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Abstract: We give a new approximation with respect of the traditional parametrix method of the
solution of a parabolic equation whose generator is of big order and under the Hoermander form.
This generalizes to a higher order generator the traditional approximation of Stratonovitch diffusion
which put in relation random ordinary differential equation (the leading process is random and of
finite energy. When a trajectory of it is chosen, the solution of the equation is defined) and stochastic
differential equation (the leading process is random and only continuous and we cannot choose a
path in the solution which is only almost surely defined). We consider simple operators where the
computations can be fully performed. This approximation fits with the semi-group only and not for
the full path measure in the case of a stochastic differential equation.

Keywords: ordinary differential equation; parabolic equation; big order generator

1. Introduction

Let us consider a compact Riemannian manifold M of dimension d endowed with its normalized
Riemannian measure dx (x ∈ M).

Let us consider m smooth vector fields Xi (we will suppose later that they are without divergence).
Some times vector fields are considered as one order differential operators acting on the space of
smooth functions on the manifold M, sometimes they are considered as smooth sections of the tangent
bundle of M. We consider the second order differential operator:

L = 1/2
m

∑
i=1

X2
i (1)

It generates a Markovian semi-group Pt which acts on continuous function f on M

∂

∂t
Pt f = LPt f ; P0 f = f (2)

Pt f ≥ 0 if f ≥ 0. It is represented by a stochastic differential equation in Stratonovitch sense ([1])

Pt f (x) = E[ f (xt(x))] (3)

where

dxt(x) =
m

∑
i=1

Xi(xt(x))dwi
t ; x0(x) = x (4)

where t → wi
t is a flat Brownian motion on Rm Classically, the Stratonovitch diffusion xt(x) can be

approximated by its Wong–Zakai approximation.
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Let wn,i
t be the polygonal approximation of the Brownian path t→ wn

t for a subdivision of [0, 1]
of length n.

We introduce the random ordinary differential equation

dxn
t (x) =

m

∑
i=1

Xi(xn
t (x))dwn,i

t ; xn
0 (x) = x (5)

Wong–Zakai theorem ([1]) states that if f is continuous

E[ f (xn
t (x))]→ E[ f (xt(x))] (6)

We are motivated in this paper by an extension of (6) to higher order generators.
Let us consider the generator Lk = (−1)k ∑m

I X2k
i . We suppose that the vector fields Xi span the

tangent space of M in all point of M and that they are divergent free. Lk is an elliptic postive essentially
self-adjoint operator [2] which generates a contraction semi-group Pk

t on L2(dx)
Let L f ,k be the generator on Rm ((wi) ∈ Rm). By [3], it generates a semi-group P f ,k

t on C(Rm),
the space of continuous functions on the flat space endowed with the uniform topology, which is
represented by a heat-kernel:

P f ,k
t [ f ](w0) =

∫
Rm

f (w + w0)p f ,k
t (w)⊗ dwi (7)

where (w = (wi)). In [4], it is noticed that heuristically P f ,k
t is represented by a formal path space

measure Q f ,k such that ∫
E

f (wk
t + w0)dQ f ,k(w.) = Pk, f

t ( f )(w0) (8)

If we were able to construct a differential equation in the Stratonovitch sense

dxk
t (x) =

m

∑
i=1

Xi(xk
t (x))dwk

t,i ; xk
0(x) = x (9)

P f ,k
t (x) =

∫
f (xk

t (x))dQ f ,k (10)

These are formal considerations because in such a case the path measures are not defined. We will
give an approach to (9) by showing that some convenient Wong–Zakai approximation converges to
the semi-group. We introduce, according to [5] the Wong–Zakai operator

Qk
t [ f ](x) =

∫
Rm

f (xi(w)(x))p f ,k
t (w)⊗ dwi =

∫
Rm

f (x(t1/2kw)(x))p f ,k
1 (w)dw (11)

where

dx1(w)(x) =
m

∑
i=1

Xi(xs(w))wids ; x0(w)(x) = x (12)

As a first theorem, we state:

Theorem 1. (Wong–Zakai) Let us suppose that the vector fields Xi commute. Then (Qk
1/n)

n( f ) converge in
L2(dx) to Pk

1 f if f is in L2(dx). This means that if we give f in L2(dx) that

‖(Qk
1/n)

n f − Pk
1 f ‖L2(dx) → 0 (13)
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To give another example, we suppose that M is a compact Lie group G endowed with its normalized
Haar measure dg and that the vector fields Xi are elements of the Lie algebra of G considered as right
invariant vector fields. This means that if we consider the right action on L2(dg) Rg0

f → (g→ ( f (gg0)) (14)

we have
Rg0 [Xi f ](.) = Xi[Rg0 f ](.) (15)

We consider the rightinvariant elliptic differential operator

Lk = (−1)k
m

∑
i=1

X2k
i (16)

It is an elliptic positive essentially selfadjoint operator. By elliptic theory ([2]), it has a positive
spectrum λ associated to eigenvectors fλ. λ ≥ 0 if λ belongs to the spectrum.

