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Abstract: In this article, the iteration transform method is used to evaluate the solution of a
fractional-order dark optical soliton, bright optical soliton, and periodic solution of the nonlinear
Schrodinger equations. The Caputo operator describes the fractional-order derivatives. The solutions
of some illustrative examples are presented to show the validity of the proposed technique without
using any polynomials. The proposed method provides the series form solutions, which converge
to the exact results. Using the present methodology, the solutions of fractional-order problems as
well as integral-order problems are calculated. The present method has less computational costs
and a higher rate of convergence. Therefore, the suggested algorithm is constructive to solve other
fractional-order linear and nonlinear partial differential equations.

Keywords: Fiber optics; nonlinear Schrodinger equations; fractional calculus; iterative transform
method; analytic solution

1. Introduction

The nonlinear Schrodinger equation (NLSE) is a significant equation that arises in a wide
range of scientific purposes, including optical fiber communication systems, quantum mechanics,
thermodynamics, ocean acoustic performance, biomedical dynamics, and quantum physics [1-3].
Approaches give the NLSE with steep spatial and temporal gradients. This NLSE is constructed from
Maxwell’s electromagnetic equation using a multiscale perturbation evaluation. NLSEs are commonly
used in the literature on shallow-water waves, quantum mechanics, Bose-Einstein condensates,
ocean waves, optical solitons, and other fields, with many types of nonlinearity that depend on
the background in which they are investigated [4-7]. In the sense that the soliton maintains its
amplitude, optical solitons in fibers are pulses that spread—Ilike solitons in shallow water media,
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where interactions of solitons are fully elastic—velocity and shape after nonlinear collisions and
the interactions between them influence only the phase shifts. A prototypical integrable scheme
is the nonlinear NLS equation, which provides various soliton solutions and infinitely numerous
conservation laws. Optical solitons in polarisation-preserving fibers have been commonly used.
The complex Ginzburg-Landau equation (CGLE) and many other models were studied with the
nonlinear Schrodinger equation [8-10]. In this sense, a deluge of findings has emerged from these as
well as other such models.

Optical soliton is an important research area in the field of nonlinear fibre, resulting in
a compromise between the self pulse modulation and group velocity dispersion. Optical solitons
are acquiring in-depth active research, according to their impressive stability properties and technical
features [10]. The decision of optical solitons provides valuable information on the mechanism of
complex visual methodologies modeled by the NLSEs.

Several NLSEs were analyzed from the viewpoint of the optical soliton, where different analytical
techniques such as the inverse scattering approach illustrated full integrability. However, the two
types of nonlinear equations are the most widely utilized ones, i.e.,

. 1 .

1Div+§vgg+v|v\2:0, i=+v-1, 1)
and ,

iDiv—Evgg—i-lﬂv‘Z:O, i=+v—1, )

used for the normal dispersion regime and the anomalous dispersion regime, respectively. The dynamic
function v(S, 1), with & as the parameter of the longitudinal variable and ¢ acting as the instant of
time co-moving. Equation (1) gives a bright soliton approach, which takes a bell-shaped figure
and spreads out undistorted for arbitrary long distances, without any shift in shape. However,
the NLSEs (Equation (2)) provide dark solitons results, which are behaviors of the nonlinearity
of fiber in the normal dispersion regime. Dark solitons are also classified as topological optical
solitons in nonlinear optics. The two models (Equations (1) and (2)) emerged widely in the sense of
its studies. Several systematic approaches have been utilized for further research on these equations.
The explicit approaches of nonlinear integrable equations are significant for their broad applicability in
the explanation of natural processes and nonlinear optics [1-11]. In this study, we intend to investigate
the above-mentioned NLSEs, each of which contains a detuning term, given as

iDyv + vgg + avfv2 — po =0, i=+v~1, 3)

and
iDiv—vgg+zxv|v|2—ﬁv:O, i=+v-1, 4

where there are nonzero constants of « and B. The time evolution of disturbances in the unstable
domain is represented in these two equations. Recently, studies of optical solitons [12-14] have
flourished quickly. Some effective techniques have been used to research the properties of pulse
development in the area of nonlinear optics.

