
(

βt− x−1
√

t

)
, ∀(x, t) ∈ R+ ×R+, (7)

solves (5) with b ≡ 0 and σ ≡ 1. However, for different expressions of the functions b, f and σ,
the determination of explicit solutions for the problem (5) is a difficult task. This limitation motivates
the design and analysis of numerical techniques to approximate the distribution of probability of the
first hitting time in the stochastic model (1).

It is worth pointing out that the determination of the first hitting time often arises in problems
associated with moving boundaries. Indeed, there are reports which study the first hitting time
and the last exit time for Brownian motions to and from a moving boundary, respectively [7].
Other works tackle the investigation of the first hitting time for reducible diffusion processes [8],
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one-dimensional diffusion and compound Poisson processes [9], Markov processes between moving
retaining or absorbing barriers [10], time-dependent Ornstein–Uhlenbeck processes to a moving
boundary [11], moving boundaries for asymptotically stable Lévy processes [12], moving boundaries
for some Gaussian stochastic processes [6], the pricing of continuously monitored barrier options
under stochastic volatility with jumps [13], just to mention some examples [14–16].

In general, moving boundary problems have found interesting applications in the sciences and
engineering. Indeed, this family of problems have been found in the diffusion of oxygen in absorbing
tissues [17], in the analysis of progressive liquefaction [18], in the mathematical modeling of bread
baking [19], in the asymptotic behavior of solutions of multidimensional problems associated with
tumor growth [20], in the problem of thermal conduction in the solid phase of a phase-change
material during melting driven by natural convection in the liquid [21] and problems on concrete
carbonation [22]. Some recent studies have reported on applications of moving boundary problems
to the radial fluid flow in infinite low-permeability reservoirs with threshold pressure gradients [23],
to space-fractional diffusion logistic population models and density-dependent dispersal rates [24],
to problems with variable specific heat and thermal conductivity [24], to the solvent diffusion within
glassy polymers [25] and to American call options with transition costs [26], among other recent
examples in the sciences and engineering [27,28].

In this manuscript, we investigate a moving boundary problem which considers the presence of a
deterministic and a stochastic components. It is well known that the first hitting time has a distribution
of probability governed by a parabolic advection–diffusion differential equation, for which very few
solutions are known in exact form [6]. Motivated by this fact, we will propose a spatially symmetric
finite-difference scheme to approximate the solutions of this differential model. Emphasis will be
made on the preservation of the main analytical properties of the solutions of the problem, namely,
the symmetry, the boundedness and the monotonicity. In that sense, the scheme proposed in this work
will be a structure-preserving model [29,30]. Structure-preserving models have been designed to preserve
the positivity and the symmetry of the solutions of Fisher-type equations [31], the monotonicity and
boundedness of numerical model for Burgers–Huxley-type equations [32], the positivity of high-order
Galerkin schemes for compressible Euler equations [33], the positivity and boundedness of numerical
schemes for space-time fractional predator-prey models [34] and the energy and symmetry of Riesz
space-fractional nonlinear wave equations [35]. In summary, the development of structure-preserving
numerical techniques has been an important factor in problems where particular features of the
solutions are physically meaningful [35,36].

In this work, we will investigate a generalization of the parabolic problem arising in Theorem 1.
Precisely, we consider the generalized form of the parabolic equation of (5) given by the formula

∂u(x, t)
∂t

=
1
2

φ(x, t)
∂2u(x, t)

∂x2 + ψ(x, t)
∂u(x, t)

∂x
, ∀(x, t) ∈ R×R+, (8)

subjected to the initial and boundary conditions{
u(x, 0) = χ(x), ∀x ∈ R,
u(∞, t) = 1, ∀t > 0.

(9)

We will assume that φ, ψ : R × [0, ∞) → R with φ ≥ 0, and suppose that χ : R → R is a
nondecreasing function with the property that 0 ≤ χ ≤ 1.

The present work is organized as follows. Section 2 is devoted to provide a structure-preserving
numerical model to solve problem (13). Some equivalent presentations of the discrete system are
provided, including a convenient vector form. We show therein that the discrete model conserves
non-negativity, boundedness from above and monotonicity of the approximations. In Section 3 we
establish that the numerical model is a consistent technique which is unconditionally stable and
convergent. Some illustrative examples are provided in that section to show through computational



Symmetry 2020, 12, 1907 4 of 18

simulations the most important features of the model. Finally, we close this manuscript with a section
of discussions and some concluding remarks.

