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Abstract: Quantum teleportation has had notorious advances in the last decade, being successfully
deployed in the experimental domain. In other terrains, the understanding of indefinite causal
order has demonstrated a valuable enhancement in quantum communication to correct channel
imperfections. In this work, we address the symmetries underlying imperfect teleportation when it
is assisted by indefinite causal order to correct the use of noisy entangled resources. In the strategy
being presented, indefinite causal order introduces a control state to address the causal ordering.
Then, by using post-selection, it fulfills the teleportation enhancement to recover the teleported state
by constructive interference. By analysing primarily sequential teleportation under definite causal
order, we perform a comparison basis for notable outcomes derived from indefinite causal order.
After, the analysis is conducted by increasing the number of teleportation processes, thus suggesting
additional alternatives to exploit the most valuable outcomes in the process by adding weak
measurement as a complementary strategy. Finally, we discuss the current affordability for an
experimental implementation.
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1. Introduction

Quantum communication has always looked for improvements and new outstanding approaches.
Particularly, it has been shown that certain enhancements in information transmission can be reached
through the superposition of quantum communication channels. That enhancement has shown that
the interference of causal orders using sequential extreme imperfect depolarizing channels surprisingly
produces a transparent quantum channel due to constructive superposition in the components of
the state being transmitted [1]. Since that discovery, a growing interest in indefinite causal order has
emerged boosting a deep study of this topic. Experimental implementations have been proposed in
order to find, to understand, and to control their advantages [2].

1.1. Background of Indefinite Causal Order in Communication

In quantum communication with extremely noisy channels, only limited information can be
transmitted. If we continue applying such quantum channels sequentially, no information becomes
transmitted, obtaining the so-called depolarizing quantum channel. Despite, it has been shown that
when such channels are applied in a superposition of causal orders, we can still transmit information,
and notably, the quality of information transmitted becomes improved while more channels are
applied under this scheme. Concretely for the case of two quantum channels, some works considering
controllable strengths of depolarization have shown that combining a superposition of causal orders,
it is still possible to transmit information (instead of worsening it as it obviously happens for the
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simpler sequential case) [1,3]. The success of the causal orders superposition has been experimentally
verified for two channels transmitting information [4].

Following such a trend in communication, it has been found the possibility to extrapolate the
increasing number of causal orders superposed (with more than two channels) by developing a
combinatoric approach to the problem [5,6]. As a matter of fact, it has been shown that the amount of
information transmitted, in comparison with the two-channel scenario, increases for the three-channels
scenario [5]. Therefore, it has been concluded that the amount of classical information transmitted
becomes higher if the number of causal orders increases.

Some notorious approaches regarding the indefiniteness of causal orders have been explored,
exhibiting the capability to transmit information in a more efficient way. It highlights the importance
to extend this approach on teleportation, as a genuine communication process [7,8].

1.2. Approaches to Teleportation under Causal Order Schemes

Information can be transmitted from one party to another as a quantum state if it is prepared in
combination with an Einstein–Podolsky–Rosen state [9]. Such a quantum communication process is
called quantum teleportation. It plays an important role related to quantum information and quantum
communication. Teleportation algorithm for one single qubit is performed using one entangled
Bell state and one channel for classical communication in order to achieve it [10]. Symmetries
in the conformation of such quantum entangled state automatically transfer a state into another
party if post-measurement is applied. The same algorithm has also been useful to teleport states
of larger systems if they are composed of two-level systems [11]. The teleportation algorithm
has been widely studied and new approaches have been discovered, as well as variants on the
algorithm in order to make it either more efficient in terms of the quantum resources used [12] or
more adaptive to some specific quantum systems [13–15]. Additionally, several successful tests have
been experimentally performed in order to prove the feasibility of teleportation when the distance
increases [16–18]. Tests with larger multidimensional states rather than qubits have been performed
successfully [19]. Recently, a new approach has shown that the assistance of indefinite causal order
in teleportation improves its performance when imperfect entangled resources become involved [7],
which is equivalent to a quantum noisy communication channel.

Teleportation assisted by indefinite causal order and measurement has been introduced in [7]
by pointing out that teleportation is a quantum channel itself (here, entanglement distribution is
assumed to be performed through a transparent communication channel). The last proposal has been
criticized in [20] arguing the entanglement distribution in teleportation is a critical aspect not being
considered there (due to the large distances and communication issues involved). Instead, as in [7],
the most recent work [20] interestingly has analysed the use of indefinite causal order in the form of
a quantum switch for the entanglement distribution process as a part of the teleportation algorithm,
thus making an analysis to quantify the performance gained by such a switch. Nevertheless, nowadays
teleportation has been achieved through kilometers in the free space or through optical fiber, with still
high fidelities [21] without considerable deformation in the entangled resource other than that the
introduced in its imperfect generation. Thus, we believe both approaches are still valuable in the quest
of understanding creative ways to implement indefinite causal order in teleportation. Both approaches
show interesting features in the quantification of indefinite causal order issues applied to teleportation.

In [7], the quantum teleportation uses imperfect singlets showing that despite those noisy
singlets make impossible a faithful teleportation, there is still a stochastic possibility of teleporting
perfectly the state by applying indefinite causal order as the superposition of two teleportation
channels. Such teleportation process has been conducted considering two identical teleportation
channels with the same imperfect entangled resources, but in a superposition of causal orders
through an evenly quantum control system. Finally, the outcome is measured on a specific basis
in order to improve the fidelity of the teleportation process in the best possible way by recovering the
symmetrical composition of the teleported state. Following this analysis and considering the same
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two imperfect channels but with an arbitrary initialized quantum control system, it has been also
found the possibility to get again the highest possible transmission by post-selecting the appropriate
outputs under alternative scenarios [22]: a proper selection of the post-measurement state on the
control system, thus extending the interesting outcomes obtained in [7]. In addition, it has been shown
that for the less noisy cases, the effect becomes still limited [7].

In teleportation, the traditional algorithm [9] is entirely represented as a quantum channel T in
Figure 1a. In order to carry out the teleportation, it is necessary an entangled resource shown as |χ〉.
When this resource is the Bell state |β00〉 = 1√

2
(|00〉+ |11〉), a perfect teleportation is then achieved,

but if such state is imperfect (it can be generally expressed as a mixture of all Bell states), teleportation
process does not work properly. In Figure 1b, an alternative (but still equivalent) circuit is presented
assuming that Bell states measurements could be performed. In such a case, no gates are required, due
to teleportation is just reached due to the non-locality of the entangled resource |β00〉 (or imperfectly,
|χ〉). This fact will be useful at the end of the article for a tentative experimental proposal.

(a) (b)

Figure 1. (a) Traditional teleportation circuit T where |ψ〉 = α |0〉+ β |1〉 and ideally |χ〉 is the Bell
state |β00〉 = 1√

2
(|00〉+ |11〉). Measurements refer to one single qubit measurement and the double

line to classical communication channels. (b) Modified teleportation circuit considering a Bell states
measurement (which are generated by enclosing the gates on (a) within the measurement gadget).

Still, applying a sequence of two imperfect teleportation channels, the outcome worsens. In [7],
it has been shown that for the worst deformed case of |χ〉, the fidelity of single teleportation goes down.
However, if two teleportation channels are used in an indefinite causal order with the superposition
ruled by a quantum control system, surprisingly the previous worst-case arises with fidelity equal
to 1. The analysis has been extended in [22] considering a wider kind of measurements required in
the original approach. In this sense, the use of indefinite causal order improves the teleportation
process. Thus, it is possible to correct this lack of fidelity working with the worst entangled state by
applying indefinite causal order, together, with some appropriate selection in the control used and in
the measurement performed, making possible to reach perfect teleportation.

