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Abstract: An object is 3D centro-symmetrical if the object can be segmented into two halves and
the relationship between them can be represented by a combination of reflection about a plane
and a rotation through 180◦ about an axis that is normal to the plane. A 2D orthographic image
of the 3D centro-symmetrical object is always 2D rotation-symmetrical. Note that the human
visual system is known to be sensitive to 2D rotational symmetry. This human sensitivity to 2D
rotational symmetry might also be used to detect 3D centro-symmetry. If it is, can this detection of
3D centro-symmetry be helpful for the perception of 3D? In this study, the geometrical properties of
3D centro-symmetry and its 2D orthographic and perspective projections were examined to find out
whether 3D centro-symmetry plays any role in the perception of 3D. I found that, from a theoretical
point-of-view, it is unlikely that 3D centro-symmetry can be used by the human visual system to
organize a 2D image of an object in a way that makes it possible to recover the 3D shape of an object
from its 2D image.

Keywords: centro-symmetry; rotational symmetry; invariant; visual perception; 3D symmetry;
3D recovery

1. Introduction

The human visual system is particularly sensitive to a number of 2D configurations that are
composed of local image features in a retinal image [1–8]. Examples of such 2D image features are
parallelism, collinearity, perpendicularity, and symmetry. Two-dimensional symmetry is one of the
most important of these configurations (see [9–12] for reviews).

Symmetry can be defined as an invariant under a group of transformations [13–15]. For example,
2D mirror symmetry is invariant under reflection, and 2D N-fold rotational symmetry is invariant
under rotation for 360/N◦ where N is an integer larger than 1. These two types of 2D symmetry
are unique, because only they can form a compact 2D figure. A mirror-symmetrical figure can be
segmented into two halves by a line, called the “symmetry-axis” that makes the halves reflections of
one another. An N-fold rotation-symmetrical figure can be segmented into N parts in which any part is
always a rotation of another part for 360/N◦.

The human visual system is sensitive to both 2D mirror and 2D rotational symmetry [16–20].
This high sensitivity to 2D mirror symmetry is often explained by the 3D mirror symmetry of many
objects in our everyday life (e.g., [21]). However, a 2D retinal image of a 3D mirror-symmetrical
object is 2D mirror-symmetrical on a spherical retina only if the symmetry plane of the object passes
the center of projection of the eye under a perspective projection. Such a view of this kind of a
mirror-symmetrical object is degenerate. This sensitivity to 2D mirror symmetry can be explained by
its property as a model-based invariant of a 3D shape [22,23]. The 2D image of a surface-of-revolution
in a 3D scene is always mirror-symmetrical under an orthographic projection to an image plane and
under a perspective projection to a spherical retina [23–26].
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Two-dimensional rotational symmetry can be also regarded as a model-based invariant of a 3D
shape. A boundary contour of a 2D orthographic projection of a 3D centro-symmetrical shape (Figure 1)
is always 2D rotational-symmetrical with 2 folds (Figure 2). A centro-symmetrical shape has a central
point. Line segments connecting symmetrical pairs of points of the shape intersect with one another at
the central point and are bisected by the point. In this study, this point is referred to as the “symmetry
point” and line segments connecting the individual symmetrical pair of points are referred to as the
“symmetry line segments”. A centro-symmetrical shape can be segmented into two symmetrical halves
by a plane with an arbitrary orientation that passes the symmetry point. The relation between these
two halves can be represented by a combination of reflection about the plane and rotation for 180◦

about an axis that is normal to the plane and that passes the symmetry point.

Figure 1. Objects with 3 types of 3D symmetry: (a) a 3D mirror-symmetrical object, (b) a 3D
rotation-symmetrical object, and (c) a 3D centro-symmetrical object.

Figure 2. An orthographic image of a 3D centro-symmetrical object (Figure 1c) with its surface
transparent. The 2D image of the 3D centro-symmetrical shape itself is 2D rotational symmetrical with
2 folds, once we ignore the occlusion by the opaque surface of the shape.