2. Discrete Model

For the remainder of this work, we will agree that In = {1, . . . , n} and In = In ∪ {0}, for each
n ∈ N. For computational purposes, we will let c, d and T be real numbers such that c < d and T > 0,
and let K, N ∈ N. We will fix a uniform partition of the interval [c, d] consisting of K subintervals,
of the form c = x0 < x1 < . . . < xk < . . . < xK = d, for each k ∈ IK. On the other hand, we will also
fix a uniform partition of the temporal interval [0, T] consisting of N subintervals, and we will let it
take the form 0 = t0 < t1 < . . . < tn < . . . < tN = T, for each n ∈ IN . For each (k, n) ∈ IK × IN , we let
un

k = u(xk, tn), and we use Un
k to represent a numerical approximation to the exact value of un

k .
Let h = (d − c)/K and τ = T/N. Following the usual conventions, we will employ Rh to

represent the grid {xk : k ∈ IK}. Moreover, Vh will denote the set of all real-valued functions defined
on Rh. It is easy to check then that un = (un

k )
K
k=0 and Un = (Un

k )
K
k=0 are members of Vh, for each

n ∈ IN . For the sake of convenience, we will let u = (un)N
n=0 and U = (Un)N

n=0 in what follows.
Moreover, we will require the following discrete linear operators.

Definition 1. Let (Vn)N
n=0 be a sequence in Vh. We define the discrete linear operators

δtVn
k =

Vn
k −Vn−1

k
τ

, ∀(k, n) ∈ IK × IN−1, (10)

δ
(1)
x Vn

k =
Vk+1 −Vk−1

2h
, ∀(k, n) ∈ IK−1 × IN , (11)

δ
(2)
x Vn

k =
Vk+1 − 2Vn

k + Vk−1

h2 , ∀(k, n) ∈ IK−1 × IN . (12)

It is well known that these discrete operators provide consistent first-order or second-order
approximations to suitable differential operators under appropriate regularity conditions. Moreover,
with this nomenclature, the scheme to approximate the solutions of the initial-boundary-value
problem (8) is given by the discrete system

δtUn+1
k =

1
2

φ(xk, tn+1)δ
(2)
x Un+1

k + ψ(xk, tn+1)δ
(1)
x Un+1

k , ∀(k, n) ∈ IK−1 × IN−1. (13)

About the boundary conditions, we will suppose that the solutions are prescribed at the boundary
using Dirichlet data. More precisely, we will assume that ϕa, ϕb : [0, T]→ R are functions, and we will
consider the following initial and boundary conditions:


U0

k = χ(xk), ∀k ∈ IK−1,
Un

0 = ϕa(tn), ∀n ∈ IN ,
Un

K = ϕb(tn), ∀n ∈ IN .
(14)

For convenience, Figure 1 provides the forward-difference stencil of the discrete model (13)
and (14). It is worth observing the spatial symmetry of the scheme at each time-step.
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Figure 1. Spatially symmetric forward-difference stencil for the approximation of (8) at the time tn

using the implicit scheme (13). The black circle represents the known approximation to the exact
solution at time tn, while the crosses denote the unknown approximations at time tn+1.

It is easy to check that the finite-difference scheme (13) and (14) is a two-step implicit technique.
Moreover, the discrete model can be expressed in an equivalent form after some algebraic manipulations.
For the sake of convenience, define the constants φn

k = φ(xk, tn) and ψn
k = ψ(xk, tn), for each (k, n) ∈

IK × IN . Rearranging algebraically the terms in the expression of the general recursive formula in (13),
we readily obtain the spatially symmetric implicit expression

− (Rn+1
k − rn+1

k )Un+1
k−1 +(1+ 2Rn+1

k )Un+1
k − (Rn+1

k + rn+1
k )Un+1

k+1 = Un
k , ∀(k, n) ∈ IK−1× IN−1. (15)

In this expression,

Rn
k =

τφn
k

2h2 , ∀(k, n) ∈ IK−1 × IN , (16)

rn
k =

τψn
k

2h
, ∀(k, n) ∈ IK−1 × IN . (17)

It is obvious from (15) that the finite-difference scheme (13) is a linear model. In order to express
it in vector form, we define de (K + 1)-dimensional real vectors

Un = (Un
0 , Un

1 , . . . , Un
K−1, Un

K)
>, ∀n ∈ IN , (18)

bn = (ϕa(tn+1), Un
1 , . . . , Un

K−1, ϕb(tn+1))
>, ∀n ∈ IN . (19)