In the current work, we deal with an extended version of the algorithm presented in [7,22]
by using several sequential channels in order to benchmark the outcomes obtained by increasing
the number of channels [5]. Section 2 develops the case of sequential channels in a definite causal
order as a comparison basis. Section 3 develops the same situation but considering an indefinite
causal order superposition using N channels. Section 4 uses the last formalism with more than two
teleportation channels under indefinite causal order widening the spectrum of analysis. Section 5
revisits the problem but implementing additionally weak measurement proposing an improved
procedure. Finally, Section 6 discusses the affordability of a possible experimental implementation for
two teleportation channels under indefinite causal order using the current experimental developments.
The last section gives the conclusions and future work to extend our findings.
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2. Teleportation Algorithm as a Quantum Channel and N-Redundant Teleportation Problem

2.1. Quantum Teleportation as a Quantum Channel

Traditional quantum teleportation algorithm developed originally in [10] has become a central
procedure in quantum information theory. This process uses an entangled resource in the form of
the Bell state |β00〉 = 1√

2
(|00〉+ |11〉). Experimentally, such an entangled state becomes difficult to

create and to sustain. For this reason, it could arrive imperfect to the process. Thus, considering
a general variation of this resource in the form of the general state |χ〉 = ∑3

i=0
√

pi |βi〉, where |βi〉
is a short notation for the Bell basis |β0〉 = |β00〉, |β1〉 = |β01〉, |β2〉 = |β11〉 and |β3〉 = |β10〉.
The traditional teleportation algorithm running under this resource (instead the perfect case with
p0 = 1 and p1 = p2 = p3 = 0) becomes a quantum channel whose output expression in terms of Kraus
operators is given by [23]:

Λ[ρ] =
3

∑
i=0

piσ̃iρσ̃†
i =

3

∑
i=0

piσiρσi (1)

with σ̃i = σi if i = 0, 1, 3 and σ̃2 = iσ2. ρ = |ψ〉 〈ψ| is the state to teleportate (in the current work we
will restrict the analysis to pure state cases, despite our outcomes can be extended to mixed states [8]).
This formula, regarding teleportation algorithm as a communication channel will be discussed at
the end of the article in terms of possible and current available experimental developments for its
implementation. It means Kraus operators are Ki =

√
piσi. In the terms stated before, we are interested

to assess the corresponding fidelity of the process as function of the pi values under several schemes.
It has the form of a Pauli channel [24] and it has been recently studied to characterize its properties
under indefinite causal order and measurement [8] exhibiting notable properties and symmetries
of communication enhancement as function of the parameters pi. In the current approach, the set
{pi|i = 0, 1, 2, 3} plays an additional role because it is associated with the quantum resource |χ〉.

In the current article, we will use the fidelity to measure the channel performance:

F (ρ, Λ[ρ]) =

[
Tr
(√√

ρΛ[ρ]
√

ρ

)]2
, (2)

because we will restrict to the case when ρ is a pure state ρ = |ψ〉〈ψ|, then
√

ρ = ρ. Those facts still
give the easier formula: F (ρ, Λ[ρ]) = 〈ψ|Λ[ρ]|ψ〉 = Tr(ρΛ[ρ]). Then, in the following, we will express
the fidelity briefly as FΛ ≡ F (ρ, Λ[ρ]).

2.2. N-Redundant Quantum Teleportation

In this section, we will study the effect on the fidelity of imperfect teleportation as it was previously
depicted. For such reason, we first consider a set of identical and redundant N teleportation channels
in a definite causal order as a composition of the depicted channel in (1). In addition, we consider for
the sake of simplicity that each channel is identical to others in the redundant application:

(©NΛ)[ρ] ≡ Λ[Λ[. . . Λ[ρ] . . .]] =
3

∑
i1,...,in=0

pi1 · · · pin σiN · · · σi1 ρσi1 · · · σiN . (3)

If p1 = p2 = p3 ≡ p, with 0 ≤ p ≤ 1
3 for simplicity (to avoid the increasing parameters

involved), we have gotten the expressions for the corresponding fidelity F©N Λ ≡ Tr(ρ(©NΛ)[ρ])

for the first five cases of redundant sequential applications of teleportation (assuming ρ is a pure
state), getting:
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F©1Λ = 1− 2p (4)

F©2Λ = 1− 4p + 8p2 (5)

F©3Λ = 1− 6p + 24p2 − 32p3 (6)

F©4Λ = 1− 8p + 48p2 − 128p3 + 128p4 (7)

F©5Λ = 1− 10p + 80p2 − 320p3 + 640p4 − 512p5. (8)

Interestingly, those outcomes are independent from the state to teleport (a consequence from the
symmetric simplification p1 = p2 = p3 = p and the algebraic properties of Pauli operators). Such cases
can be computationally developed to get last outcomes (and other for larger cases). Figure 2 exhibits
the behavior of such applications as function of p. The gray zone sets the middle point F©1Λ = 2

3 of
fidelity F©1Λ ∈ [ 1

3 , 1] for the case N = 1 as a reference (as it was remarked in [7]). The single case
N = 1 sets the expected outcome about the effect of p on F©1Λ giving the worst value for p = 1

3 .
For N > 1, the outcome becomes as it could be expected, each application of a new teleportation
worsens the output state teleported. Despite this, there are certain recoveries for p = 1

3 , useful only for
the lowest values of N. A convergent value FN→∞ = 1

2 appears (it corresponds to the behavior of total
depolarization for the channel, ρout ≡ (©NΛ)[ρ] = σ0

2 ). The cases p = 1
4 coincide for all N because

for N = 1 the total depolarized state σ0
2 is obtained, then any further application of the teleportation

cannot worsen the outcome.

Figure 2. Sequential fidelity as function of the number N of channels being applied, and p is the
deformation strength in |χ〉.

3. Quantum Teleportation Assisted by Indefinite Causal Order with N Channels

In this section, we will consider a generalization of some variants of the process under indefinite
causal order as they are presented in [7,22] by considering N channels in a superposition of causal
orders. By applying N channels in a superposition of causal orders, we could have N! combinations
with different orders. Thus, we will need a control state with such number of dimensions (|0〉 sets for
the normal sequential order of gates T1, T2, ..., TN) to rule the application of each causal order:

ρc = (
N!−1

∑
i=0

√
qi|i〉c)(

N!−1

∑
j=0

√
qj〈j|c) =

N!−1

∑
i,j=0

√
qiqj|i〉c〈j|. (9)



Symmetry 2020, 12, 1904 6 of 26

For a definite causal order of teleportation channels Ti1 , Ti2 , ..., TiN given by the element πk ∈ ΣN
in the symmetric group of permutations ΣN from the ordered case, it has the effect:

πk =

(
Ti1 Ti2 · · · TiN

Tij1
Tij2

· · · TijN

)
→ πk(Ki1 Ki2 · · ·KiN ) = Kij1

Kij2
· · ·KijN

, (10)

and symbolically corresponding to the control state |k〉c. Then, the corresponding Kraus operators
Wi1,i2,...,iN are:

Wi1,i2,...,iN =
N!−1

∑
k=0

πk(Ki1 Ki2 ...KiN )⊗ |k〉c〈k|, (11)

where in the following, we will drop the tensor product symbol ⊗ in the sake of simplicity.
Thus, the output for N-channels in superposition is given by:

ΛN [ρ⊗ ρc] = ∑
i1,i2,...,iN

Wi1,i2,...,iN ρ⊗ ρc
(
Wi1,i2,...,iN

)† (12)

= ∑
i1,i2,...,iN

(
∑
k

πk
(
Ki1 Ki2 . . . KiN

)
|k〉〈k|

)
ρ⊗ ρc

(
∑
k′

πk′
(
Ki1 Ki2 . . . KiN

)
|k′〉〈k′|

)†

= ∑
i1,i2,...,iN

pi1 · · · piN

(
∑
k

πk
(
σi1 · · · σiN

)
|k〉〈k|

)
ρ⊗ ρc

(
∑
k′

π†
k′
(
σi1 · · · σiN

)
|k′〉〈k′|

)
(13)

= ∑
i1,i2,...,iN

k,k′

pi1 · · · piN

√
qkqk′ |k〉〈k′| ⊗ πk

(
σi1 · · · σiN

)
ρπ†

k′
(
σi1 · · · σiN

)
.

Still, we can use the last formula to reach a simpler expression using combinatorics and then
the properties of Pauli operators. In fact, noting that the sum in (14) includes all different values
given to each i1, i2, . . . , iN , after they are permuted as distinguishable objects by πk and πk′ , it can be
transformed into:

3

∑
i1=0

3

∑
i2=0

...
3

∑
iN=0

−→
N

∑
t1=0

N−t1

∑
t2=0

N−t1−t2

∑
t3=0

N′

∑
p=1

, (14)

where tj is the number of scripts in i1, i2, ..., iN equal to j = 0, 1, 2, 3 (t0 = N − t1 − t2 − t3). Sum over
p runs on the distinguishable arrangements obtained with a fix number tj of operators σj departing
from σt0

0 σt1
1 σt2

2 σt3
3 by means of a certain permutation π

k
t1,t2,t3
p

. Then, the permutations among identical

operators in each one of the four types σ0, σ1, σ2, σ3 are indistinguishable. There, N′ = N!
t0!t1!t2!t3! .