Three-dimensional centro-symmetry has been studied in crystallography but not in vision science,
despite its potential relevance for understanding human beings’ sensitivity to 2D rotational symmetry.
In this study, the geometrical properties of 3D centro-symmetry and its 2D orthographic and perspective
projections were studied to make it possible to discuss (i) the potential sensitivity of the human visual
system to 3D centro-symmetry and (ii) whether this kind of sensitivity can actually aid the perception
of 3D.
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2. Theorems and Proofs

2.1. A 2D Orthographic Projection of 3D Centro-Symmetry

Consider a 3D centro-symmetrical object with an arbitrary orientation in a 3D scene. Set the 3D
Cartesian coordinate system of the scene so that the origin of the 3D system is at the symmetry
point of the object. Now consider a symmetrical pair of points Pi = [ XPi YPi ZPi ]t and
Qi = [ XQi YQi ZQi ]t of the object. Their relation can be represented as Pi = −Qi, because a
midpoint Mi = (Pi + Qi)/2 between Pi and Qi is at the symmetry point O3D = [ 0 0 0 ]t.

Next, consider a 2D orthographic projection of the 3D centro-symmetrical object. The image plane
for the orthographic projection is set so that it passes the origin of the 3D coordinate system. The 2D
Cartesian coordinate system is set so that the x- and y-axes of the 2D coordinate system coincide with
the X- and Y-axes of the 3D coordinate system of the scene. The Z-axis of the 3D coordinate system is
normal to the image plane.

The 2D orthographic projection of the 3D centro-symmetrical object is always 2D
rotation-symmetrical with 2-folds. The orthographic projections of Pi and Qi can be written as:

pi =

[
1 0 0
0 1 0

]
Pi = [ XPi YPi ]t

qi =

[
1 0 0
0 1 0

]
Qi = [ XQi YQi ]t = [ −XPi −YPi ]t

(1)

where pi is the projection of Pi and qi is the projection of Qi. The relation between pi and qi can be
represented as pi = −qi. It is equivalent with a 2D rotation for 180◦ around O2D = [ 0 0 ]t to which the
symmetry point O3D is projected. This implies that a 2D orthographic image of a 3D centro-symmetrical
object is always 2D 2-fold rotation-symmetrical around a projection of the symmetry center of the
object. This means that the image is invariant when it rotates 180◦ around the projection of the
symmetry center.

2.2. Recovering a 3D Centro-Symmetrical Shape from Its 2D Orthographic Image

It has been shown that a one-parameter family of 3D shapes can be recovered from a single 2D
orthographic image of an object if the object is 3D mirror- or rotation-symmetrical [27–29]. Starting
with an image of an object, another image of the object can be generated, virtually, from a different
viewpoint by using the symmetry of the object (Figure 3). A point in the object can be projected to
both the original and a virtual image. The 3D position of such a point can be computed by finding the
intersection of two lines of projection of the point from the original and virtual images. The parameter
of this family represents the relative orientation between the two views of the original and virtual
images [25,30,31]. The veridical 3D shape of the object is included in this family.

It is also possible to generate a virtual image of a 3D centro-symmetrical object from its 2D
orthographic image, but, here, the virtual image based on 3D centro-symmetry does not facilitate the
recovery of the 3D shape of the object. The viewing direction of the virtual image is opposite to the
viewing direction of the original image. This means that that the two lines of projection to each point
of the object from the two views of the images coincide perfectly with one another.

Note that a 2D orthographic image of a 3D centro-symmetrical object is always 2D 2-fold
rotation-symmetrical. Under an orthographic projection, any 2D 2-fold rotation-symmetrical image
has an infinite number of 3D centro-symmetrical interpretations. Now, set the 2D Cartesian coordinate
system of the image so that its origin is at the symmetry point of the rotation-symmetrical image. Next,
set the 3D Cartesian coordinate system of a 3D scene in which the 3D interpretation is constructed so
that the X- and Y-axes of the 3D coordinate system coincide with the x- and y-axes of the 2D coordinate
system of the image. The Z-axis of the 3D coordinate system is normal to the image plane. The relation
between a 2D rotation-symmetrical pair of points bi = [ xbi ybi ]t and di = [ xdi ydi ]t in the image
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can be represented by a rotation for 180◦ around O2D = [ 0 0 ]t: bi = −di. The 3D centro-symmetrical
interpretations of bi and di can be constructed as:

Bi = [ xbi ybi Zi ]t

Di = [ xdi ydi −Zi ]t = [ −xbi −ybi −Zi ]t = −Bi
(2)

where Bi is the 3D interpretation of bi, Di is the 3D interpretation of di, and Zi is an arbitrary real number.
The midpoint between Bi and Di is at O3D = [ 0 0 0 ]t. This construction process can be applied to
all 2D rotation-symmetrical pairs of points in the image. For each pair of points, the Z coordinates
of their constructed 3D points can be set independently from the other pairs of points. When this is
done, the set of pairs of constructed 3D points is 3D centro-symmetrical about O3D. Each pair of the
constructed points can be connected by a symmetry line segment that is bisected by O3D.

Figure 3. (a) The 3D mirror- and (b) the 3D rotation-symmetrical objects in Figure 1 viewed from
different directions. Thick black lines represent the viewing directions for images in Figure 1, and the
dotted lines represent the viewing directions of their virtual images that were generated from the
images in Figure 1.

2.3. A 2D Perspective Projection of 3D Centro-Symmetry

A 2D perspective projection of a 3D centro-symmetrical object is not 2D rotation-symmetrical
unless the object is planar and frontoparallel. Symmetry line segments connecting symmetrical pairs
of points in the objects are projected to line segments that intersect with one another at a point to
which the symmetry center of the object is projected. The projection of the symmetry point is not at
the midpoints of the projection of the symmetry line segments unless the symmetry line segments
are frontoparallel.

A model-based invariant of 3D centro-symmetry under a 2D perspective projection is only a
common intersection of line segments that connect corresponding pairs of points. This can be proven
by showing that a 3D centro-symmetrical interpretation can always be constructed from a 2D image
that satisfies this constraint (see also [25,32–34] for analogous theorems of 3D mirror and rotational
symmetry). A common intersection in a 2D image is a projection of the symmetry point of the
constructed 3D centro-symmetrical interpretation and its symmetry line segments are projected to the
line segments that connect the corresponding pairs of points in a 2D image.

Setting the 2D Cartesian coordinate system of a 2D image and the 3D Cartesian coordinate system
of a 3D scene in which the 3D interpretation can be constructed as follows: (i) the origin of the 3D
coordinate system is at the center of the projection, (ii) the Z-axis of the 3D coordinate system coincides
with the principal axis and it is perpendicular to the image plane Z = f, where f is the focal distance,
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(iii) the Z-axis passes the origin of the 2D coordinate system, and (iv) the X- and Y-axes of the 3D
coordinate system are parallel to the x- and y-axes of the 2D coordinate system.

Now, consider constructing a 3D centro-symmetrical interpretation from a given 2D image that is
composed of corresponding pairs of points. Line segments connecting the individual pairs of points in
the 2D image pass a point cs = [ xc yc ]t. The point cs appears between points of these individual
pairs. These line segments and cs are projections of the symmetry line segments and of the symmetry
point of the 3D interpretation.

Next, consider one of the corresponding pairs (pi, qi). A line segment connecting pi and qi passes cs.
This pair of points can be written as:

pi = cs + lpi[ cosθi sinθi ]t

qi = cs + lqi[ cosθi sinθi ]t
(3)

where θi is the orientation of the line segment connecting pi and qi, and
∣∣∣lpi

∣∣∣ and
∣∣∣lqi

∣∣∣ are the distance of
pi and qi from cs. Note that the line segment connecting pi and qi is a projection of a symmetry line
segment, and cs is a projection of the symmetry point. The symmetry line segment is parallel to a
vector Si connecting the center of projection [0 0 0]t and the vanishing point vi of the symmetry line
segment. The vanishing point vi of the symmetry line segment should be collinear with pi, qi, and cs,
and it can be written as:

vi = cs + lvi[ cosθi sinθi ]t (4)

where and |lvi| is the distance of vi from cs. The endpoints of the symmetry line segment and the
symmetry point bisecting the symmetry line segment are projected to pi, qi, and cs. Then, the relation
between pi, qi, cs, and vi can be represented by the following equation (see [25,35]):

lvi =
2
(
lvi − lpi

)(
lvi − lqi

)(
lvi − lpi

)
+

(
lvi − lqi

) (5)