We have used > here to represent the operation of matrix and vector transposition. It is obvious
that Un provides a vector representation of the function Un, for each n ∈ IN . Moreover, notice that bn

includes already the data at the boundary, for each n ∈ IN . Now, for each n ∈ IN , we define the real
tridiagonal matrix An = (An

ij) of size (K + 1)× (K + 1) by

An =



1 0 0 0 · · · 0 0 0 0
−µn

1 σn
1 −νn

1 0 · · · 0 0 0 0
0 −µn

2 σn
2 −νn

2 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · −µn
K−2 −σn

K−2 −νn
K−2 0

0 0 0 0 · · · 0 −µn
K−1 σn

K−1 −νn
K−1

0 0 0 0 · · · 0 0 0 1


. (20)
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Here, we let

µn
k = Rn

k − rn
k , ∀(k, n) ∈ IK−1 × IN , (21)

σn
k = 1 + 2Rn

k , ∀(k, n) ∈ IK−1 × IN , (22)

νn
k = Rn

k + rn
k , ∀(k, n) ∈ IK−1 × IN . (23)

Using this nomenclature, it is easy to check that the spatially symmetric finite-difference
scheme (13) and (14) can be equivalently rewritten in vector form as{

An+1Un+1 = bn, ∀n ∈ IN−1,
such that U0 = (χ(x0), χ(x1), . . . , χ(xK−1), χ(xK)).

(24)

We will recall now some definitions from the literature.

Definition 2. A square real matrix is an M-matrix if the following conditions are satisfied for the matrix:

(a) it is strictly diagonally dominant,
(b) its off-diagonal entries are less than or equal to zero, and
(c) its diagonal entries are greater than zero.

It is worth pointing out that every M-matrix is nonsingular, and that the components of its inverse
are all positive numbers (see [37] and references therein). Now, we wish to establish conditions under
which the matrices An above are all M-matrices. To that end, we will show that the properties (a),
(b) and (c) of Definition 2 are satisfied.

Lemma 1. Let n ∈ IN . If hψn
k < φn

k is satisfied for each k ∈ IK−1, then An is an M-matrix.

Proof. Observe that the hypotheses imply that Rn
k > rn

k or, equivalently, that µn
k > 0, for each k ∈ IK−1.

Since νn
k > 0 also holds for each k ∈ IK−1, it follows that the off-diagonal entries of An are non-positive.

It is obvious that the diagonal components of An are positive, so it only remains to prove that the
matrix is strictly diagonally dominant. Let k ∈ IK−1, and consider the (k + 1)th row of An. Note that

K+1

∑
j=0
j 6=k

|An
kj| = |µ

n
k |+ |ν

n
k | = 2Rn

k < 1 + 2Rn
k = σn

k = |An
kk|. (25)

It readily follows then that An is strictly diagonally dominant, so it is an M-matrix.

Definition 3. Let V and W be real vectors of the same dimension.

• We use the notation V ≥ 0 to represent that all the components of V are nonnegative.
• If the components of V are less than or equal to 1, then we denote this by V ≤ 1. Note that V ≤ 1 if and

only if 1−V ≥ 0, where 1 is the vector of the same dimension of V whose components are equal to 1.
• If both V ≥ 0 and V ≤ 1 are satisfied, then we will write 0 ≤ V ≤ 1.
• We use the nomenclature V ≤ W to denote that W − V ≥ 0. Obviously, this represents that each

component of V is less then or equal to the corresponding component of W.
• Finally, we use 0 ≤ V ≤ W ≤ 1 to mean that 0 ≤ V, V ≤ W and W ≤ 1 are all satisfied.

The following result establishes the existence and uniqueness of positive and bounded solutions
of (13) and (14). The proof will hinge on various applications of Lemma 1.
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Theorem 2. Suppose that 0 ≤ ϕa(t) ≤ 1 and 0 ≤ ϕb(t) ≤ 1, for each t ∈ [0, T], and let 0 ≤ U0 ≤ 1.
Let hψn

k < φn
k , for each (k, n) ∈ IK−1 × IN . Then there exists a unique sequence (Un)N

n=0 in Vh satisfying (13),
with the property that 0 ≤ Un ≤ 1, for each n ∈ IN .