In such case, Formula (14) can be written as:

ΛN [ρ⊗ ρc] = ∑
k

∑
k′

√
qkqk′ |k〉〈k′|

N

∑
t1=0

N−t1

∑
t2=0

N−t1−t2

∑
t3=0

3

∏
j=0

p
tj
j ⊗ (15)

N′

∑
p=1

πk

(
π

k
t1,t2,t3
p

(
σt0

0 σt1
1 σt2

2 σt3
3

))
ρ

(
πk′

(
π

k
t1,t2,t3
p

(
σt0

0 σt1
1 σt2

2 σt3
3

)))†
,

providing an easier formula for ΛN [ρ⊗ ρc] in terms of a definite number of sums and with the
teleported state separated from the control state. From the properties of Pauli operators algebra, it is
clear that both permutation terms besides ρ in (15) becomes equal until a sign. In addition, each one
becomes in the set {σj|j = 0, 1, 2, 3}. Thus, (15) becomes a mixed state obtained as a linear combination
of syndromes σjρσj, j = 0, 1, 2, 3 and normally entangled with the control state.

Following to [7], then we select an adequate basis to perform a measurement on the control state:
B = {|ψMi 〉|i = 1, 2, ..., N!}. Such a measurement post-selects the original symmetry of the teleported
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state mixed with the control and the imperfect entangled state. In such a basis, we hope to find a
privileged state |ψm〉 ∈ B to stochastically maximize the fidelity with probability Pm (assuming ρ is a
pure state). Pm sets the probability of success of the process. If the measurement of control does not
conduct to |ψm〉, then other undesired teleportation outcome will be obtained. Then, if the desired
outcome is not obtained, we disregard the output state. The fidelity and the success probability are:

FN =
Tr(ρ〈ψm|ΛN [ρ⊗ ρc] |ψm〉)

Pm
(16)

Pm = Tr(〈ψm|ΛN [ρ⊗ ρc] |ψm〉). (17)

The process is depicted by Figure 3, where N! causal orders are considered to arrive to the pictorial
representation of a complete superposition of causal orders on the right. Each causal order corresponds
to one definite order in the application of channels Ti ruled by the control state ρc above it.

Figure 3. N! causal order combinations for N identical teleportation channels Ti, i = 1, 2, ..., N finally
conforming a superposition of it. Each one is ruled by the control state above.

4. Analysis of Quantum Teleportation Assisted by the First Indefinite Causal Orders

In the following section, we deal with the analysis for the increasing number of teleportation
channels after to remark some outcomes for the case N = 2 guiding the further analysis.

4.1. Teleportation with N = 2 Teleportation Channels in an Indefinite Causal Order Superposition

For the case N = 2, it has been obtained in [22] that (16) reduces to:

F2 =
∑3

i,j=0 pi pj

(
( 1

2 + (q0 − 1
2 ) cos θ)Tr(ρσiσjρσjσi) +

√
q0q1 sin θ cos φTr(ρσiσjρσiσj)

)
∑3

i,j=0 pi pj

(
( 1

2 + (q0 − 1
2 ) cos θ)Tr(σiσjρσjσi) +

√
q0q1 sin θ cos φTr(σiσjρσiσj)

) , (18)

then, a measurement on the control is made on the basis B = {|ψm〉 = cos θ
2 |0〉+ sin θ

2 eiφ |1〉 ,
∣∣ψ⊥m〉 =

sin θ
2 |0〉− cos θ

2 e−iφ |1〉}, being |ψm〉 the supposed state maximizingF2. The corresponding probability
to get that outcome becomes:

Pm =
3

∑
i,j=0

pi pj

(
(

1
2
+ (q0 −

1
2
) cos θ)Tr(σiσjρσjσi) +

√
q0q1 sin θ cos φTr(σiσjρσiσj)

)
. (19)
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Last formulas, (18) and (19) become reduced for pure states ρ = |ψ〉 〈ψ| , |ψ〉 = α|0〉+ β|1〉 and
p0 = 1− 3p, p1 = p2 = p3 = p by considering the identities:

3

∑
i,j=0

pi pjTr(ρσiσjρσjσi) = 1− 4p + 8p2 (20)

3

∑
i,j=0

pi pjTr(σiσjρσjσi) = 1 (21)

3

∑
i,j=0

pi pjTr(ρσiσjρσiσj) = (1− 2p)2 (22)

3

∑
i,j=0

pi pjTr(σiσjρσiσj) = 1− 12p2. (23)

Note that the combination of the two first formulas gives the sequential case in (5). The other two
terms correspond to the interference terms. First and third formulas can be demonstrated noting that:

ρ =
1
2
(σ0 + n̂ ·~σ) (24)

with : n̂ = (|α|2 − |β|2, αβ∗ + α∗β, i(αβ∗ − α∗β)),

~σ = (σ1, σ2, σ3).

This fact is not exclusive of the case N = 2. Due to the Pauli operators algebra and the regarding
they are traceless (while, Tr(σ0) = 2), introducing (24) in (16) and (17), we note for Pm that only the
terms containing σ0 become different from zero. ForFN , only the quadratic terms in σ0 and n̂ ·~σ become
different from zero. For the terms quadratic in n̂ ·~σ, the additional condition pi = pj∀i 6= j(i, j 6= 0)
is required in order to reduce the terms containing σασβ to the magnitude of n̂, thus removing all
reference of the teleported state.

In [7], it has been demonstrated that for |ψm〉 = |+〉 the worst deformed state |χ〉 with p = 1
3 still

lets a perfect teleportation with probability Pm = 1
3 . In fact, Figure 4 summarizes the findings for the

fidelity considering the two families of measurements with |−〉 (dashed orange lines) and |+〉 (dashed
blue lines). The sequential case with N = 2 is reported as a continuous line black together with the
single teleportation channel N = 1 (continuous red line). Dashed blue and orange lines go folded from
q0 = 0, 1 (two channels in definite causal order) nearest to the two sequential channels case in black to
the outermost lines for q0 = 1

2 (the evenly distributed control state) reaching F = 1 in p = 0, 1
3 (blue

for |ψm〉 = |+〉) and F = 1
3 , ∀p (orange for |ψm〉 = |−〉).

For the case N = 2, [22] has shown that for different values of q0 = 1
2 , other measurements

|ψm〉 = cos θ
2 |0〉+ sin θ

2 eiφ |1〉 are possible in order to achieve F = 1 when p = 1
3 giving φ = 0 and

θ distributed as in the Figure 5 as function of q0. Thus, the best fidelities F2 depend entirely from p
(see the color-scale besides in Figure 5) but the corresponding values of Pm go down far from q0 = 1

2
(θ = π

2 ). The red dotted line is the threshold setting the minimum fidelity reached in the optimal case

for p = 3−
√

3
6 , F2 = 1√

3
[22]. Thus, we conclude that for p = p1 = p2 = p3, the best state for the control

is q0 = 1
2 in order to maximize Pm, despite only for p = 1

3 and p→ 0 it is possible to approach F2 → 1.
The last outstanding outcome for p = 1

3 is a consequence of the two-folded interference introduced by
the indefinite causal order together with the post-selection induced by the measurement which filters
only constructive interference among the terms belonging to the original state.
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Figure 4. Fidelity for the case of two channels in indefinite causal order as function of p. The blue
dashed upper line corresponds to |ψm〉 = |+〉 and q0 = 1

2 reaching F = 1 in p = 1
3 .

Figure 5. Condensed outcomes for the case N = 2. The respective probability Pm of measurements are
included as function of q0 and θ in |ψm〉 = cos θ

2 |0〉+ sin θ
2 eiφ |1〉 (φ = 0 in the optimal measurement).

Fidelity depends entirely from p, and Pm goes down while p→ 1
3 .