Theorem 2. (Wong–Zakai) Let f = ∑ aλ fλ such that ∑λ |aλ|2Cλ < ∞ for all C > 0. Then (Qk
1/n)

n( f )
converges in L2(dg) to Pk

1 f . This means that

‖(Qk
1/n)

n f − Pk
1 f ‖L2(dg) → 0 (17)

We refer to the reviews [3,6] for the study of stochastic analysis without probability for
non-markovian semi-groups.

Let us describe the main difference with the Wong–Zakai approximation of these semi-groups and
the the traditional parametrix approximation of these by slicing the time. We work on Rd to simplify
the exposition. Let be

La = ∑
|(α)|≤p

a(α)(x)
∂(α)

∂x(α)
(18)

where (α) = (α1, ...αd) is a multi-index on the flat space with length |(α)| = ∑ αi. We suppose that the
function a(α)(x) are smooth with bounded derivatives at each order. We consider if y = (y1, ..., yd)

y(α) = yα1
1 ...yαd

d (19)

We consider the symbol associated to the operator

a(x, ξ) = ∑ a(α)(x)(iξ)(α) (20)

We suppose that we are in an elliptic situation: for all x

|a(x, ξ)| ≥ C|ξ|p − C (21)

We suppose that the operator is positive bounded below. We can consider in this case the parabolic
equation starting from f ∈ L2(dx)

∂

∂t
Pa

t f = −LaPa
t f ; Pa

0 f = f (22)

It has a unique solution. The parametrix method consist to freeze the starting point x by
considering the family of operators

Lx f (y) = ∑
|(α)|≤p

a(α)(x)
∂(α)

∂y(α)
f (y) (23)
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We consider the family of non-markovian semi-groups Px
t satisfying the parabolic equation

∂

∂t
Px

t f (y) = −LxPx
t f (y) ; Px

0 f (y) = f (y) (24)

We introduce the kernel
f → Qp

t f (x) = Px
t f (x) (25)

Parametrix method states that
(Qp

1/n)
n f → Pa

1 (26)

in L2(dx) when n→ ∞ At the point of view od path integrals, parametrix is related to the formal path
integrals of Klauder (see [4] for a rigorous approach). Consider the Fourier transform f̂ of a function
which belongs to L2(dx). We get

ˆ(Lx f )(ξ) = ∑ a(α)(x)(iξ)(α) f̂ (ξ) (27)

such that
ˆPx
t f (ξ) = exp[−ta(x, ξ)] f̂ (ξ) (28)

By using the inverse of the Fourier transform,the lefthandside of (28) gives an approximation of
Klauder path integral on the phase space.

Hamiltonian path integrals are not well defined as measures. Let us consider the case of an order
2 differential operator

La = ∑
0<|(α)|≤2

a(α)(x)
∂(α)

∂x(α)
(29)

We suppose that

∑
|(α)|=2

aα(x)(iξ)(α) = 1/2
m

∑
i
< Xi(x), ξ >2 (30)

where x → Xi(x) are smooth vector fields. Moreover, the part of order 1 of the operator define a
smooth vector field X0. In such a case, Pa

t (x) is represented by an Itô stochastic differential equation
starting from x

δxt(x) =
m

∑
i

Xi(xt(x))δwi
t + X0(xt(x))dt (31)

t→ (wi
t) is a flat Brownian motion on Rm. We have

Pa
t f (s) = E[ f (xt(x))] (32)

Itô stochastic differential equations can be approximated by the Euler scheme if we consider a
subdivision [tk−1, tk] of [0, 1] of mesh 1/n. tn is the biggest tk smaller than t. The approximation of the
Itô equation is

xn
t (x) = xn

tn(x) =
m

∑
i

Xi(xn
tn)(wi

t − wi
tn) + X0(xn

tn)(t− tn) (33)

starting from x, by stochastic calculus ([1]), the law of t→ xn
t (x) for the uniform norm tends to the law

of t→ xt(x). In particular, if f is a bounded continuous function,

E[ f (xn
1 (x)]→ E[ f (x1(x))] (34)

when n→ ∞. However, in such a case,

E[ f (xn
1 (x))] = (Qp

1/n)
n f (x) (35)
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The Calculus on flat Brownian motion shows