Proof. Beforehand, notice that the assumptions imply that the matrices An are M-matrices, for each
n ∈ IN . The proof of this result employs mathematical induction. Since the first approximation has the
desired properties by assumption, we suppose that 0 ≤ Un ≤ 1 holds for some n ∈ IN−1. The fact that
An+1 is an M-matrix guarantees that it is nonsingular, and that the components of its inverse are all
positive numbers. Moreover, the assumptions on the functions ϕa and ϕb and the induction hypothesis
assure that bn ≥ 0. As a consequence, Un+1 = (An+1)−1bn ≥ 0, and it only remains to prove that
Un+1 ≤ 1. To that end, let 1 be the (K + 1)-dimensional vector all of whose components are equal to
1, and define Vn+1 = 1−Un+1 or, equivalently, Un+1 = 1−Vn+1. Substituting this identity into the
vector equation of (24) and rearranging terms, we obtain that An+1Vn+1 = cn+1, where

cn+1 = An+11− bn =



1− ϕa(tn+1)

−µn+1
1 + σn+1

1 − νn+1
1 −Un

1
−µn+1

2 + σn+1
2 − νn+1

2 −Un
2

...
−µn+1

K−1 + σn+1
K−1 − νn+1

K−1 −Un
K−1

1− ϕb(tn+1)


=



1− ϕa(tn+1)

1−Un
1

1−Un
2

...
1−Un

K−1
1− ϕb(tn+1)


≥ 0. (26)

It readily follows that Vn+1 ≥ 0 or, equivalently, that Un+1 ≤ 1. Summarizing, we have checked
that 0 ≤ Un+1 ≤ 1, and the result follows now by induction.

The following result states that the finite-difference model (13) and (14) is a monotone technique.

Theorem 3. Let χ, χ̃ : [c, d]→ R and ϕa, ϕb, ϕ̃a, ϕ̃b : [0, T]→ R be functions. Let hψn
k < φn

k and hψ̃n
k < φ̃n

k ,
for each (k, n) ∈ IK−1× IN , and agree that (Un)N

n=0 and (Ũn)N
n=0 are the solutions of the numerical model (13)

and (14) corresponding to the initial-boundary data (χ, ϕa, ϕb) and (χ̃, ϕ̃a, ϕ̃b), respectively. Suppose that the
initial-boundary conditions satisfy

(a) 0 ≤ χ(x) ≤ χ̃(x) ≤ 1, for each c ∈ [c, d], and
(b) 0 ≤ ϕa(t) ≤ ϕ̃a(t) ≤ 1 and 0 ≤ ϕb(t) ≤ ϕ̃b(t) ≤ 1, for each t ∈ [0, T].

Then 0 ≤ Un ≤ Ũn ≤ 1, for each n ∈ IN .

Proof. Beforehand, observe that the hypotheses on the initial conditions assure that 0 ≤ U0 ≤ 1 and
0 ≤ Ũ0 ≤ 1. Moreover, the boundary data are bounded in [0, 1]. Theorem 2 implies now that the
solutions (Un)N

n=0 and (Ũn)N
n=0 of the problem (13) and (14) corresponding to the initial-boundary

data (χ, ϕa, ϕb) and (χ̃, ϕ̃a, ϕ̃b) exist, are unique, and satisfy 0 ≤ Un ≤ 1 and 0 ≤ Ũn ≤ 1, for each
n ∈ IN . It only remains to show that Un ≤ Ũn, for each n ∈ IN . Proceeding by induction, notice that
this property is satisfied for n = 0, so let us assume that it holds for some n ∈ IN−1. Observe that

An+1Un+1 = bn, (27)

An+1Ũn+1 = b̃n, (28)

are satisfied. Here,
b̃n = (ϕ̃a(tn+1), Ũn

1 , . . . , Ũn
K−1, ϕ̃b(tn+1))

>. (29)

On the other hand, note that the induction hypothesis and the assumption on the boundary
conditions yield that b̃n − bn ≥ 0. Subtracting now (27) from (28), it follows that

An+1(Ũn+1 −Un+1) = b̃n − bn ≥ 0. (30)
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We use the fact now that An+1 is an M-matrix under the hypotheses of this theorem. The fact that
the components of the inverse of An+1 are all positive numbers establishes that Ũn+1 −Un+1 ≥ 0 or,
equivalently, that Ũn+1 ≥ Un+1, as desired.

The following is a straightforward consequence of Theorem 3. Its relevance arises from the fact
that the solutions of (5) are cumulative distributions of probability in the sense of Theorem 1.

Corollary 1. Suppose that hψn
k < φn

k for each (k, n) ∈ IK−1 × IN . Assume that χ : [c, d] → R, and let
ϕa, ϕb : [0, T]→ R be nondecreasing functions satisfying

(a) 0 ≤ χ(x) ≤ 1, for each c ∈ [c, d], and
(b) 0 ≤ ϕa(t) ≤ 1 and 0 ≤ ϕb(t) ≤ 1, for each t ∈ [0, T].

If U0 ≤ U1 then the solution (Un)N
n=0 of (13) and (14) satisfies 0 ≤ Un ≤ Un+1 ≤ 1, for each n ∈ IN−1.