Fidelity (18) can be still analysed for independent values of p1, p2, p3. Figure 6 shows a numerical
analysis to search the best possible fidelity (achieved for certain teleported state) max|ψm〉,q0

(F2) for
all possible |ψm〉 and 0 ≤ q0 ≤ 1. The value of fidelity F2 is represented in color in agreement
with the color-scale bar besides. Figure 6a shows a cut from the entire plot showing the inner core
where fidelity goes down (three parts are symmetric). The higher values of fidelity on the faces
of polyhedron suggest that better solutions can be reached for other cases with unequal values of
pi, i = 1, 2, 3, particularly for the frontal face p0 = 0 completely colored in blue in Figure 6. The case
p1 = p2 = p3 ≡ p falls in the central red dashed division crossing the clearer core reflecting the outcome
in Figure 4, where not good values of F2 are inevitably obtained far from p = 0 and p = 1

3 . In addition,
complementary information for such cases is given by Pm in Figure 6b, the probability to reach the
corresponding higher fidelity in each process assisted by an intermediate optimal measurement on the
control qubit. The plot depicts disperse outcomes barely around of Pm ≈ 0.5. Note that the computer
process to obtain Figure 6a,b requires optimization on lots of parameters, thus requiring a considerable
time of processing. The region (p1, p2, p3) was divided in 107 points to perform such optimization.
After, each point is reported as a colored sphere to fill the space in order to give a representation in
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color about the continuity of F2 and Pm. Such an approach gives a certain impression of blurring
in the figures, but they are reported with the best precision available under numerical processing.
Particularly, Figure 6b is a collage of colored dots due to Pm is reported on an average basis, due the
optimization was made on F2 on the left. By performing a numerical statistics of our outcomes for
each Pm, we get an approximation to its statistical distribution ρPm included in the upper inset in
Figure 6b. This distribution shows symmetric behavior around of Pm = 0.5 as it could be expected for
the numerical optimization.

Figure 6. (a) Best fidelity F2 for the two-channels case as function of p1, p2, p3. Each point inside
the polyhedron corresponds to their acceptable values and it is coloured in agreement with its
fidelity value (see the color-scale besides); the cut of polyhedron region exhibits the inner structure;
(b) The corresponding values for measurement probabilities Pm denoting disperse values around 0.5.
The upper inset confirms the statistical distribution ρPm exhibiting symmetry around Pm = 0.5.

4.2. Teleportation with an Increasing Number of Teleportation Channels in an iNdefinite Causal
Order Superposition

Formula (15) exhibits the superposition of terms finally involving the states ρ, σ1ρσ1, σ2ρσ2 and
σ3ρσ3 while they become entangled with the control state ρc. In the next sections, we deal with two
cases of interest for the use of the teleportation algorithm under indefinite causal order.

4.2.1. Case p1 = p2 = p3 ≡ p

First, we will address with the case p = p1 = p2 = p3 widely used in the literature for simplicity.
In [7], it has been suggested that for |ψm〉 having one of the following forms:

|ϕ±m〉 ≡
1√
N!

N!−1

∑
i=0

(±1)σ(πi)|i〉. (25)

The teleportation fidelity becomes optimal. There, σ is the signature of the parity of each order |i〉.
By considering (15) together with (25) and the control state with qk =

1
N!∀k = 0, 1, ..., N!− 1:

〈ϕ±m |ΛN [ρ⊗ ρc] |ϕ±m〉 = ∑
k

∑
k′

1
N!2

(±1)σ(πk)+σ(πk′ )
N

∑
t1=0

N−t1

∑
t2=0

N−t1−t2

∑
t3=0

3

∏
j=0

p
tj
j · (26)

N′

∑
p=1

πk

(
π

k
t1,t2,t3
p

(
σt0

0 σt1
1 σt2

2 σt3
3

))
ρ

(
πk′

(
π

k
t1,t2,t3
p

(
σt0

0 σt1
1 σt2

2 σt3
3

)))†
.
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Then, we have developed the Formulas (14) and (16) with |ψm〉 = |ϕ±m〉 in (25) to get both FN
and PN for N = 2, 3, 4. Those formulas have been plotted (they are not reported here because their
complexity, despite they are included in the Appendix A), the outcomes are shown in Figure 7 showing
that a perfect fidelity FN = 1 for p = 1

3 is achieved when |ϕ±m〉 meets with the same parity to N
(p is indicated in the color-scale besides). Despite, for p = 1

3 the success probabilities Pm decrease
while N increases. For |ϕ−〉 and N = 4, we get Pm = 0, thus F4 becomes undefined in such a case.
While p ∈ [0, 1

6 ] the best election is the single teleportation channel, for p ∈ [ 1
6 , 1

3 ], the assistance of
the causal order becomes an alternative to enhance the fidelity of teleportation, particularly with
N = 2 channels.

Figure 7. Probability Pm to obtain different values of fidelity FN when the measurement states |ϕ+〉 or
|ϕ−〉 are applied for cases (a) N = 2, (b) N = 3 and (c) N = 4. Color-scale bar depicts the respective
value for p for N = 2, 3, 4.

Figure 8 again compares the fidelity FN versus p for both measurements with the corresponding
sequential case showing the alternated optimization of FN as function of the parity of N and |ϕ±m〉. Despite,
the outcomes in Figure 6 suggest analysing the behavior of FN for independent values of p1, p2, p3.

Figure 8. Comparison of fidelity obtained when the channels are applied sequentially (blue) and with
indefinite causal order depending on the measurement state |ϕ+

m〉 (red) and |ϕ−m〉 (green), for the cases
(a) N = 2, (b) N = 3, and (c) N = 4 (in this last case, the fidelity becomes undefined for |ϕ−m〉).
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4.2.2. Case pj � 1, j = 1, 2, 3

In some practical cases, the expected values for the entangled resource |χ〉 vary slightly from
a perfect entangled state: pj � 1 for j = 1, 2, 3. Thus, the outcome described through Formula (15)

becomes in this case (developing to first order for pj, j = 1, 2, 3 the factor ∏3
j=0 p

tj
j there):

ΛN [ρ⊗ ρc] ≈
[(

1− N
3

∑
j=1

pj

)
ρ + N

3

∑
j=1

pjσjρσj

]
⊗ ρc ≡ ρout ⊗ ρc. (27)

Note that under this approximation, ρc becomes unaltered and separated from the system
state. Thus, the optimal way to teleport the state implies to measure the control state considering
|ψm〉 = ∑k

√
qk|k〉. In the following, we assume such an optimal measurement made on the

control state.
For the particular case where pj =

1
4N with j = 1, 2, 3, last formula can be written as:

ΛN [ρ⊗ ρc] ≈
1
2

σ0 ⊗ ρc. (28)

Obtaining the totally depolarized state 1
2 σ0. Notice that it is only applicable for very large values

of N (due to the assumption pj � 1, j = 1, 2, 3). This aspect is advised in the Figure 7 where the fidelity
drops more rapidly to 1

2 when N grows around of p = 0.
In general, the probability and fidelity given in (27) will become respectively (developing to first

order in pj, j = 1, 2, 3):

Pm ≈ Tr[ρout] = 1 (29)

FN ≈ Tr[ρρout]

Pm
= 1− N

3

∑
j=1

pj(1− n2
j ) ≡ 1− Npts

3

∑
j=1

αj(1− n2
j ) ≡ 1− Npts∆α1,α2,α3

θ,φ , (30)

where ρ was written as in (24). We are introduced the reduced parameters αj ∈ [0, 1] and the threshold
probability pts � 1 to limit the validity of the current approximation (pj = ptsαj � 1, j = 1, 2, 3).
We note in any case that the increasing of N worsens the fidelity. Note each term in the sum in (30)
is non-negative, thus the fidelity becomes commonly reduced. Because only one of n2

j , j = 1, 2, 3
could be one at the time, then it is necessary in addition that two pj become zero to get FN = 1.
Otherwise, FN < 1 with a notable decreasing if N is large. The outcome in (29) exhibits a combination
of the three error-syndromes σ1ρσ1, σ2ρσ2, σ3ρσ3 reflected through the terms αj(1− n2

j ) as function of
αj. Thus, for each syndrome σjρσj the best states being teleported are those closer to the eigenstates of
σj, otherwise while several αj 6= 0 the teleportation capacity is widely reduced.

Considering ρ = |ψ〉〈ψ| with |ψ〉 = cos θ
2 |0〉 + sin θ

2 eiφ |1〉 on the Bloch sphere: n1 =

sin θ cos φ, n2 = sin θ sin φ, n3 = cos θ. Then, we analyze each syndrome and its impact on the fidelity
through the quantity ∆α1,α2,α3

θ,φ . As lower it becomes, higher becomes FN . Figure 9a shows the simple

behavior of ∆α1,α2,α3
θ,φ for each state on the Bloch sphere under each syndrome: p1 = 1, p2 = p3 = 0;

p2 = 1, p1 = p3 = 0; and p3 = 1, p1 = p2 = 0 in such order. We have denoted as |0j〉 and |1j〉 to the
eigenstates of σj, j = 1, 2, 3 (or j = x, y, z). Note the behavior commented in the previous paragraph.