Px
1/n f (x) = E[ f (xn

1/n(x))] (36)

Let t→ ht = (h1
t , ..., hm

t ) a finite energy path in Rm starting from 0. We consider the energy norm

‖h‖2 =
m

∑
i=1

∫ 1

0
|d/dthi

t|2dt (37)

At the formal path integral point of view, the law of the flat Brownian motion t → wt is the
Gaussian law

1/Z exp[−‖h‖2/2]dD(h) (38)

where dD(h) is the formal Lebesgue measure on the finite energy paths (which does not exist) and z a
normalized constant, called the partition function, which is infinite and not well defined.

We introduce the solution of the ordinary differential equation xh
t (x) starting from x

dxh
t (x) =

m

∑
i=1

Xi(xh
t (x))dhi

t (39)

The Wong–Zakai approximation explains that at a formal point of view, the solution of the
Stratonovitch Equation (4) x1(x) can be seen as xh

1(x) where h is chosen according the formal Gaussian
measure (38). This remark is not suitable for Itô equation.

Bismutian procedure [7] is the use of the implicit function theorem for h → xh
1(x) to study the

heat-kernel associated to the semi-group Pt. It was translated in semi-group theory in [5] by introducing
some Wong–Zakai kernels associated to the semi-group generated by L. The long term motivation of
this paper is to implement Bismut procedure in big order operators of Hoermander’s type.

Proof of Theorem 1. Lk is an elliptic positive operator. By elliptic theory [2], it has a discete spectrum
λ associated to normalized eigenfunctions fλ. Since

∫
Rm |p f ,k

1 (w)|2dw < ∞, Qk
1/n is a bounded operator

on L2(dx). Moreover
Qk

1/n f = ∑ aλQk
1/n fλ (40)

if
f = ∑ aλ fλ (41)

The main remark is that we can compute explicitely Qk
1/n fλ. We put t = 1/n. Formaly

fλ(x(t1/2kw))(x) = ∑
n′

1/n′!(∑
m

Xiwit1/2k))n′( fλ)(x) (42)

Namely, by ellipticity and because the vector fields Xi commute with Lk, we can conclude
that the L2-norm of Xα1

i1
Xα2

i2
...Xαl

il
fλ has a bound in λ∑ αi/2kC∑ αi in order to deduce that the series in

(42) converges.
Let us show how to prove this estimate. We have

Lk fλ = λ fλ (43)

Since Xi commutes with Lk, we have

XiLk fλ = LkXi fλ (44)
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Therefore Xi fλ is still an eigenfunction associate to λ. Therefore, Xi is a linear operator on the
eigenspace Eλ associate to λ which is of finite dimension by elliptic theory. By Garding inequality [2]

‖Xi fλ‖L2(G) ≤ C‖ fλ‖L2(dx) + ‖(Lk + C)1/2k fλ‖L2(dx) (45)

We use for that (Lk + C)1/2k is an elliptic pseudo-differential operator of order 1 (see the end of
this paper). Eλ is an eigenspace for (Lk + C)1/2k associated to the eigenvalue (λ + C)1/2k. Therefore Xi
is a linear operator on Eλ with norm smaller than C(λ1/2k + 1).

It is enough to compute

1/n′!
∫
Rm

(∑ Xiwit1/2k))n′ fλ(x)pk, f
1 (w)dw = Bn′ (46)

The main remark (see the end of this paper) is if one of the li is not a multiple of 2k, we have∫
Rm

wl1
1 ...wlm

m pk, f
1 (w)dw = 0 (47)

On the other hand, by using the semi-group properties of Pk, f
t , we have

∫
Rm

w2kl1
1 ...w2klm

m pk, f
1 (w)dw =

(2kl1)!
l1!

...
(2klm)!

lm!
(48)

We ignore some immediated problems of signs. Therefore, Bn′ = 0 if n′ is not a multiple of 2k and
is equal because the vector field commute, ,if n′ = 2kl′ to

1
(2kl)′! ∑ X2kl′1

1 ...X2kl′m
m

(2kl1)!
l1!

...
(2klm)!

lm!
(2kl′)!

(2kl′1)!...(2kl′m)!
fλ = 1/l′!(Lk)l′ fλ (49)

We deduce that
Qk

1/n fλ = exp[−1/nλ] fλ (50)

and that
(Qk

1/n)
n fλ = exp[−λ] fλ (51)

such that
(Qk

1/n)
n f = exp[−Lk] f (52)

if f = ∑ aλ fλ.