Proof. To start with, notice that the existence and the uniqueness of nonnegative and bounded
solutions is guaranteed by Theorem 2, so it only remains to show that Un ≤ Un+1, for each n ∈ IN−1.
To that end, let Ũn = Un+1, for each n ∈ IN−1. An application of Theorem 3 to the sequences (Un)N−1

n=0
and (Ũn)N−1

n=0 establishes now that Un ≤ Ũn is satisfied for each n ∈ IN−1, whence the conclusion of
this result readily follows.

3. Numerical Properties

The present section is devoted to study the main numerical features of the finite-difference scheme
(13) and (14). In particular, we will investigate the consistency of the scheme, its stability and its
convergence. In a first stage, we will tackle the problem of the consistency of our numerical technique.
To that end, let Ω = (c, d)× (0, T) and define the differential operator

L(un
k ) =

∂u(xk, tn)

∂t
− 1

2
φ(xk, tn)

∂2u(xk, tn)

∂x2 − ψ(xk, tn)
∂u(xk, tn)

∂x
, ∀(k, n) ∈ IK−1 × IN , (31)

and the difference operator

L(un
k ) = δtun

k −
1
2

φ(xk, tn)δ
(2)
x un

k − ψ(xk, tn)δ
(1)
x un

k , ∀(k, n) ∈ IK−1 × IN . (32)

For the sake of convenience, we let L(un) = (L(un
k ))

K
k=0 and L(un) = (L(un

k ))
K
k=0, for each n ∈ IN .

Definition 4. Define the function ‖ · ‖∞ : Vh → R by ‖V‖∞ = max{|Vk| : k ∈ IK−1}, for each V ∈ Vh.

Theorem 4. Let u ∈ C4,2
x,t (Ω), and suppose that φ and ψ are bounded in Ω. There exists a constant C ≥ 0

which is independent of τ and h, such that ‖L(un)− L(un)‖∞ ≤ C(τ + h2), for each n ∈ IN .

Proof. Using the regularity of the functions u, φ and ψ along with Taylor’s theorem, it is easy to show
that there exist nonnegative constants C1, C2 and C3 which are independent of τ and h, such that∣∣∣∣∂u(xk, tn)

∂t
− δtun

k

∣∣∣∣ ≤ C1τ, ∀(k, n) ∈ IK−1 × IN , (33)∣∣∣∣φ(xk, tn)
∂2u
∂x2 (xk, tn)− φ(xk, tn)δ

(2)
x un

k

∣∣∣∣ ≤ C2h2, ∀(k, n) ∈ IK−1 × IN , (34)∣∣∣∣ψ(xk, tn)
∂u
∂x

(xk, tn)− ψ(xk, tn)δ
(1)
x un

k

∣∣∣∣ ≤ C3h2, ∀(k, n) ∈ IK−1 × IN . (35)
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Using the triangle inequality, it is easy to check that

|L(un
k )− L(un

k )| ≤ C1τ +
1
2

C2h2 + C3h2 ≤ C(τ + h2), ∀(k, n) ∈ IK−1 × IN . (36)

The conclusion of this theorem readily follows now if we define C = C1 +
1
2 C2 + C3, which is a

nonnegative constant that is independent of τ and h.

Next, we tackle the problems on the stability and the convergence of the finite-difference scheme.
The following technical results will be of utmost importance to that end.

Lemma 2 (Chen et al. [38]). Suppose that A is a real matrix of size (K + 1)× (K + 1) which satisfies

K+1

∑
j=1
j 6=k

|akj| ≤ |akk| − 1, ∀k ∈ IK+1. (37)

Then ‖V‖∞ ≤ ‖AV‖∞ is satisfied for all V ∈ RK+1.

Lemma 3. Let n ∈ IN . If hψn
k < φn

k , for each k ∈ IK−1, then ‖V‖∞ ≤ ‖AnV‖∞, for each V ∈ Rm.

Proof. Let k ∈ IK+1. Observe that when 2 ≤ k ≤ K,

K+1

∑
j=1
j 6=k

|An
kj| = 2Rn

k = |An
kk| − 1, (38)

which means that the inequality (37) is satisfied in this case. It is easy to check that this inequality is
also satisfied when k = 1 or k = K + 1. The conclusion follows now from Lemma 2.

We establish now the nonlinear stability of the finite-difference model (13) and (14). To that
end, we will consider two sets of initial-boundary conditions, which will be denoted by (χ, ϕa, ϕb)

and (χ̃, ϕ̃a, ϕ̃b). The corresponding solutions obtained using the numerical model will be denoted by
(Un)N

n=0 and (Ũn)N
n=0, respectively.