From Equation (5):

lvi =
2lpilqi

lpi + lqi
(6)

The symmetry line segment is parallel to a vector Si connecting the center of projection [0 0 0]t

and its vanishing point vi in the 2D image:

Si =
1√

‖vi‖2 + f 2


xc + lvi cosθi
yc + lvi sinθi

f

 (7)

Let the 3D centro-symmetrical construction of pi and qi be Pi and Qi and the symmetry point be Cs:

Pi =


XPi
YPi
ZPi

 = ZPi
f

[
pi
f

]

Qi =


XQi
YQi
ZQi

 = ZQi

f

[
qi
f

]

Cs =


XC
YC
ZC

 = ∆s√
‖cs‖2 + f 2


xc

yc

f



(8)
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where ∆s is a free parameter representing the distance of Cs from the center of projection. Note that Pi
and Qi in the 3D scene are connected by the symmetry line segment that is bisected by Cs:

Pi = Cs +
∆i
2

Si

Qi = Cs −
∆i
2

Si

(9)

where |∆i| is the length of the symmetry line segment. From Equations (3) and (7)–(9), we have:

 ∆s√
‖cs‖2 + f 2

+
∆i

2
√
‖vi‖2 + f 2




xc

yc

f

+ ∆i

2
√
‖vi‖2 + f 2


lvi cosθi
lvi sinθi

0

 = ZPi
f


xc + lpi cosθi
yc + lpi sinθi

f

 ∆s√
‖cs‖2 + f 2

−
∆i

2
√
‖vi‖2 + f 2




xc

yc

f

− ∆i

2
√
‖vi‖2 + f 2


lvi cosθi
lvi sinθi

0

 = ZQi

f


xc + lqi cosθi
yc + lqi sinθi

f


(10)

From Equations (6) and (10), ∆i can be computed as:

∆i = 2∆s

(
lpi + lqi

)√
‖vi‖2 + f 2(

lqi − lpi
)√
‖cs‖2 + f 2

(11)

The free parameter ∆s is the distance of the symmetry point Cs from the center of projection.
It determines the size of the constructed 3D centro-symmetrical interpretation. This construction
process can be applied to all of the corresponding pairs of points in the 2D image. ∆s should be the
same among all of the pairs of points. When this has been done, the set of pairs of constructed 3D
points is 3D centro-symmetrical about Cs. Each pair of constructed points can be connected by a
symmetry line segment that is bisected by Cs.

2.4. Model-Based Invariant of 3D Centro-Symmetry with Planar Contours

Consider a 3D mirror-symmetrical pair of curves. It has been suggested that the planarity of these
individual contours can play an important role when the human visual system detects the 3D mirror
symmetry from the 2D image of its contours. This can be explained by introducing a model-based
invariant into the 2D image by using 3D mirror symmetry along with the planarity of contours [32,33,36].
Under an orthographic projection, the relationship between the images of the curves can be represented
by a sub-group of the 2D affine transformation. Under a perspective projection, the relationship can also
be represented by a transformation that includes the same sub-group of the 2D affine transformation.

An analogous model-based invariant can be introduced into the 2D image by using 3D rotational
symmetry along with the planarity of contours [25]. Under an orthographic projection, the relationship
between the images of planar curves that are 3D rotation-symmetrical to one another can be represented
by a sub-group of the 2D affine transformation. Under a perspective projection, the relationship can also
be represented by a transformation that includes the same sub-group of the 2D affine transformation.
Note that the sub-group of the 2D affine transformation for 3D rotational symmetry is different from the
sub-group for 3D mirror symmetry. In the next two sections, the same approach to 3D centro-symmetry
will be discussed under both orthographic and perspective projections.

2.4.1. Model-Based Invariant of 3D Centro-Symmetry with Planar Contours under a 2D Orthographic
Projection

Under an orthographic projection, the planarity of contours does not play any role. Note that a
2D orthographic image of a 3D centro-symmetrical object is always 2D rotational symmetry and that
a 3D centro-symmetrical interpretation can always be constructed from a 2D rotation-symmetrical
image (see Section 2.1. A 2D orthographic projection of 3D centro-symmetry). It is always possible to
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construct a 3D centro-symmetric pair of planar curves from a pair of 2D rotation-symmetrical curves
with an orthographic projection.