In 2006, Daftardar-Gejji and Jafari proposed a new iterative method to seek numerical analysis
of nonlinear equations [15,16]. Jafari et al. first implemented Laplace transformation in the iterative
technique and suggested a new direct technique called the iterative Laplace transformation method
(ILTM) [17] to search for numerical results of a scheme of FPDEs. ILTM to solve linear and
nonlinear partial differential equations such as Fokker-Planck equations [18], Zakharov—Kuznetsov
equations [19], the Fornberg—Whitham equation [20], etc. In this article, the iterative method is
modified with the new Elzaki transformation; the new method is called the iterative transform method.
The iterative transform method is used to evaluate the solution of fractional-order of the dark optical
soliton, bright optical soliton, and periodic solution of the proposed nonlinear Schrodinger equations.
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The Caputo operator describes the fractional-order derivatives. The solution of some illustrative
examples is presented to show the validity of the proposed technique. Using the present methodology;,
the solutions of fractional-order problems as well as integral-order problems are calculated. The present
method has less computational costs and a higher rate of convergence. Therefore, the suggested
algorithm is therefore constructive to solve other fractional-order linear and nonlinear partial
differential equations.

2. Basic Definitions

Definition 1. The operator D? of order ¢ in the Abel-Riemann sense is given as [21-23]

d/' _
D%(J) = 4 =1
]¢d]f0 5y gMﬂal —1<¢<j

wherej € Zt,p € RT, and

O

D (S) = s [C(@ -9 gg, 0<p <1

Definition 2. The Abel-Riemann fractional-order integration operator J¥ is given as [21-23]

1 ¥

PPYS) = 1 C(S =) u(p)dg, $>0, y>0.

Some properties of the operator:

(Y - F(j—i—l) i+
I = tivr?
, rG+1)
DV = N 7/ _pi=¢
YTy

Definition 3. The operator DY of fractional-order 1 in the Caputo sense is given as [21-23]

CD%(%):{ wao S ¢¢]+1d¢ j—l<yp <y, .
af V(S ), p=j.
Definition 4.
m k
I$D$g(¢) =g(p)— Y & (0*)4) for ¢ >0, andj—1 <y <j, jeN. (6)
k=0

DYTI3(9) = 3(¢)
Fundamental Concept of the Elzaki Transform

A new transformation called the Elzaki transformation described for the exponential order
function that we find in the A set is described by [21-23]:

»‘E

A= {g(9) 2 IM k1, Kz > 0,[g(9)] < Me",if () € (~1) x [0,00).
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The constant M must be a finite number; k1 and k2 are finite or infinite for a given function in the
set. The Elzaki transformation is described through the integral equation

*© i’}
Elg(9)] = T(s) =5 | s@)e~'dy, 20k <5<k
We can achieve the following result from the description and the basic analyses

E[y"] = n!s"t2,

Els'(9)] =~ —s500),
Els”(9)] = 15— 5(0) —sg(0),
s n—1
E[g(")(lp)] _ Ts(n) . ];)SZ—nJrkg(k)(o)

Theorem 1. If T(s) is the Elzaki transformation of (), the Elzaki transformation of the Riemann—Liouville
derivative can be taken into consideration as follows [21-23]:

EDYg(p)] =5 |T(s) = Y ADIg(0)}|; —1<n—1<@p<n
k=1

Proof. Let us take the Laplace transform of

g(p) = ;;gwo
LID?g()] = SPT(s) - :i:s"[D“lg(on

n—1 n—1 1

=T~ T 0P 3(0)] = 1T6) ~ T g DY 5 0)

n—1

=s'T(s) - ,;054) s¢—1k+2 [D?~*g(0)

n—1 p—k+2
LID?g(y)] = 5* [T(s) ¥ (3) [D¢—"g<o>1]

k=0

Therefore, when we put % for s, the Elzaki transform of the fractional-order of g(¢) as below:

E[D?g(y)] =5 [T(s) - i (s)?7F+2 [D¢"g<o>}]
k=0
O

Definition 5. The Caputo fractional-order of the Elzaki transformation using Theorem 1 is given as:

i—1
E[Dg(p)] = s P E[g(y)] — kE 20k 0(0), where j—1< ¢ < j.
=0
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3. Iterative Transform Method (ITM) Idea

In this part of the paper, we will give the general idea of the recently developed ITM which is
used to investigate the system of nonlinear fractional PDEs. Let us take the general fractional PDEs of
the form

¢v(%,l/)) +Nv(S,9) + Mu(S,9) =h(S,¢9), neN, n—1<¢<mn, (7)

where N and M are linear and nonlinear operators. Furthermore, the initial condition is given by
the following
F($,0) = (), k=0,1,2,..,n—1, 8)

where S such that n —1 < & < n is the order of the Caputo fractional operator D‘P (S, ¢9). In the
above PDEs, h(S, ) is the source function. Next, we will apply the Elzaki transform of Equation (7)
and obtain the following