Theorem 5. Suppose that hψn
k < φn

k holds for each (k, n) ∈ IK−1 × IN , and let (Un)N
n=0 and (Ũn)N

n=0 be
solutions of the discrete model (13) and (14) corresponding to the initial-boundary conditions (χ, ϕa, ϕb) and
(χ̃, ϕ̃a, ϕ̃b), respectively. Then ‖Ũn −Un‖∞ ≤ ‖Ũ0 −U0‖∞, for each n ∈ IN .

Proof. Under the conditions of this result, the conclusion of Lemma 3 is satisfied. As a consequence

‖Ũn+1 −Un+1‖∞ ≤ ‖An+1(Ũn+1 −Un+1)‖∞ = ‖b̃n − bn‖∞ = ‖Ũn −Un‖∞, ∀n ∈ IN−1. (39)

The conclusion of this result readily follows now using mathematical induction.

The following result will be required to prove the linear stability of our scheme. In that result,
the function ρ(·) will denote the spectral radius of real and square matrices.

Lemma 4 (Tian and Huang [39]). Let M = (mij) be an M-matrix, and let N = (nij) be a nonnegative matrix
of the same size as M. If M is strictly diagonally dominant by rows then ρ(M−1N) satisfies

ρ(M−1N) ≤ max
i∈N

{
∑n

j=1 nij

mii + ∑j 6=i mij

}
. (40)
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Theorem 6. If hψn
k < φn

k is satisfied for each (k, n) ∈ IK−1 × IN , then the scheme (13) and (14) is
linearly stable.

Proof. The hypotheses guarantee that An is an M-matrix, for each n ∈ IN . On the other hand,
the applying the previous lemma with N being the identity matrix of the same size as An yields

ρ((An)−1) ≤ max
i∈IK+1

{
1

1 + 2Rn
i − (Rn

i − rn
i )− (Rn

i + rn
i )

}
= 1, ∀n ∈ IN . (41)

The linear stability of the scheme readily follows from this fact.

The next result is a direct consequence of the consistency and stability properties of the scheme.

Theorem 7. Let u ∈ C4,2
x,t (Ω) be a solution of the problem (8) and (9), and suppose that φ and ψ are bounded

in Ω. The solutions of the corresponding discrete model (13) and (14) converge to u with order O(τ + h2),
whenever the parameter h satisfies hψn

k < φn
k , for each (k, n) ∈ IK−1 × IN .

Before closing this section, we will provide some illustrative simulations on the performance of
the numerical model proposed in this work. In particular, we wish to exhibit the capability of the
numerical model to preserve the positivity, the boundedness and the monotonicity of the discrete
solutions. To that end, we will compare the numerical results against the exact solution described after
Theorem 1. It is worth pointing out that the initial and the boundary data will be prescribed exactly
using that analytical solution.

In our simulations, we will consider the stochastic process Xt = x + Bt with the moving boundary
f (t) = α + βt. In that case, the solution of the problem (5) is given by the function (7). We will set
now α = 1, Ω = (0, 1)× (0, 10), and employ the computational parameters h = 0.01 and τ = 0.0001.
Under these circumstances, Figure 2 shows the exact solution (left) and the numerical approximation
(right) to the solution of this problem. We used the finite-difference scheme (13) and (14) together with
the parameter value β = 0.25 (top row), β = 0.5 (middle row) and β = 1 (bottom row). The results
show a good qualitative agreement between the numerical and the analytical solutions of this problem
over the space-time domain. For comparison purposes, we have plotted the exact and numerical
solutions of this problem at time T = 10 using (a) β = 0.25, (b) β = 0.5, (c) β = 0.75 and (d) β = 1.
The solutions are plotted in Figure 3, and they prove that there exists a good agreement between the
numerical and the theoretical results, as expected. To check this fact, Figure 4 provides absolute error
plots corresponding to the graphs in Figure 3. Finally, Figure 5 provides a graph of the analysis of
precision (using the ‖ · ‖∞ norm) versus computational cost, and contrasts the results against those
obtained in [6] for the model described in the caption therein. The present scheme shows a superior
performance due to the fact that less computer operations are required.

(a) (b)

Figure 2. Cont.
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(c) (d)

(e) (f)

Figure 2. Graphs of the exact (left column) and numerical (right column) solutions to the problem (5),
using b ≡ 0, σ ≡ 1 and f (t) = α + βt. We employed the parameter values β = 0.25 (top row),
β = 0.5 (middle row) and β = 1 (bottom row). The exact solution is given by (7), while the numerical
approximation was obtained using (13) and (14). The remaining model and numerical parameters used
are α = 1, c = 0, d = 1, T = 10, h = 0.01, τ = 0.0001.