Despite, the most interesting issue is centered in the fact that the entanglement resource |χ〉 is
normally unknown but with a tiny variation of |β0〉 through the deformation parameters p1, p2, p3.
By calculating the average and the standard deviation of ∆α1,α2,α3

θ,φ on the parameters α1, α2, α3 ∈ [0, 1]:
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µ∆
α1,α2,α3
θ,φ

=
∫ 1

0

∫ 1

0

∫ 1

0
∆α1,α2,α3

θ,φ dα1dα2dα3 = 1→ µFN = 1− Npts (31)

σ∆
α1,α2,α3
θ,φ

=
√

µ
(∆

α1,α2,α3
θ,φ )2 − (µ∆

α1,α2,α3
θ,φ

)2

=
1

8
√

6

√
53 + sin4(θ) cos(4φ) + 4 cos(2θ) + 7 cos(4θ) ∈ [

1
3

,
1√
6
] (32)

→ σFN = Nptsσ∆
α1,α2,α3
θ,φ

. (33)

We note that the average value of fidelity FN = 1− Npts becomes independent from the state
being teleported. While, the dispersion for ∆α1,α2,α3

θ,φ on the values p1, p2, p3 depends from the teleported
state and it becomes lowest for the eigenstates of σ1, σ2, σ3. In fact, the exact result for the case of
N = 1 is precisely (30) with such value in (1): F1 = 1−∑3

j=1 pj(1− n2
j ), thus the values in (33) are

scaled from it by a factor N. The reason is easily noticed, the ρout in (27) obtained by linearization
from (3) coincides with the sequential case (3) under linearization, so both cases exactly meet under
the current limit. It implies that indefinite causal order procedure in teleportation becomes unpractical
in this limit.

Figure 9. Bloch sphere showing under the assumption pj � 1, j = 1, 2, 3 for each state: (a) ∆α1,α2,α3
θ,φ

in color obtained for each syndrome in (27), σ1ρσ1, σ2ρσ2, σ3ρσ3 respectively, and (b) the standard
deviation σ∆α1,α2,α3

θ,φ
in (33). Red is the best fidelity in (a) and the lower dispersion in (b).

4.3. Notable Behavior on the Frontal Face of Parametric Region: Case p0 = 0

The behavior of F2 on the frontal face (p0 = 0) in Figure 6 can be now better advised in Figure 10.
There, we have calculated numerically (for 105 states covering the frontal face), the best fidelity obtained
using two teleportation channels under indefinite causal order by taking the optimal measurement on
the control state together with the best state able to be teleported. Thus, it represents naively the best
possible scenario.

In the last process, for each |χ〉 on the frontal face, we have additionally taken a sample of 102 sets
of values for q0 ∈ [0, 1] (the initialization value for the control state for N = 2), θ ∈ [0, π], φ ∈ [0, 2π]

for |ψm〉 and θ0 ∈ [0, π], φ0 ∈ [0, 2π] for the teleported state |ψ〉 = cos θ0
2 |0〉 + sin θ0

2 eiφ0 |1〉. Each
value is used as initial condition to find a local maximum for the fidelity F2. Then, those values are
used to predict the global maximum of F2 for each point on the frontal face. Figure 10a shows the
best fidelity on the face together with the statistical distribution of the fidelities on the frontal face
in the upper image of Figure 10c, which suggests that F2 = 1 could be obtained on the face always
(the little dispersion with lower values of F2 ∈ [0.9, 1] are due to the numerical procedure followed).
The same follows for Pm (Figure 10b,c lower) but denoting that such probabilities of success are
centrally distributed around 1

2 (note they are not the best probabilities because the process is centred
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on maximize F2). As in Figure 6, images in Figure 10 appear blurred due to the limited number of
points considered because the time processing.

Figure 10. Optimal fidelity using two teleportation channels in indefinite causal order followed by an
appropriate measurement |ϕm〉. (a) The best fidelity obtained for certain teleported state if optimal
control measurement is obtained, (b) the probability Pm of success for the last process, and (c) the
statistical distribution for F2 and Pm.

Nevertheless, the last fact is in reality a blind strategy. A more critical view of
Formulas (18) and (19) and referring to [22] which numerically suggests that q0 = sin2 θ

2 =
1
2 (1− cos θ), φ = 0 is related with the optimal case for the case p = p1 = p2 = p3 = 1

3 . In fact,
in such case, last formulas become reduced to:

F2 =
∑3

i,j=0 pi pj
(
Tr(ρσiσjρσjσi) + Tr(ρσiσjρσiσj)

)
∑3

i,j=0 pi pj
(
Tr(σiσjρσjσi) + Tr(σiσjρσiσj)

) (34)

Pm =
sin2 θ

2

3

∑
i,j=0

pi pj
(
Tr(σiσjρσjσi) + Tr(σiσjρσiσj)

)
. (35)

Last formula explains the reason because the case θ = π
2 is optimal for Pm. Moreover, on the

frontal face p0 = 0 (then i, j = 1, 2, 3), then (34) and (35) clearly become (by splitting the cases i = j
from i 6= j, noting for the last case σiσj = −σjσi and the fact that we are dealing with pure states):

F2 = 1 (36)

Pm = sin2 θ
3

∑
i=1

p2
i , with :

3

∑
i=1

pi = 1. (37)

Thus, the last conditions make the teleportation optimal not only for p = p1 = p2 = p3 = 1
3 but

also for the entire cases on the frontal face, being independent from the teleported state. Nevertheless,
the probability of success depends entirely from the values of pi (considering only the best case θ = π

2 ).
Figure 11 shows the distribution of Pm on the frontal face (in some cases we will denote this probability
by P ff,{pi}

m,N=2 to state θ = π
2 , p0 = 0 and pi arbitrary but fulfilling p1 + p2 + p3 = 1), which ranges on

[ 1
3 , 1]. In fact, the case p = p1 = p2 = p3 = 1

3 corresponds to the worst case for Pm in the center of the
face. We have constructed the norm on the frontal face to report such distribution. The mean µPm = 1

2
and the standard deviation σPm ≈ 0.13 were calculated using such distribution.

In order to solve the cases for N > 2 by including further teleportation channels under indefinite
causal order, last analysis suggests for arbitrary N that the procurement of an analytical formula
for (15) is in order at least for the case p0 = 0, implying t0 = 0:
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ΛN [ρ⊗ ρc] = ∑
k

∑
k′

√
qkqk′ |k〉〈k′|

N

∑
t1=0

N−t1

∑
t2=0

3

∏
j=1

p
tj
j ⊗ (38)

N′

∑
p=1

πk

(
π

k
t1,t2,t3
p

(
σt1

1 σt2
2 σt3

3

))
ρ

(
πk′

(
π

k
t1,t2,t3
p

(
σt1

1 σt2
2 σt3

3

)))†

= ∑
k

∑
k′

√
qkqk′ |k〉〈k′|

N

∑
t1=0

N−t1

∑
t2=0

3

∏
j=1

p
tj
j ⊗

N′

∑
p=1

Σk
kp

Σk′
kp

(
σt1

1 σt2
2 σt3

3

)
ρ
(

σt1
1 σt2

2 σt3
3

)†
(39)

and t3 = N − t1 − t2. As it was previously mentioned, factors generated by πk and πk′ are equal until
a sign. In addition, they always evolve to σ0, σ1, σ2 or σ3 (easily depending on the parity of t1, t2, t3).
Thus, those factors and their signs state the introduction of syndromes on ρ together with interference
among them and the different orders. Such interference could be manipulated through the parameters
qk, pj.

Figure 11. (a) Values of Pm on p0 = 0 face , and (b) its corresponding statistical distribution ρPm for
two teleportation channels in indefinite causal order.