In such a case, the Wong–Zakai approximation is exact. It is analog to the classic result for
diffusions of Doss–Sussmann ([8,9]). The Stratonovitch diffusion in this case satisfy

x1(x) = exp[
m

∑
i

Xiwi
1](x) (53)

The map y → exp[∑m
i Xiyi

t](x) is defined as follows. We consider the ordinary differential
equation issued from x

dxy
t (x) =

m

∑
i=1

Xi(xy
t (x))yidt (54)

y = (y1, ..., ym) belongs to Rm and we put

xy
1(x) = exp[

m

∑
i

Xiyi
t](x) (55)



Symmetry 2020, 12, 1893 7 of 10

Proof of Theorem 2. Let Eλ be the space of eigenfunctions associated to the eigenvalue λ of Lk.
Since Lk commutes with the right action of G, Eλ is a representation for the right action of G ([10]).
Therefore rightinvariant vector fields act on Eλ. If Z is a rightinvariant vector field, we can consider the
L2 norm of Z fλ for fλ belonging to Eλ. We remark that (Lk + C)1/2k is an elliptic pseudodifferential
operator of order 1 (C is strictly positive). By Garding inequality [2],

‖Z fλ‖L2(dg) ≤ C‖ fλ‖L2(dg) + ‖(Lk + C)1/2k fλ‖L2(dg) (56)

fλ is an eigenfunction associated to (Lk + C)1/2k and the eigenvalue (λ + C)1/2k.
Let us consider a polynomial Xα1

i1
...Xαl

il
= Zl . It acts on Eλ and is norm is bounded by

((λ + C)1/2k + C)∑ αi for the L2 norm.
From that we deduce that if fλ is an eigenfunction associated to λ of Lk that the series

∑
l

(Xit1/2kwi)
l

l!
fλ (57)

converges and is equal to fλ(x(t1/2kw)(x)). By distinguishing if w is big or not and using (46), we see
that if l 6= 2kl′ ∫

Rm
(

m

∑
i=1

Xit1/2kwi)
l′ fλ p f ,k

1 (w)dw = 0 (58)

Moreover, by (47) and (48)

1
(2kl′)!

∫
Rm

(
m

∑
i=1

Xit1/2kwi)
2kl′ fλ p f ,k

1 (x)dw =

tl′

(2kl′)!

∫
Rm ∑ Xα1 ...Xα2kl′ fλw2kl′1

1 ..w2kl′m
m p f ,k

1 (w)dw (59)

where 2kl′j is the number of of αi equal to j. By using (47) and (48), we recognize in (59)

tl′

(2kl′)! ∑
αi

Xα1 ...Xα2kl′ fλ
(2kl′1)!

l′1!
...
(2kl′m)!

l′m!
(60)

For l′ = 1, we recognize tL. Let us compute the L2 norm of the previous element. It is bounded by

tl′

(2kl′)! ∑
αi

(λ1/2k + C)...(λ1/2k + C)
(2kl′1)!

l′1!
...
(2kl′m)!

l′m!
(61)

For l′ = 1, we recognize tL.
We recognize in the previous sum

tl′

(2kl′)! ∑
(2kl′)!

(2kl′1)!...(2kl′m)!)
(2kl′1)!

l′1!
...
(2kl′m)!

l′m!
(λ1/2k + C)2kl′ (62)

We deduce a bound of the operation given by (59) in tl′C2kl′

(l′)! (λ + C)l′ .

By the same argument, we have a bound of tl′

l′ ! (Lk)l′ on Eλ in tl′

l′ ! Cl′(λ + C)l′ .
In order to conclude, we see that on Eλ

Qk
t = exp[−λt]Id + ∑

l′>1

tl′

l′!
Ql′ ,t

λ (63)
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where Ql′ ,t
λ has a bound on Eλ in Cl′(λ + C)l′ . We deduce that Qk

t acts on Eλ by

exp[−λt]Id + t2Qλ
t = Rλ

t (64)

where the norm on Eλ of Qλ
t is smaller that C exp[Cλt].

However, if f = ∑ aλ fλ

(Qk
1/n)

n f = ∑ aλ(Rλ
1/n)

n fλ (65)

Moreover

‖(Qk
t ) f ‖L2(dg) =

∫
G
|
∫
Rm

f (x(t1/2kw)(g)p f ,k
1 (w)dw|2dg ≤

C
∫

G
dg

∫
Rm
| f (x(t1/2kw)(g)|2|p f ,k

1 (w)|2dw ≤

C
∫
Rm
|p f ,k

1 (w)|2dw
∫

G
| f (x(t1/2kw)(g)|2dg (66)

However, ∫
G
| f (x(t1/2kw)(g)|2dg = ‖ f ‖2

L2(dg) (67)

because the vector fields are without divergence.
To conclude, we remark that the series

∑
λ

|aλ|2‖(Rλ
1/n)

n − exp[−λ]) fλ‖2
L2(dg) (68)

tends to 0 when n→ ∞. Namely each term is bounded by |aλ|2Cλ and tends simply to 0. The result
arises by the dominated convergence theorem.

