# Toward a Wong–Zakai Approximation for Big Order Generators

## Abstract

**:**

## 1. Introduction

**Theorem**

**1.**

**Theorem**

**2.**

**Proof**

**of**

**Theorem**

**1.**

**Proof**

**of**

**Theorem**

**2.**

## 2. Some Results on Linear Operators

## 3. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Ikeda, N.; Watanabe, S. Stochastic Differential Equations and Diffusion Processes; North-Holland: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Gilkey, P. Invariance Theory, the Heat Equation and the Atiyah-Singer Theorem, 2nd ed.; CRC Press: Boca-Raton, FL, USA, 1995. [Google Scholar]
- Léandre, R. Stochastic analysis for a non-Markovian generarator: An introduction. Russ. J. Math. Phys.
**2015**, 22, 39–52. [Google Scholar] [CrossRef] - Kumano-Go, N. Phase space Feynman path integrals of higher order parabolic with general functional integrand. Bull. Sci. Math.
**2015**, 139, 495–537. [Google Scholar] [CrossRef] - Léandre, R. Positivity theorem in semi-group theory. Math. Z.
**2008**, 258, 893–914. [Google Scholar] [CrossRef] - Léandre, R. Bismut’s way of the Malliavin Calculus for non-Markovian semi-groups: An introduction. In Analysis of Pseudo-Differential Operators; Wong, M.W., Ed.; Springer: Cham, Switzerland, 2019; pp. 157–179. [Google Scholar]
- Bismut, J.M. Large Deviations and the Malliavin Calculus; Birkhauser: Boston, MA, USA, 1981. [Google Scholar]
- Doss, H. Liens entre équations différentielles stochastiques et ordinaires. Ann. Inst. Henri. Poincaré B
**1977**, 13, 99–125. [Google Scholar] - Sussmann, H. An interpretation of stochastic differential equations as ordinary differential equations which depend on the sample point. Bull. Am. Math. Soc.
**1977**, 83, 296–298. [Google Scholar] [CrossRef][Green Version] - Helgason, S. Differential Geometry, Lie Groups and Symmetric Spaces; Academic Press: New York, NY, USA, 1978. [Google Scholar]
- Seeley, R.T. Complex powers of an elliptic operator. In Singular Integrals; AMS: Chicago, IL, USA, 1970; pp. 288–307. [Google Scholar]
- Davies, E.B. Uniformly elliptic operators with measurable coefficients. J. Funct. Anal.
**1995**, 132, 141–169. [Google Scholar] [CrossRef][Green Version]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Léandre, R.
Toward a Wong–Zakai Approximation for Big Order Generators. *Symmetry* **2020**, *12*, 1893.
https://doi.org/10.3390/sym12111893

**AMA Style**

Léandre R.
Toward a Wong–Zakai Approximation for Big Order Generators. *Symmetry*. 2020; 12(11):1893.
https://doi.org/10.3390/sym12111893

**Chicago/Turabian Style**

Léandre, Rémi.
2020. "Toward a Wong–Zakai Approximation for Big Order Generators" *Symmetry* 12, no. 11: 1893.
https://doi.org/10.3390/sym12111893