E[DGo(S, )] + EINu(S, ) + Mo(S,9)] = E[B(S, )] ©)

Further simplification through Elzaki differentiation leads to

E[v(S, ¢)] = mf s>~k (3, 0) + sPE[R(S, )] — sPE[N0(S, 9) + Mo(S, ¢)]; (10)
k=0

the inverse Elzaki transform converts Equation (10) into

u(S, ) K Y 7 0HN(S,0) + SPE[R(S 1/;)])] — E7! [sPE[Mo(S,9) + Mu(S, )] . (11)
As through the iterative technique, we have
o(39) = Y vilS¢). (12)
i=0

N (iv,«s,l/») = Y NS )], 13

i=0
and the operator M is nonlinear, we have the following;:
0 i i—1
MY vi(S, ) | = Muo(S, ¢ Z Yoo(Sy) | —M( Y w(Sp) | o (14)
i=0 k=0 k=0
Putting Equations (12)—(14) in Equation (11), we get the following:

ivi(%rlp) =E7! [S"’ (mzl 523 uR(S,0) + E[h(g/#’)})] —E7[s'E
i=0

k=0

i ; i—1
[Zw[vi@,w)HMvo Sy Z{ (Z“’f (S9)-N (Z”"(%’w)»}”
i=0 =0 0

We define the iterative formula mentioned below with applied equations:

(15)

vo(S,9) = E! [s"’ (mzl s2 NS, 0) +s¢E<g<s,¢>>>] : (16)

k=0
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01(S,9) = —E7L[sPE[N[uo(S, )] + M[uo(S, 9)]], (17)
m m—1
m+1(S,9) = —E7 ls"’L [N(vm@,w)) - {M (2 vk(%,av)) -M ( )y vk<%‘r¢>> }H /
=0 k=0 (18)

m>1

Finally, Equations (7) and (8) provide the m-term solution in series form is given by

(S, ) Zuo(S9) +v1(S,9) +02(S, ) + e, +om (S, ), m=1,2,.... (19)

4. Applications of the Proposed Method

In this part of the paper, we determine the solution of NLSEs in the normal dispersion regime
through the proposed I'TM to inspect its solution with a detuning term. It has been proved that the
proposed method is a suitable analytical technique that provides more accurate results for nonlinear
FPDEs. Let us take the following fractional Schrodinger equation

(S, [2u(S,
Ua(tl’\jp W ”a(g;"’) —ao(3,9) | v(S,9) P +Bu(S, )|, (20)

where the fractional-order ¢ is such that 0 < ¢ < 1 while @ and $ are nonzero constants.

4.1. Dark Optical Soliton Analysis

To calculate the dark optical soliton results, we take the above Equation (20) with the following

v0(S,0) = ptanh <‘u \/§%>

Applying Elzaki transformation to Equation (20), we have

initial condition

m—1 2 &
S%E[v(%,lp)] - Y v(k)(%,0)52_¢+k =E [i (ava(%z,l/)) — a0 (3, 9)0(S, ¢) + ﬁv(%,gb))} ,

k=0 (21)
20(S
SEOE )] =0 3,080+ E =i (T — 0@, 9o ) + o3, )|
2., ( Cx
E[v(S,9)] = s?u(S,0) 4 s? {—i (a”a(gﬂ’) —av?(3,9)5(S, ) + ,BU(%,IP))} . (22)

Using inverse Elzaki transformation of Equation (22), we get
_ _ ) %u(Sy, _
o(S,9) = E7 [u(3,0)] + B [1S¢E (a(%ﬂ) (S, )5(S, ) + /su(%,lp)ﬂ @
Applying the proposed analytical technique, we get
o
v0(S,0) = ptanh (;4 \/;%)

r@y) = £ [ e (P9 — auho,)on( )+ puo(s ) ) ]

v1(S, ¢) = ptanh (u\/gi‘v) i(ap? — ﬁ)r((;pjl)-
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vagwo—E][ﬁ{Evﬂ(?%ggf');a&-w&wwnm%40+ﬁwa&¢0}],

The series form solution is given as

v(S, ) = vo(S,9) +01(S,9) + 02(S,9) +03(S,9) + - 0a (S, ) (24)

Therefore the approximate solution of equation for the first n is given as

¢ 2¢
o0 =t 52) (1 00" =gy~ o PP

3¢
(o~ P

(25)
a P
r@¢+n+“”+(”“‘ﬁ)rW¢+n))