Even so, this formula is not easy to address in order to get a simpler closed result because
the sign Σk

kp
, Σk′

kp
introduced in the permutation with respect σt1

1 σt2
2 σt3

3 cannot be advised easily
(see a parallel analysis in [8]). Nevertheless, we can still to analyse computationally the cases for
the lowest values of N (analytical cases addressed by computer aided methods due to the factorial

increasing number of terms). Thus, formulas for P ff,{p′i}
m,N and F for N larger than two have been

obtained using a computational treatment. The formulas obtained in the analysis are reported in
Appendix B. As in our previous discussion for the case p1 = p2 = p3 = p in the Section 4.2.1, F = 1 is
obtained for all cases on the frontal face if the measurement in the indefinite causal order becomes
|ϕ+

m〉 for N = 2, 4 and |ϕ−m〉 for N = 3 independently of the teleported state. Again, it is a consequence
of the order interference due to the indefinite causal order together the post-selection induced by
the measurement. For complementary cases using other measurement outcomes, we get F 6≡ 1
depending from p1, p2, p3 or still undefined, and additionally depending from the teleported state
(see Appendix B).

5. An Alternative Procedure Introducing Weak Measurement

In spite of the previous outcomes, we guess the indefinite causal order could not work properly
at any point inside of region depicted in the Figure 6. Nevertheless, due to the outcomes in [7] for
the case p = p1 = p2 = p3 and those exhibited in the Figure 6, the teleportation process assisted by
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indefinite causal order (at least for two channels) becomes optimal on p0 = 0 and p0 = 1 (the origin
and the frontal face in Figure 6a). Then, we propose an alternative strategy beginning with a weak
measurement on the entangled resource.

5.1. General Case for N = 2 Assisted by a Weak Measurement

By considering first the following weak measurements on |χ〉, we get the post-measurement states
and their probabilities of occurrence:

P0 = |β0〉〈β0| → |χ0〉 = (P0|χ〉)norm = |β0〉, p̃0 = p0 (40)

P1 = I− P0 → |χ1〉 = (P1|χ〉)norm =
3

∑
i=1

√
pi
p̃1
|βi〉 ≡

3

∑
i=1

√
p′i|βi〉, p̃1 =

3

∑
i=1

pi (41)

which projects the entangled state on one of the two states |χ0〉 or |χ1〉 with probabilities p̃0 or p̃1

respectively. Each state is located on the origin or otherwise on the frontal face of the region in Figure 6.
Then, if |χ0〉 is obtained, the teleportation process can go as in the Figure 1, otherwise, if |χ1〉 is
obtained, we can try the teleportation assisted by indefinite causal order (at this point the reader
could note that clearly, we need two entangled resources). We will come back to discuss the weak
measurement strategy widely in the last section).

The entire process is depicted in the Figure 12, a schematic diagram of the process as it was
originally proposed by [7]. Given certain state to teleport, we use certain entangled resource |χa〉.
It goes through the weak measurement in (40) to get |χa0〉 = |β0〉 with probability p0. Then we
perform a single teleportation. Instead, by obtaining |χa1〉 with probability 1− p0, then we prepare a
second entangled resource |χb〉 repeating with it the same procedure, if after of the weak measurement
|χb0〉 = |β0〉 is obtained with probability p0, we disregard |χa1〉 proceeding with a single teleportation
using such state. Otherwise, if |χb1〉 is obtained, we perform a two-channel teleportation assisted
by indefinite causal order using the states previously obtained. There, the teleportation will become
successful with probability p′21 + p′22 + p′23, otherwise it becomes unsuccessful and we need disregard
the process. Thus, the global probability of success is (there, P ff

m,N=2 corresponds to (37) with
θ = π

2 , φ = 0, renaming pi as p′i, with p′1 + p′2 + p′3 = 1):

PTot = p0 + (1− p0)p0 + (1− p0)
2P ff,{p′i}

m,N=2

= p0 + (1− p0)p0 + (1− p0)
2

3

∑
i=1

p′2i = 1− 2(p1 p2 + p2 p3 + p3 p1) (42)

Figure 12. Schematic teleportation process assisted by weak measurement.

The last function has been represented in the plots of Figure 13. For each initial set (p1, p2, p3) of
the entangled resources (assumed identical), PTot is plotted in color in agreement with the bar besides
in the Figure 13a. One-third of the plot has shown, due to its symmetry, to exhibit its inner structure.
The corresponding statistical distribution is obtained numerically in the Figure 13b by uniformly
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sampling the space in the figure on the left. The mean value of PTot becomes 0.70 and their standard
deviation 0.16.

Figure 13. Distribution of PTot: (a) as function of (p1, p2, p3), and (b) as statistical distribution by itself
obtained numerically from the data of (a).

5.2. Cases for N ≥ 2 Assisted by a Weak Measurement

For N ≥ 2, the procedure follows as in the previous section by introducing N imperfect
entangled resources, |χi〉 (assumed identical for simplicity) but in each step, we decide if after of
the weak measurement, the state |χj0〉 = |β0〉 is used to perform a single teleportation or if we
continue the process of weak measurement N times on identical entangled resources |χj〉 to finally get
|χN1〉 = ∑3

i=1 p′i|βi〉 as in the Figure 12. The corresponding situation is now depicted for the general
case in the Figure 14. In this case, the global probability of success becomes:

PTotN =
N

∑
j=1

p0(1− p0)
j−1 + (1− p0)

NP ff,{p′i}
m,N . (43)

Inserting the formulas for P ff,{p′i}
m,N in Appendix B (specialized for the frontal face p0 = 0 and

changing pi by p′i). Then, we can get the outcomes for global probability PTotN for the last cases
with F = 1:

PTot2 = 1− 2(p1 p2 + p1 p3 + p2 p3) (44)

PTot3 = 1− (p3
1 + p3

2 + p3
3)− 3(p2

1(p2 + p3) + p2
2(p1 + p3) + p2

3(p1 + p2)) (45)

PTot4 = 1− 4(p3
1(p2 + p3) + p3

2(p1 + p3) + p3
3(p1 + p2))

−12p1 p2 p3(p1 + p2 + p3)−
16
3
(p2

1 p2
3 + p2

2 p2
3 + p2

1 p2
2). (46)

Now, we can visualize last outcomes for PTot in Figure 15. Again, all the entangled states used for
the teleportation process are assumed to be identical by simplicity. Figures 15a–c depict the probability
PTotN to reach F = 1 in the entire process represented in color. Each color bar shows the entire
range of values for such probabilities on the graphs. According to the color, the blue zone represents
the region where PTot → 1, observing for the case N = 4 a larger blue area, suggesting still the
goodness of increase the number of teleportation channels under indefinite causal order combined
with post-measurement.

Figure 15d depicts a numerical analysis of statistical distribution for the cases N = 2, 3, 4. Note that
for N = 3, all greater values for the probability occur almost evenly. For the case N = 4, it is observed
a larger amount of success probabilities than failure probabilities compared with N = 3. Despite,
µPTot2

≈ 0.702, σPTot2
≈ 0.158 and µPTot4

≈ 0.667, σPTot4
≈ 0.249 (because for N = 2 there are a
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large distribution for medium success probabilities). In any case, the most successful outcomes of
teleportation appears for N = 4.

Figure 14. Schematic teleportation process assisted by indefinite causal order using N-teleportation
channels and weak measurement.

Figure 15. (a–c) values of PTot as function of (p1, p2, p3), for N2, N3 and N4 respectively. (d) Statistical
distribution numerically obtained for PTot2,PTot3 and PTot4.
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6. Experimental Deployment of Teleportation with Indefinite Causal Order

In this section, we comment on some main experimental developments for a possible deployment
of indefinite causal order in teleportation. We begin with the procedure to set the weak measurement
used in Section 5.1. Afterwards, we set some elements and experimental developments to propose the
implementation of the theoretical proposal before presented.

6.1. Implementation of Weak Measurement to Project |χ〉

In Section 5.1, we stated the implementation of a weak measurement to project |χ〉 conveniently
onto |χ0〉 = |β0〉 or |χ1〉 = ∑3

i=1 p′i|βi〉. Despite, in the experimental approach, there are certain
differences due to the resources been used. In this section, we present how to afford the weak
measurement stated in (40). We use an ancilla qubit |0a〉 to do the measurement minimizing the impact
on |χ〉 as is desired. In this implementation, we will use as a central resource the Toffoli gate. In order
to prepare the |χ〉 stated properly for such measurement, we combine it with the ancilla. Then, we send
the combined system into the circuit presented in Figure 16a. This circuit employs the Toffoli gate T1,2,a
on channels 1, 2 for |χ〉 and a for |0a〉 together with the C1Not2 gate (already developed for ions [25,26]
and photons [27]). In fact, it is well-known that Toffoli gate can be performed using CNOT gates and
single-qubit gates [14] o by means of the Sleator–Weinfurter construction [28], despite other more
efficient developments are known for ions [29] and photons [30]. Some single-qubit gates as Hadamard
(H) and Not (X ) are also used. In the following development, we write |χ〉 = ∑3

i=0
√

p∗i |βi〉 as the
imperfect entangled resource (be aware that ∗ not means complex conjugation). Thus, all necessary
quantum gates have been experimentally developed in our days at least in quantum optics.