(a) (b)
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Figure 3. Cont.
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(c) (d)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3
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0.5

0.6

Exact solution

Numerical solution

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

Exact solution

Numerical solution

Figure 3. Graphs of the exact (blue line) and numerical (red line) solutions to the problem (5), using
b ≡ 0, σ ≡ 1 and f (t) = α + βt. We employed the parameter values (a) β = 0.25, (b) β = 0.5, (c) β = 0.75
and (d) β = 1. The exact solution is given by (7), while the numerical approximation was obtained using
(13) and (14). The remaining model and numerical parameters used are α = 1, c = 0, d = 1, T = 10,
h = 0.01, τ = 0.0001.

(a) (b)
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Figure 4. Graphs of the absolute error between the analytical and the numerical solutions of problem (5),
using b ≡ 0, σ ≡ 1 and f (t) = α + βt. We employed the parameter values (a) β = 0.25, (b) β = 0.5,
(c) β = 0.75 and (d) β = 1. The exact solution is given by (7), while the numerical approximation was
obtained using (13) and (14). The remaining model and numerical parameters used are α = 1, c = 0,
d = 1, T = 10, h = 0.01, τ = 0.0001.
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10 -6 10 -4 10 -2
10 0

10 1

Present scheme

Scheme in [6]

Figure 5. Log-log plot of the numerical efficiency of the current computational model (13) and the
scheme reported in [6]. The graphs were obtained using b ≡ 0, σ ≡ 1 and f (t) = α + βt. The exact
solution was given by (7). The remaining model parameters are α = 1, β = 1, c = 0, d = 1, T = 10.

4. Discussion and Conclusions

To start with, we present various remarks with the intention of responding various important
criticisms and suggestions by the reviewers of this work.

1. Regarding the calculation of the first hitting time densities, only some few solutions are known
in exact form for certain types of boundaries [4,5]. In every other case, numerical schemes
should be considered and, in that sense, the present work contributes to the development of
reliable numerical models to approximate the densities of first hitting times. However, we must
point out that those densities can also be approximated by numerical schemes derived from the
approximation to the associated integral equations. It is worth pointing out that some software
has been developed following that approach [40]. The author of the present manuscript has
followed a different approach, but the comparison between the present scheme and that reported
in [40] is an interesting topic of investigation. However, extensive tests would need to be carried
out under similar computational conditions. To start with, the codes must be in the same language
and tests must be performed under the same computational architecture. To this day, the author
has not devoted time to perform these tests, but it is an interesting task that the author of this
work intends to carry out in the future.

2. We must mention that it is possible to generalize the numerical procedure proposed in this work
to account for more general stochastic processes than that considered herein, though some
suitable adjustments are needed to that effect. As an example, it is well known that the
probability distribution of the first passage time for Lévy time-charged Brownian motion with
drift is a solution of a time-fractional advection–diffusion equation subjected to initial-boundary
conditions [41]. In that case, the present approach can be modified to account for the presence
of Caputo time-fractional derivatives and approximate the solutions of the associated partial
differential equation. However, the structural and numerical analysis of that scheme would
require a substantial amount of more effort and time. That could be the research topic of some
independent report in the near future.

3. It is important to point out that the same mathematical problem was considered in the work [6].
In that paper, the authors proposed a finite-difference scheme to approximate the probability
distribution of the first hitting time associated with the same problem investigated in the present
manuscript. The present approach has more advantages, though. To start with, the current
numerical model is easier to implement computationally than that investigated in [6]. This fact
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can be easily checked from the Matlab code in Appendix A. Moreover, various theoretical and
numerical advantages in the present approach are described below in the conclusions.

4. The numerical scheme presented in this work may be relatively simple, but the analysis is rigorous
and has various advantages. For example, it preserves the positivity, the boundedness and the
monotonicity of the numerical solutions. This is an important feature in view that the relevant
solutions of the parabolic problem considered herein possess these properties. The existence and
uniqueness of solutions was thoroughly established here. Moreover, the scheme proposed in this
work was theoretically analyzed for the numerical properties. Another advantage of our present
approach is that the proofs of stability and convergence do not require additional conditions other
than those asked to guarantee the existence of solutions.