In the case ¢ =1,

0(,9) = ptanh (g [33) 1+ @0 = g = 3 (= P92 -+ (o~ B)'9"). 29

v(S, ¢) = usech (yﬁg) A512=B)Y 27)
u(3,0) = pcsch (y\/§§>; 29)

we get the singular soliton solution given by

v(S, ) = ucsch (y\/§%> e (3K PV (29)

4.2. Bright Optical Soliton Analysis

The exact result is

To calculate the dark optical soliton analysis, we take Equation (20) with the following

00(S,0) = ptan (;4 \/§S> (30)

initial condition:
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First, applying Elzaki transformation, we get

m—1 2 &
lE[u(s,lp)] — Y o(3,0)> 9k = E [—i <a ”(M’ $) a? (S, 9)5(S, ) + IBU(S,I/J)>:| ,

s® — 0¥
k=0 ) (31)
a Cx
FEE ] = 0(@050 +E |~ (T — a2, 00,0+ B3 w)) |
20(3
Elo(3,9)] = (3,0 +57 |~ (55 0@ @,y +poisw) )|

Elzaki transformation converts the above equation into

?*v(S, ¥)

932

v(S,p) =E! {szu(%,O)} +E-1 [—is‘PE ( —av? (3, 9)5(S, ¥) +ﬁu(%,l/;)>} . (33)

By applying the proposed analytic technique, we have the following:

14
vo (S, 9) = ptan (V \fz%)

200(S
o(3,9) = £ [-istE { T aid(@, )o@, ) + B3} (34)
¢
o1(3,9) = ptan (g 59 ) (o + ) p L)

2 %
(S, ) = E1 {—is‘PE {a‘%(%‘;"’) — w03(S, ) 01(S, ) + pui (S, zp)H ,

- . l,bZ‘P (35)
0a(,) = psech (4| =53 ) (G582~ BP 7
(3,9 = £ [t {5’2;(@@ - a3, )03, 9) + a3, )}
o = h agey ] 3 ¢3¢ (36
0a(3,) = psh (/=59 ) (=i = B b7
(@) =6 [-ist { ) a8 g),1(99) + o a8
(37)
n ng
i el B) (3 ) )
Finally, the analytical solution of our problem in series form is
v(S9) = vo(S, ) + v1(S, ) + 023, 9) +v3(S, 9) + - ua (S, ). (38)

Therefore, the approximate solution of the equation for the first n is given as

o0.9) = e/ 53) (1+ (32 8) il - (5 -9) )

et (59-8) )
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If ¢ =1, then
« o 1 « 1 .« -
0(9,) = psech (3 =53 ) (1+ (51 = By = 3 (512 = BP0 -+ G502 = By ). (40

v(S, ¢) = pcsch <y\/§S) ei51 =Py (1)

which is the exact solution. In the same way, if we take the initial condition

u(3,0) = pcsch <;4 \/§%> , (42)

we can prove the singular soliton solution following the same steps:

v(S, ) = ucsch <y\/§%)ei(ﬁﬂzﬁ)¢. (43)

4.3. Periodic Results

For the periodic solution of our problem given in Equation (20), we take the initial condition as

00(S,0) = ptan (y \/§%> (44)

First, applying Elzaki transformation, we get

m—1 20(
LE[(S,9)] - ¥ 0)(3,0)s2 9K = E [—i (aa(szlp) —a? (S, 9)0(S, ) + 51;(%,1/;))} :

k=0 ) (45)
S0P = 00(@,05 ¢ + £ |~ (T - 0k, 93,0+ poiap) )|
E[v(S,9)] = s*u(S,0) +s? {—i (8(‘2 —av?(3, 9)0(S, 9) + ,Bv(i‘s,tp))] . (46)

Then, applying inverse Elzaki transformation, we obtain

v(S,p) =E! [szu(s, 0)} +E7! [—is"’E <82”a(§2"”) — a0 (3,9)5(S, ¢) + ﬁu(s,lp)ﬂ . @)

By applying the proposed analytic technique, we have the following:

T —wd @ pme ) @), @

(49)
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)
= ut & (12 5 ¥ 0
wa(®, ) = ptan (359 ) (it + B r )
2 Cx
on(@p) = 71 [ =it { (T (900,039 + o (30 )}
Cx D‘c& . 2 n #’”‘P (51)
Un(\f,l/)) —“I/ltﬂi’l(}l 2\5‘> (l(ﬂ(]/l +!3) r(l’l(P—'—l))l n > 0.
Thus, the solution in periodic form is given by
v(S,9) = vo(S,9) +ui(S,9) +02(S, ) +u3(S, ) + - ou(S, ). (52)
Therefore, the approximate solution of equation for the first # is given as
S ) = LIS 2 Ul 2 g2 ¥
v(S, ) = utan (zy\/;\r> (1 + (ap” — ﬁ)m = (ap” = B) (24 +1) )

n P
b B )

If ¢ =1, then
1 1.
o(S, ) = ptan (y\/g%) (1 (o = B — oo = P97 4o i = B)"y"). (54)

v(S, ) = utan (y\/§%> e (512 +p)Y (55)

which is the exact solution. If we take the initial condition

u(,0) = pcot <y\/§%), (56)

then the singular soliton is obtained as

o(S, ) = ycot<y\/§s) . -

5. NLSEs with Detuning Term in the Anomalous Dispersion Regime

Here, we will apply ITM to determine the dark optical soliton, bright optical soliton, and periodic
solution of the proposed equation with a detuning term in the anomalous dispersion regime. In this
case, we take NLSE of the form

(3, ) [%0(S, )

i =g TSy [v(Sy) 2 —pu(S,p)|, 0<¢<1, (58)

where « and § are nonzero constants. We will take different initial conditions with this equation to
find different solutions.
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5.1. Dark Optical Soliton Analysis

To calculate the dark optical soliton analysis, we take the initial condition

vo(3,0) = ptanh (y, / —g%).

First of all, we apply Elzaki transformation in the following manner

m—1 2U c\xg
LEp@,p)] - T oW (3,002 9 = [i (a<¢> (S, p)0(S, ) - Bv(%ﬂ#)ﬂ ,

s¢ = 032
20(
S ] = 00(@,05 ¢ +E |1 (TS 023,103, 9) - poisp)) |
20(3
E[v(S,¢)] = s*u(S,0) + E [is‘/’ <aa(§2’¢) + a0 (3, 9)5(S, ) — ﬁv(%,lp))] .

Applying inverse Elzaki transformation, we have the following

%u(S3, )
03?2

(S, ) = E7L [s%l(%,o)} +E! [—is‘/’E ( — w0A(S, )0(S, ) + ﬁu(%,lp)ﬂ .

Furthermore, when we apply the above iterative technique, we get the following:

a(®,9) = £ [-istE { T - 0k, e, + B3}

02(S, ) = ptans (uﬁ@ ( — i+ mzr(zﬁl))

() =71 |~istE {W ~ 0013, 9)001(3,9) + oaa(3,9)

ERE

vn (S, ) = utanh (yﬂ%) ( i(2u? +ﬁ)”%),n > 0.

Thus, the analytic solution of the given problem is

v(S ) = vo(S ) +01(S, ) + 02(S,9) +v3(S,9) + - 0a(S, 9)

110f16

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)
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Therefore, the approximate solution of equation for the first # is given as

¢ 2¢
o09) = o5 3) (1007 )y — o P

ng
+---+i(2y2+5)”r(;’;m>.

(68)

If ¢ =1 then

v(S3, l/J) = utanh (,‘M\/T;S) (1 — i(Z]/LZ + ‘B)l/) — %(2"1/12 + ‘B)le2 Lt %i(zlﬂ + ﬁ)nlpn) (69)
v(S, ) = usech (yH%) ei(%ﬂzfﬁ)wl (70)
u(<3,0) = pcsch (y\/§%>, 71)

and we determine the following singular soliton solution by following the same steps:

v(S, ) = pcesch (yﬁ%) S aald (72)

5.2. Bright Optical Soliton Analysis

The exact result is

To calculate the bright optical soliton analysis, we take the above Equation (58) with the following
initial condition:

vo(S,0) = y\/zsech(y,x). (73)

First, applying Elzaki transformation, we get

m—1 82 &
lE[v(%,lp)} -y v)(S,0)s2 ¢k = E {i (Ua(gzl y) + a0 (3, 9)5(S, ) — ﬁv(sllﬁ))} ,
k=0 (74)

B = 003,005+ [i (P0G (3,000, o) )

20(S
E[v(S,¢)] = s*u(3,0) + E [is‘i’ (aa(%z’lm + av? (S, 9)5(S, ) — ,Bv(%,tp))] . (75)

Elzaki transformation converts the above equation into

v(S,p) = E! [szu(s, 0)} +E! [isq’E (azva(;\;lp) + av? (S, 9)5(S, ) — Bu(S, ¢))] . (76)

By applying the proposed analytic technique, we have the following:

00(3, ) = m/fsech(y%)
200(S
or(S, ) = E-1 [_is%{a”‘)(”/’)—aug(s, )00(S, >+ﬁvo<%,¢>H, 77)

032

¥
n(,8) =y Zseante) (162 - ) s ).
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ne
v (S, 9) = y\/zsech(yi‘s) (i(y2 — B>nl"(nﬁ+l)>’” > 0.