(a) (b)

Figure 16. (a) Quantum circuit generating the weak measurement on |χ〉, and (b) contour plots for the
map on the region (p1, p2, p3) between those probabilities and (p∗1 , p∗2 , p∗3).

A direct calculation shows that this circuit performs the following transformation on |ψ0〉 =
|χ〉 ⊗ |0a〉 into:
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|ψ1〉 =
√

p0|β0〉 ⊗ |1a〉+ (
√

p1|β1〉+
√

p2|β2〉+
√

p3|β3〉)⊗ |0a〉 (47)

with :
√

2p0 =
√

p∗0 −
√

p∗3 ,
√

2p1 =
√

p∗1 −
√

p∗2 , (48)√
2p2 =

√
p∗0 +

√
p∗3 ,

√
2p3 =

√
p∗1 +

√
p∗2

Just before of the projective measurement on the qubit a shown in the Figure 16a. Clearly,
after measurement, two possible outcomes arise in the qubit a, |1a〉, |0a〉 while on qubits 1, 2 the

outcomes are |χ0〉 = |β0〉, |χ1〉 = ∑3
i=1

√
p′i|βi〉 respectively as in the Section 5.1, thus completing

the weak measurement. The only difference with respect our previous development is that those
coefficients are not the original {p∗i }. Despite this, in the event that such coefficients are unknown,
this fact is not important, the really outstanding outcome is that this procedure projects the state into
the perfect Bell state to perform the teleportation |β0〉 or otherwise on the frontal face if this resource is
planned to be used under indefinite causal order and measurement (as it was previously depicted in
the procedure of Section 5.1). Anyway, Figure 16b shows the contour plots of p∗1 (red), p∗2 (green) and
p∗3 (blue) in the region (p1, p2, p3) as a reference of the involved geometric transformations.

6.2. An Insight View about Teleportation Implementing Indefinite Causal Orders Experimentally with Light

Formula (1) regards the teleportation algorithm as a quantum communication channel. Despite
this formula being a useful simplification for the theoretical analysis, it expresses the teleportation
channel with the input and output through the same system, which is not precisely the real
experimental situation. Then, as it was true for the original implementation of the original teleportation
proposal [9] in [31], the deployment should be modified to have a correct approach to the theory.
In this section we discuss an insight view into the experimental deployment together with indefinite
causal order based on current techniques and experimental developments.

A possible implementation with light should to consider an initial state with at least three initial
photons exhibiting each one at least a pair of quantum variables as polarization, frequency or spatial
localization (k-vector state) among others (as in the original experimental teleportation proposal [31]):
|ψ0〉 = |v〉1 ⊗ |v〉a ⊗ |v〉b, using polarization in the vertical direction as instance. Those photons
should then be converted into five photons by splitting the last two into entangled pairs using
Spontaneous Parametric Down Conversion (SPDC) [32] as instance, while the first state is arbitrarily
rotated by a quartz polarization rotator (QPR) [33] -to generate the state to teleportate-: |ψ1〉 =

(α|v〉1 + β|h〉1)⊗ 1√
2
(|v〉2|h〉3 + |h〉2|v〉3)⊗ 1√

2
(|v〉4|h〉5 + |h〉4|v〉5). After, five photons should be sent

together into two alternative directions (through a dichroic beamsplitter—a splitting wavelength
dependent—instead a polarization beamsplitter) coincidentally, not independently (it means five
photons will travel through corresponding paths labeled by pA or pB). This beamsplitter (BS) works as
our control state superposing the two path states (the two causal orders further). Last effect should
be solved based on the frequency of original photons which should be quantum generated to let a
quantum splitting of all beams (or otherwise based on the previous generation of a GHZ state [34]).
This necessary beamsplitter is still a cutting-edge technology. Such spatial quantization introduces
an additional quantum variable thus converting the initial state into (removing the tensor product
symbols for the sake of simplicity):

|ψ2〉 =
1√
8

(
(α|v〉1 + β|h〉1)|pA〉1(|v〉2|h〉3 + |h〉2|v〉3)|pA〉2|pA〉3(|v〉4|h〉5 + |h〉4|v〉5)|pA〉4|pA〉5

+ (α|v〉1 + β|h〉1)|pB〉1(|v〉2|h〉3 + |h〉2|v〉3)|pB〉2|pB〉3(|v〉4|h〉5 + |h〉4|v〉5)|pB〉4|pB〉5
)

(49)

If additionally we introduce certain optical distortion in the SPDC, we get imperfect entangled
states then changing each 1√

2
(|v〉i|h〉j + |h〉i|v〉j) by |χ〉ij. In the following, we will change v, h by 0, 1

respectively for simplicity.
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Note that teleportation is, in a certain sense, automatically generated due to the non-locality of the
resource |β0〉 (or imperfectly by |χ〉), then collapsed on four adequate outcomes involving an additional
correction as a function of those outcomes using classical communication (Figure 1a). In addition,
for two sequential teleportation channels, the process can be achieved by post-measurement at the
end of both processes. Nevertheless, the implementation of indefinite causal order in teleportation
introduces additional challenges due to the connectivity of paths and measurements. In the process,
it will be required the implementation of the SWAP gate, which has already been experimentally
performed in optics [35,36].

Thus, Figure 17 depicts a possible implementation for two teleportation processes assisted by
indefinite causal order. The first photon goes to the QRP and then the five photons go through the
coordinated BS. The proposed process can be then followed in the Figure 17 with paths labeled
by pA in green and pB in red. For simplicity, teleportation processes are assumed to perform
measurements on the Bell states basis as in Figure 1b, thus avoiding the use of H and CNOT gates in
the analysis. Due to the above construction (post-measurement and measurement assumed on the Bell
basis), almost no gates are present in the process, just two SWAP gates stating the causal connections.
At the end of each path, a semi-transparent mirror should mix again the paths (but not the polarization)
by pairs into the basis |±〉i = 1

2 (|pA〉i± |pB〉i) for each photon i, in order to erase the information of the
path followed. We labeled each path (or the information being carried on it) by Mk

ij (in case that photon
carries the information of one of the complementary systems not containing the output of teleportation)
remarking the path type followed k = A, B,+,−; the final belonging teleportation process i = 1, 2;
and the number of the sequential qubit to be measured there: j = 1 for the former input and j = 2
for the correspondent to the first qubit of the original entangled resource. Instead, the final outputs
are labeled by Sk (k = A, B,+,−). By following the color, the reader should easily identify each path
considering additionally the effect of the intermediate use of SWAP gates which is discussed below.

Figure 17. Diagram for implementation of teleportation with causal ordering as it is discussed in the
text. Photons are split on two different set of paths to superpose the two causal orders of two sequential
teleportation process.

By ignoring first the SWAP gates in the Figure 17, we can realize that the circuit has not any
effect. We have indicated each optical element described before. The dotted line connecting the BS’s
denotes the not independent functioning, all together should send the five photons on the green paths
or on the red ones. States |ψ〉 and |χ〉 are remarked on photons 1 and 2, 3, 4, 5 respectively. Each path
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(green or red) is labeled from 1 to 5 in agreement with the photon carried out. Blue arrow remarks
the group of photons involved in each teleportation process T1 or T2 on each path (the first subscript
in Mk

ij): 1, 2, 3 and 3, 4, 5 respectively for the green paths, and 1, 4, 5 and 5, 2, 3 respectively for the red

ones. On each path, we reported the associated label for each system Sk or Mk
ij as it was depicted

before. Note that brown labels correspond to the information being carried before of SWAP gates,
while black labels are the final states reported there at the end of the path but before of the recombining
in the semi-transparent mirrors. The reason for the SWAP gate between the paths 3 and 5 should
be clear, we need to get the teleportation outputs on the same photon to generate the superposition
of information. The SWAP gate on the red paths 2 and 4 exchanges the information on those paths
in order to generate the superposition at the end among path information M1

ij and M2
i′ j with i 6= i′,

j = 1, 2 thus mixing both. Note that the set of states in Mk
ij are those to be measured in the teleportation

process (here in the Bell basis by pairs) in order to correct the output states. The reader should
advise this process does not reproduce exactly that depicted by (1) because such formula assumes
the measurements are internal operations generating a mixed state coming from the corresponding
projections and corrections. In this approach, we have the possibility to measure only four qubits
instead of eight. Despite, we will note this procedure still reproduces some of the main previous
features analyzed. At the end of the process, each semi-transparent mirror (diagonal in grey) mixes the
information on the states |±〉i for each photon i on the red and green edges (with information M±ij or
S± respectively -red and green-, not represented in the Figure 17). On the red edges, a detector first
decides if the photon exits through them (they are the projective measurement on |ϕ±m〉 states in our
development). In addition, a Bell measurement is then performed on each pair 1, 3 and 2, 4 in order to
inquire the information codified in the output S+.