Consider a pair of curves φ and ψ that are 2D rotation-symmetrical around the origin
o2D = [ 0 0 ]t in a 2D image and a corresponding pair of points pi = [ xpi ypi ]t on φ and
qi = [ xqi yqi ]t on ψ. Their relation can be represented as pi = −qi. From Equation (1), their 3D
centro-symmetrical interpretations can be constructed as Pi = [ xpi ypi Zi ]t and Qi = −Pi, where Pi
is the 3D interpretation of pi and Qi is the 3D interpretation of qi. The parameter Zi is computed as:

Zi =
NXxpi + NYypi + kΦ

−NZ
(12)

where NX, NY, NZ, and kΦ are free parameters. This construction process can be applied to all
corresponding pairs of points on φ and ψ. NX, NY, NZ, and kΦ should be the same among all of the
pairs of points. When this is done, a 3D centro-symmetrical pair of planar curves Φ and Ψ can be
constructed from φ and ψ. Equation (12) represents a plane of Φ. The plane of Φ is parallel to a plane
of Ψ .

2.4.2. Model-Based Invariant of 3D Centro-Symmetry with Planar Contours under a 2D Perspective
Projection

Under a perspective projection, a model-based invariant can be introduced into the 2D image by
3D centro-symmetry used along with the planarity of contours. Now, consider a 3D centro-symmetrical
pair of planar contours Φ and Ψ and their 2D perspective projections ϕ and ψ. Plane ΠΦ of Φ and
plane ΠΨ of Ψ are parallel to one another. Set the 2D Cartesian coordinate system of a 2D image and
the 3D Cartesian coordinate system of a 3D scene in which the 3D interpretation will be constructed as
follows: (i) the origin of the 3D coordinate system is at the center of projection, (ii) the Z-axis of the 3D
coordinate system coincides with the principal axis and it is perpendicular to the image plane Z = f,
where f is the focal distance, (iii) the Z-axis passes the origin of the 2D coordinate system, and (iv) the
X- and Y-axes of the 3D coordinate system are parallel to the x- and y-axes of the 2D coordinate system.

First, consider for simplicity, a case in which ΠΦ and ΠΨ are frontoparallel:

ΠΦ : Z = kΦ
ΠΨ : Z = kΨ

(13)

where kΦ, kΨ are constants. Let the symmetry center of Φ and Ψ be Cs = [ XC YC ZC ]t.
From Equation (13), (kΦ + kΨ )/2 = ZC. Now, consider a corresponding pair of points Pi
on Φ and Qi on Ψ . Pi and Qi can be written as: Pi = [ XC + Xi YC + Yi kΦ ]t and
Qi = [ XC −Xi YC −Yi 2ZC − kΦ ]t. Their perspective projections can be written as:

pi =
f

kΦ
[ XC + Xi YC + Yi ]t

qi =
f

2ZC − kΦ
[ XC −Xi YC −Yi ]t

(14)

From Equation (14), the relation between pi and qi is:

(pi − cs) = −
kΨ
kΦ

(qi − cs) (15)

where cs = f /ZC[ XC YC ]t is a perspective projection of CS. This shows that the relation between ϕ
and ψ can be represented by a sub-group of the 2D affine transformation, namely scaling by a factor of
−kΨ /kΦ around cs.

If a pair of curves β and δ in the 2D image satisfy Equation (15), their 3D centro-symmetrical
interpretations are a pair of planar contours in the 3D scene. Now, consider n corresponding pairs
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of points (b1, b2, . . . bn) on β and (d1, d2, . . . dn) on δ where n ≥ 3. They satisfy Equation (15):
(bi − cβδ) = −kβδ(di – cβδ), where i is an integer (1 ≤ i ≤ n), kβδ is a constant, and cβδ is an intersection of
line segments connecting the corresponding pairs of points between β and δ. From Equation (3), bi and
di can be written as bi = cβδ + lbi[cosθi sinθi]t and di = cβδ + ldi[cosθi sinθi]t, where θi is the orientation
of the line segment connecting bi and di, and |lbi| and |ldi| are the distance of bi and di from cβδ. Note that
lbi/ldi is kβδ for all of the corresponding pairs of points, because β and δ satisfy Equation (15). Let Bi and
Di be the 3D centro-symmetrical interpretations of bi and di and ZBi and DBi be their Z-coordinates.
From Equations (7)–(11), the Z-coordinates of Bi and Di are:

ZBi =
∆s f√

‖cβδ‖2 + f 2

(
1 +

(lbi + ldi)

(ldi − lbi)

)

ZDi =
∆s f√

‖cβδ‖2 + f 2

(
1 +

(lbi + ldi)

(ldi − lbi)

) (16)

where ∆s is a free parameter representing the distance of the symmetry point from the center of
projection. It should be the same among all of the pairs of points. Note that (lbi + ldi)/(ldi − lbi) is
also the same among all of the pairs of points, because lbi/ldi is constant (kβδ). Equation (16) shows
that the 3D centro-symmetrical interpretations of β and δ are a pair of contours that are individually
frontoparallel and planar.

Next, consider a general case in which planes ΠΦ and ΠΨ are not frontoparallel:

ΠΦ : −NZZ = NXX + NYY + kΦ
ΠΨ : −NZZ = NXX + NYY + kΨ

(17)

where kΦ, kΨ , NX, NY, and NZ are constants, and NX
2 + NY

2 = 1. Note that [NX NY NZ]t is normal to
ΠΦ and ΠΨ . Let CS = [XC, YC, ZC]t be their symmetry center. Note that a line connecting two of the
points Pi and Pj of Φ, and a line connecting their corresponding points Qi and Qj of Ψ , are parallel to
one another. Let ϕ, ψ, and cs be 2D perspective projections of Φ, Ψ , and CS. This general case can be
transformed to a simple case in which ΠΦ and ΠΨ are frontoparallel by rotating the principal axis and
the image plane around the center of projection [0 0 0]t. The perspective image after this rotation can
be computed by using Kanatani’s transformation [37].

Now consider n corresponding pairs of points (p1, p2, . . . pn) on ϕ and (q1, q2, . . . qn) on ψ where
n ≥ 3 (Figure 4). They are projections of points (P1, P2, . . . Pn) on Φ and (Q1, Q2, . . . Qn) on Ψ . Draw a
line connecting two of the points pi and pj on ϕ and a line connecting their corresponding points qi and
qj on ψ (the dashed gray lines in Figure 4). The intersection hij of these two lines is a vanishing point of
two parallel lines connecting Pi and Pj and connecting Qi and Qj. These lines are on the planes ΠΦ and
ΠΨ individually, and they are parallel to one another. It follows that hij is on a line Hs (the solid red
line in Figure 4) that is a common horizon of ΠΦ and ΠΨ . Another vanishing point can be found by
drawing a line connecting different points on ϕ and by drawing a line connecting their corresponding
points on ψ. An additional corresponding pair of points on ϕ and ψ can be determined by drawing a
line (the dotted green line in Figure 4) passing cs and finding its intersection with ϕ and ψ if necessary.

This vanishing point is also on Hs. Hs can be determined by finding a line that connects these
vanishing points.

By using the horizon Hs of ΠΦ and ΠΨ , a vanishing point of a line normal to ΠΦ and ΠΨ can be
found. Now, draw a line that passes the principal point [0 0]t in the image and that is perpendicular to
Hs. Let hv be an intersection of this line with Hs. Next, find a point vΠ on this line such that the visual
angle between hv and vΠ from the center of projection is perpendicular. The line connecting vΠ and the
center of projection is normal to ΠΦ and ΠΨ and it is parallel to [NX NY NZ]t (Equation (17)).
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Figure 4. A pair of 2D curves φ and ψ satisfying the following two conditions: (i) line segments
connecting the corresponding pairs of points on φ and ψ (the dotted gray line) intersect with one
another at a point cs (the red diamond), (ii) a line connecting two of the points onϕ and a line connecting
their corresponding points on ψ always intersect on Hs.