Summarizing, we proposed a finite-difference model to solve a parabolic initial-value-problem
associated with a stochastic model. The motivating problem is a stochastic equation which considers
both the presence of a deterministic component and a Gaussian term, as well as nonconstant coefficients.
This system has various applications, including the modeling of moving boundary systems and
crossing times. It is known that the first hitting time of the stochastic model has a probability
distribution which is described by a linear parabolic initial-boundary-value problem. The exact
solution of that problem is only known in some specific scenarios, whence the need to propose a
reliable numerical model to solve it is an important problem of investigation. Moreover, in view that
the relevant solutions of the initial-boundary-value problem are cumulative distributions of probability,
it is important to guarantee that the numerical solutions be nondecreasing and nonnegative functions,
bounded from above by 1.

The proposed finite-difference scheme is a numerical model which is capable of preserving
the properties of monotonicity, nonnegativity and boundedness, and that has spatial symmetry.
These features are thoroughly established in this work using matrix theory. Solutions of the discrete
model exist, and the computer implementation of this discrete model can be carried out efficiently
using matrix representations. The scheme is quadratically consistent in space, and linearly consistent
in time. The properties of linear stability, nonlinear stability and convergence of the scheme are also
theoretically elucidated. In particular, we show that our numerical model has order of convergence
equal to 2 in space, and equal to 1 in time. We implemented the scheme computationally, and some
computer simulations were provided in this work in order to show that the scheme is capable
of preserving the main features of the relevant solutions of the initial-boundary-value problem.
In addition, our computational results confirm that the scheme is stable and convergent.

The present approach has various advantages with respect to some previous efforts reported in
the literature to approximate the cumulative probability distribution of the first hitting time to similar
moving boundary problems. For example, in reference [6], the authors proposed and analyzed a
finite-difference scheme to approximate the probability distribution of the first hitting time for the same
problem investigated in the present work. Various advantages are found in the present manuscript
when compared against that work of the literature:

• The numerical model introduced in the present work has a much easier computational
implementation, in view that the system to solve at each time step is simpler. Indeed, the simplified
Matlab program to obtain the simulations in this manuscript is that presented in Appendix A.
Notice the simplicity of the code. Obviously, the computer program may be simplified or
generalized even more.

• The current discretization presents spatial symmetry.
• The analysis of stability is the numerical model of the present manuscript was carried out without

assuming that the matrices An+1 depend on the approximations at the time tn. This is a strong
limitation of the results in [6]. Indeed, in that work, the authors needed to assume that the
matrices did not depend on Un, which was an unrealistic assumption.
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• The limitations of [6] described in the previous remark carried over to the analysis of convergence.
Indeed, the model proposed in that paper had order of convergence O(τ2 + h2), but the
hypotheses to guarantee that order were utterly restrictive and unrealistic.

• Stability and convergence were established in the present discretization. On the contrary,
the paper mentioned above requires additional constraints which limit the approach severely.
Our present approach has convergence order O(τ + h2), but the theoretical result need less
constraints to guarantee this order. We have performed numerical tests of convergence (not
presented here in order to avoid redundancy), and they show that the present scheme has linear
order of convergence in the temporal variable, and second order in the spatial domain.

• It is worth mentioning that there are various reports available in the literature in which problems
with moving boundaries have been investigated numerically [42–48]. However, the present is an
easy-to-implement model which preserves various advantages from the structural and numerical
points of view.
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Appendix A. Matlab Code

The following is a basic implementation in Matlab of the computational model (13) and (14).
This code was employed to obtain the simulations at the end of Section 3 with α = β = 1. We provide
it here without further details. We only notice that our implementation relies on the use of the Matlab
routine bicgstab, which is an implementation of the biconjugate gradients stabilized method to solve
systems represented by sparse matrices. For more information, the reader may contact the author of
this paper.
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function [x,u,v]= hitting
% Output variable x: partition of interval [c,d].
% Output variable u: numerical solution at time T.
% Output interval v: exact solution at time T.

function y=solution(x,t)
y=1-normcdf ((t+1./x)./sqrt(t))+exp(-2./x).* normcdf ((t-1./x)./sqrt(t));
end

T=10; % Input variable T: temporal period of time.
K=100; % Input variable K: number of spatial intervals.
N=1000; % Input variable N: number of temporal~intervals.

tau=T/N;
h=1/K;
r=0.25* tau/h;
R=0.25* tau/h^2;

x=0:h:1;
t=0:tau:T;
u=solution(x,0);

for n=1:N
A=eye(K+1,K+1);
for k=2:K
A(k,k)=1+2*R*x(k)^4;
A(k,k-1)=r*(x(k)^3-x(k)^2)-R*x(k)^4;
A(k,k+1)=-r*(x(k)^3-x(k)^2)-R*x(k)^4;
end
d=[ solution(0,t(n)) u(2:K) solution(1,t(n))];
u=bicgstab(A,d') ';
end
v=solution(x,T);
end
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