2. Some Results on Linear Operators

We work on functions f with values in R, but it is possible to work in C. We refer to [2] for details.
Let us begin to work on Rd. We consider a smooth function on Rd ×Rd called a symbol a(., .)

such that

inf
x
| ∂(α)

∂x(α)
∂(β)

∂x(β)
a(x, ξ)| ≤ C|ξ|p−|(β)| + C (69)

We define the operator La associated to the symbol a by

La f (x) =
∫
Rd

a(x, ξ) f̂ (ξ) exp[2πi < x, ξ >]dξ (70)

acting on smooth function with bounded derivatives at each order. We suppose

inf
x
|a(x, ξ)| ≥ C|ξ|p − C (71)

We sat the operator La is a pseudodifferential operator of order p. This notion is invariant if we
do a diffeomorphism of Rd with bounded derivatives at each order. This explain that we can define an
elliptic operator on a smooth compact manifold M. On each space of the tangent bundle, we introduce
a metric strictly positive which depends smoothly on x ∈ M. We say that the manifold is equipped
of a Riemannian structure. In such a case, we can introduce the analog of the normalized Lebesgue
measure which is called the Riemannian measure dx. We say that La is symmetric if∫

M
f1La f1dx =

∫
M

f2La f1dx (72)
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It is called positive if ∫
M

f La f dx ≥ 0 (73)

and strictly positive if there exists C > 0 such that for all f∫
M

f La f dx ≥ C‖ f ‖2
L2(dx) (74)

If we consider vector fields X on M as differential operators, we can consider their adjoint:∫
M

f1X f2dx = −
∫

M
f2X f1dx +

∫
M

f1 f2divXdx (75)

such that the operators considered in this work are symmetric. Moreover, there are alliptic of order 2k.
We can consider the eigenvalue problem: for what λ, there exists a fλ ∈ L2(dx) not equal to 0

such that
La fλ = λ fλ (76)

In the compact case, this problem is solved for a positive symmetric elliptic pseudodifferential
operator. λ belongs to a discrete subset of R+ called the spectrum of La. The solutions of (76) constitute
a linear subset of finite dimension Eλ which constitutes an orthonormal decomposition of L2(dx).
Each element of Eλ is smooth.

If La is a strictly positive elliptic pseudodifferential operator of order p, we can define is
power (La)α for any positive real α ([11]). It is still a strictly positive pseudodifferential of order
pα. The eigenspaces are the same, but associated to the eigenvalue λα. Therefore (La)1/p is a
pseudodifferential operator of order 1.

If La is a strictly positive pseudo differential operator of order 1, it satisfy to the Garding inequality

‖Xi fλ‖L2(G) ≤ C‖ fλ‖L2(dx) + ‖(La)1/2k fλ‖L2(dx) (77)

We refer to [2] for this material.
Let us look to the case of non-compact set by looking the driving semi-group Pk, f

t . First of all,
by classic results (see [12] for instance)

|p f ,k
1 (w)| ≤ C exp[−|w|α] (78)

Let us recall that the main difference in this work with respect of the case of diffusion is that the
flat heat-kernel p f ,k

1 (w) can change of sign. Moreover, if f is a polynomial, the series

exp[−L f ,k] f (w) = ∑(−1)n′/n′!(L f ,k)n′ f (w) (79)

converges and only in fact a finite numbers of terms are different to zero. This shows

P f ,k
t ( f )(0) = exp[−L f ,k] f (0) = ∑(−1)n′/n′!(L f ,k)n′ f (0) =

∫
Rm

f (w)p f ,k
t (w)dw (80)

This last formula explains (47) and (48) modulo some minor problems of signs.

3. Conclusions

We continue in this paper our previous works (see [6,11] for reviews) which implement stochastic
analysis in non-Markovian semi-groups (they do not preserve positivity). The traditional Wong–Zakai
approximation of Stratonovitch diffusion is interpreted in this framework, for the case of higher order
elliptic operators under Hoermander’s form. Computations are done by using the global property of
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the generator. This gives a new approximation than the parametrix one, which was done by freezing
the starting point in the generator.
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