Now, rotate the principal axis and the image plane together in the 3D scene to make the principal
axis normal to ΠΦ and ΠΨ and ΠΦ and ΠΨ become frontoparallel. This rotation is around a vector
[NY − NX 0]t and the degree of the rotation is θ = cos−1

(
NZ/

√
NZ2 + 1

)
.

A matrix RΠ representing this rotation can be formulated by using Rodrigues’ rotation formula:

RΠ =

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 =


cθ + NY
2rθ −NYNXrθ −NXsθ

−NYNXrθ cθ + NX
2rθ −NYsθ

NXsθ NYsθ cθ

 (18)

where cθ = cosθ, sθ = sinθ, and rθ = 1−cosθ. After the rotation RΠ, a point [x y]t in the original image
is transformed to [x′ y′]t [37]:

[
x′

y′

]
= f

[
r11 r21 r31

r12 r22 r32

]
x
y
f


[

r13 r23 r33
]

x
y
f


(19)

Note that ΠΦ and ΠΨ become frontoparallel after RΠ. With this done, the transformed image
satisfies Equation (15). From Equations (15) and (19), the relation between ϕ and ψ is:(

p′i − c′s
)
=

kΦ
kΦ

(
q′i − c′s

)
(20)

where pi
′, qi

′, and cs
′ are the transformations of pi, qi, and cs by using Equation (19). This shows that

the relation between ϕ and ψ can be represented by the transformation of Equation (19) and by a
sub-group of the 2D affine transformation that is scaling.
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3. General Discussion

This study examined how, from a theoretical point of view, 3D centro-symmetry can be used
to organize a 2D image of an object and to recover its 3D shape from the 2D image. My study
showed that 3D centro-symmetry has the following properties: (i) a 2D orthographic image of a 3D
centro-symmetrical shape is always 2D rotation-symmetrical, (ii) a 3D centro-symmetrical shape can
be recovered from its single 2D perspective projection but not from its 2D orthographic projection,
(iii) any pair of 2D curves is consistent with a 3D centro-symmetrical interpretation under a perspective
projection, and (iv) additional model-based invariants of 3D rotational symmetry can be introduced
under a perspective projection if the 3D centro-symmetrical set of curves are planar, individually.

This study was motivated by the fact that the human visual system is known to be sensitive to 2D
rotational symmetry, which is a model-based invariant of 3D centro-symmetry under an orthographic
projection but not under a perspective projection. It raises two questions: (i) which 3D centro-symmetry
or 3D rotational symmetry is actually inferred from 2D rotational symmetry in the human visual system
and (ii) can any sensitivity to 3D centro-symmetry be helpful for the perception of 3D? The first question
can be addressed by testing the human sensitivity to 2D rotation-symmetrical patterns with a 3D
centro-symmetrical or with a 3D rotation-symmetrical depth distribution (see Figure 5, see also [38–41]
for studies of the perception of 2D mirror symmetry from a dotted pattern with a depth distribution).
Note, however, even if the human visual system is sensitive to 3D centro-symmetry, it is unclear how
3D centro-symmetry can be of any help in the perception of 3D. Note that this study showed that 3D
centro-symmetry can be theoretically helpful for the 3D perception with a perspective projection but
not with an orthographic projection. This inconsistency is inconvenient for the human visual system,
because it prevents it from making effective use of 3D centro-symmetry. When the retinal image of
a 3D centro-symmetrical object is small, the image can be approximated well by an orthographic
projection, and the human visual system can detect 3D centro-symmetry of the object on the basis of
2D rotational symmetry. However, here, the 3D centro-symmetry is not helpful in perceiving the 3D
shape of the object, because the image is too small. When the retinal image of an object is sufficiently
large, 3D centro-symmetry is helpful in perceiving the 3D shape of the object from this large image,
but the 3D centro-symmetry cannot be detected on the basis of 2D rotational symmetry. Therefore,
this theoretical study suggests that 3D centro-symmetry cannot be used by the human visual system to
organize a 2D image of an object to make it possible to recover its 3D shape from the 2D image.

Figure 5. Stereoscopic images of random dot patterns with 2D rotational symmetry (for both crossed
and uncrossed fusion). The depth distributions of the patterns were (a) 3D centro-symmetrical and
(b) 3D rotation-symmetrical.
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