The series form solution is given as

v(S ) = vo(S ) +01(S, ) + 02(S,9) +v3(S,9) + - 0a(S, 9)

Therefore, the approximate solution of equation for the first # is given as

¢ 26
v(S9) = ”\/ES“W%‘) (1 i _ﬁ)r(¢¢+ oy - W%
1,2 n lpnqj
e 102 = B e )

In the case ¢ =1,

o(,9) = ptanh (g 33) (14 (a1 = )9 = (00 = P47+ e — )"

v(S3, ) = usech (y@g‘;) APy
14
u(S,0) = pesch (yﬁ%)

and we obtain the following singular soliton solution for the above problem:

v(S, ) = pesch <y\/§%> e—i(5H=B)Y

5.3. Solutions in Periodic Environment

The exact solution is

13 of 16

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)

To determine the periodic solutions, we take the above Equation (58) with the following

initial condition:

00(3,9) =y~ tan(x3)

(87)
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Applying Elzaki transformation to Equation (58), we have

sEfo(c ) - L 00602 = £ [1( P45 s arr(a,p)o0.9) - o))
k=0 (88)

%u(3
SPE[8(¢, )] = 99 (¢,0)s? +E[ ( Ua(%z'q}) —rxvz(%,lp)ﬁ(%,v,b)+ﬁv(%,l,b)>} p

2
R L G = e C L RO R CAT) | B

Applying inverse Elzaki transformation, we have

8L, ) =E! [IWS’O)} +E71 [ (az a(ozl’b) + a0 (3, 9)5(S, ) — ﬁv(%,w))] . (90)

By applying the proposed analytic technique, we have the following:

vo(S, ) = utanh <;4 \/§%>

(S p) =E [is"’E {az“gfz‘” +a0j(S,9)00(S, ) = poo (S, w)}] : 1)
¢
(S, ¢) = ptanh <#\/§%> (i(wz - ﬁ)r(fm)
on(@p) = £ [iE {PAED (@ pyon 3,9+ (390}
« p 2o 02)
v () = ytanh(yﬁ%) ( —i(ap® — B)? Tp 1) )
2 Y
@) = £ 102 { 20 4 003, p)oa(3, )~ pua(S )}
3¢ (93)
v3(S, ) = utanh <y\/zg> ( —i(ap® - B)3 Ld )
’ 2 T(3¢+1)
on(3,9) = 6 [t { PG ot 0,98 1(80) - pots) ]
(94)
e
on(3,9) = tan (133 (oo = )" ppe i), 0
Therefore, we have the following analytic solution:
v(S,9) = v0(3,9) + v1(S, ) + 023, 9) + 3(S, ) + - 0a (S, 9), (95)
Hence, the approximate solution of the equation for the first n is given as
' Y 2_ g2 ¥
v(S, ) =ptanh (u\/ES> (1 +ila? = By gy — (@r® = p)
2 L'(p+1) I(2p+1) %)

- . e
+- 4 (i(a® — B)) W)
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In the case ¢ =1,

14

o(3,9) = ptanh (g5 ) (14601 = B = Jaa — P97 -+ Ll - 1Y), ©7)

v(S, ¢) = usech (yﬁg) A512=B)Y 98)
u(3,0) = pcsch <y\/§%>. (99)

The singular soliton result is calculated with the help of the present technique

v(S, ) = ucsch (y\/§%> e i(3H PV (100)

The exact result is

6. Conclusions

In this paper, we evaluated the fractional-order optical bright and dark solitons for the nonlinear
Schrodinger equations with a detuning term in the normal and anomalous dispersive regimes using an
iteration transform method. The solutions for specific problems are calculated using the proposed
technique. The iteration transform method results are in close contact with the exact solution of
the suggested models. The present technique also calculates the solutions of the problems with the
fractional-order derivatives. Moreover, the current technique is straightforward and simple, and it
carries less computational cost; the suggested method can be modeled to solve other fractional-order
partial differential equations.
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