A direct but large calculation to expand (49) then applying the SWAP gates and projecting on
|+〉i, i = 1, ..., 5 was performed. Finally, this output was written in terms of |βi〉1,3 ⊗ |β j〉2,4, i, j = 0, ..., 3
to ease the identification of final successful measurements. If p0 = 1 or p0 = 0, upon the measurement
of |βi〉1,3 ⊗ |β j〉2,4 and then the application of σiσj as correction, the output S+ becomes |ψ〉 faithfully
in the following cases:

• If p0 = 1 for all i, j = 0, ..., 3 cases with a global successful probability of 1
16 .

• If p0 = 0 for the cases i = 0, ..., 3 and j = 2 with a global successful probability of (p1−p2+p3)
2

64 .

This clearly resembles our main outcomes. For the second case, other measurement outcomes
give imperfect teleportation thus rearranging the success probabilities with respect of those in our
theoretical development. Thus, alternative experimental proposals should be developed to approach
them into the ideal case considered in our theoretical results.

7. Conclusions

Quantum teleportation has an important role in quantum processing for the transmission of
quantum information, nevertheless, there are possible issues on the entangled resource assisting
the teleportation process mainly related to its maintenance and precise generation. It introduces
imprecision in the teleported state. In this work, the implementation of indefinite causal order has
been studied in order to propose an improved scheme to tackle such imprecision on the entangled
state when it is combined with the measurement of the control assessing it.

The analysis for the redundant case where quantum channels are simply applied sequentially
(assumed as identical) shows that the number N of channels applied, rapidly decreases the fidelity
converging to the maximal depolarization of the teleported state thus obtaining FN→∞ = 1

2 .
By modifying the process under indefinite causal order for two or more teleportation channels as it
was proposed by [7] and later discussed in [22], we advise advantages on the quantum fidelity of
the teleported state for the first values N of sequential teleportation channels. From the outcomes,
a categorization was performed to analyze the effects on the entangled state, thus obtaining a surprising
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enhancement for the most imperfect entangled resource, p0 = 0 with the absence of the ideal
entangled resource |β0〉, and still for near regions of it with p0 ≈ 0 when N increases. Notably,
in the first case, it is possible to obtain a perfect teleportation process with FN = 1. However, when N
increases, the principal downside is the reduction of the probability of successful measurement Pm,
which decreases drastically as N increases.

In order to improve the global probability of success, we have proposed the combined use of
weak measurement to first projecting the entangled resource to either p0 = 1 with p1, p2, p3 = 0
or p1 + p2 + p3 = 1 with p0 = 0, where the indefinite causal order generates the most notable
enhancements. In such cases, F = 1 is obtained always and Pm is improved. Those notable processes
are possible as for pure as for mixed states [8]. A remarkable aspect is that for such a notable case the
outcome is independent of the teleported state.

Finally, a more detailed process for the weak measurement (first barely discussed in the initial
presentation) is after detailed and oriented to the practical implementation in terms of the current
experimental developments for light and matter. The development of a Toffoli gate is advised as
central in the implementation. In addition, an introductory analysis for a possible experimental
implementation has been included for the teleportation process under indefinite causal order using two
teleportation channels. Such an approach is still imperfect and not optimal. Despite this, it reproduces
the main features found in our development. In the proposal, recent experiments and technological
developments in optics become central, particularly the implementation of the SWAP gate and the
generation of |GHZ〉 states. A valuable aspect being noticed is the use of post-measurement in the
teleportation process. Additional theoretical and experimental developments should still improve the
vast possibilities of indefinite causal order in the teleportation research field.
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Appendix A. Formulas for Pm and F for the Case p1 = p2 = p3 = p

Formulas for the fidelity and the success probability as the number of channels in indefinite causal
order increases when p1 = p2 = p3 = p have been obtained. For the case N = 2, when |ψm〉 = |ϕ−m〉
the outcomes are:

F2 =
1
3

, Pm = 6p2 (A1)

and for the case when |ψm〉 = |ϕ+
m〉, the expressions become:

F2 =
6p2 − 4p + 1

1− 6p2 , Pm = 1− 6p2. (A2)

For the case N = 3, when |ψm〉 = |ϕ−m〉 the outcomes are:

F3 =
1
3
+ 2p, Pm = 2p2 (A3)
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and for the case when |ψm〉 = |ϕ+
m〉, we get:

F3 =
−76p3 + 54p2 − 18p + 3

96p3 − 54p2 + 3
, Pm = 1− 18p2 + 32p3. (A4)

For the case N = 4, when |ψm〉 = |ϕ−m〉 we get Pm = 0, thus F4 becomes undefined in such case,
while for the case when |ψm〉 = |ϕ+

m〉, we get the expressions:

F4 =
360p4 − 304p3 + 108p2 − 24p + 3
−408p4 + 384p3 − 108p2 + 3

, Pm = 1− 36p2 + 128p3 − 136p4. (A5)

Appendix B. Formulas for Pff,{pi}
m,N and F for the Case p0 = 0

In this section, formulas for F and P ff,{pi}
m,N when the entangled state has different values for p1, p2

and p3 (note they are restricted to the frontal face p0 = 0 of the parametric space) and the measurement
of the control state is either |ϕ+

m〉 or |ϕ−m〉. In those results, the angles θ and φ corresponds to the state
being teleported (|ψ〉 = cos θ

2 |0〉+ sin θ
2 eiφ |1〉), thus meaning a dependence of those values on this

state. For the case N = 2, with the privileged measurement state as |ϕ+
m〉, the expressions become:

F2 = 1 (A6)

P ff,{pi}
m,N=2 = p2

1 + p2
2 + p2

3 (A7)

and with the privileged state as |ϕ−m〉, the corresponding expressions are:

F2 =
1

2P ff,{pi}
m,N=2

(
2p1 p2(1 + cos 2θ) + p3(p1 + p2)(1− cos 2θ) (A8)

+ 2p3(p2 − p1) sin2 θ cos 2φ
)

P ff,{pi}
m,N=2 = 2(p1 p2 + p2 p3 + p3 p1). (A9)

For the case N = 3, with the privileged measurement state as |ϕ+
m〉, the outcomes are:

F3 =
1

12P ff,{pi}
m,N=3

(
(3(p3

1 + p3
2 + 2p3

3) + p1(p2
2 + p2

3) + p2(p2
1 + p2

3))(1− cos 2θ) (A10)

+ 2p3(p2
1 + p2

2)(1 + cos 2θ) + 2(3(p3
1 − p3

2) + p1(p2
2 + p2

3)− p2(p2
1 + p2

3)) sin2 θ cos 2φ
)

P ff,{pi}
m,N=3 = p3

1 + p3
2 + p3

3 +
1
3
(p2

1(p2 + p3) + p2
2(p1 + p3) + p2

3(p1 + p2)) (A11)

while, with the privileged state as |ϕ−m〉, they become:

F3 = 1 (A12)

P ff,{p′i}
m,N=3 = 6p1 p2 p3. (A13)

Finally, for the case N = 4, with the privileged measurement state as |ϕ+
m〉, then:

F4 = 1 (A14)

P ff,{pi}
m,N=4 = p4

1 + p4
2 + p4

3 +
2
3
(p2

1 p2
2 + p2

1 p2
3 + p2

2 p2
3) (A15)

and if the privileged state is |ϕ−m〉, then we get P ff,{pi}
m,N=4 = 0, thus F gets undetermined.
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