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Abstract: This paper investigates the chaotic behavior of a modified jerk circuit with Chua’s diode.
The Chua’s diode considered here is a nonlinear resistor having a symmetric piecewise linear
voltage-current characteristic. To describe the system, we apply fundamental laws in electrical circuit
theory to formulate a mathematical model in terms of a third-order (jerk) nonlinear differential
equation, or equivalently, a system of three first-order differential equations. The analysis shows that
this system has three collinear equilibrium points. The time waveform and the trajectories about
each equilibrium point depend on its associated eigenvalues. We prove that all three equilibrium
points are of type saddle focus, meaning that the trajectory of (x(t), y(t)) diverges in a spiral form but
z(t) converges to the equilibrium point for any initial point (x(0), y(0), z(0)). Numerical simulation
illustrates that the oscillations are dense, have no period, are highly sensitive to initial conditions,
and have a chaotic hidden attractor.

Keywords: chaos theory, electrical circuit analysis, jerk circuit, Chua’s diode, system of differential
equations, hidden attractor.

PACS: 02.10.Ud; 02.30.Hq; 05.45.Pq; 84.32.-y

1. Introduction

Nowadays, chaos theory is an important subject dealing with physics, mathematics,
and engineering. A chaos system is a nonlinear dynamical system that has a non-periodic
oscillation of waveforms. It is sensitive to initial conditions and has the self-similarity property.
A significant development of chaos theory is the discovery of the celebrated Chua’s system by
L.O. Chua in 1983. This system was described by a set of three first-order ordinary differential
equations (ODEs). Chua’s discovery has encourged others to look for more chaotic systems,
for example, systems of the type Rössler, jerk [1,2], circulant [3,4], hyperjerk [5,6], and hyper
chaotic [5,7,8]. In addition, several chaotic circuits have been investigated, for example, Lorenz-based
chaotic circuits [9,10], Chua’ circuits [11–14], Wien-type chaotic oscillator [15], and chaotic jerk
circuits [16–19]. Chaos theory has increasingly attracted much attention due to its wide
applications in physical/natural/health sciences and engineering, for example, communication
systems, weather forecasting, image encryption [20], celestial mechanics [21], population models [22],
hydrology [23], cardiotocography [24], and dynamical disease [25]. Chaos theory as formulated for
physical dynamic systems turns out to be useful in social science. For example, chaos theory can be
applied to a simple nonlinear model concerning arms race; see, for example [26,27]. The works [28,29]
substantiate the chaotic phenomena in dynamic love affair models.

L.O. Chua [14] investigated the chaotic theory for a simple famous circuit in Figure 1,
known nowadays as Chua’s circuit. The circuit consists of only resistors, capacitors, and a nonlinear
resistor. The nonlinear resistor, also called Chua’s diode, consists of many op-amps. Many researchers
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discussed several ways to modify the classical Chua’s circuit to a more complicated circuit having
chaotic phenomenon. Morgul [30] used an inductorless realization of a Chua’s diode consisting
of the Wien-bridge oscillator, coupled in parallel with the same nonlinear resistor used in the
classical Chua’s diode. Numerical experiments illustrated similar chaotic behavior. Aissi and
Kazakos [31] modified the Chua’s circuit by replacing the op-amps in Chua’s diode with RC op-amps.
Stouboulos et al. [32] modified the oscillator so that it consists of a nonlinear resistor and a negative
conductance, demonstrating the birth and catastrophe of the double-bell strange attractor for different
values of frequency. Kyprianidis [33] investigated the anti-monotonicity of the Chua’s circuit, which is
the creation of forward period-doubling bifurcation sequences followed by reverse period-doubling
sequences. The work [34] of Kyprianidis and Fotiadou shows a possible way to replace the piecewise
linear characteristic of the Chua’s diode with a smooth cubic polynomial. Recently, the work [35]
investigates chaotic behavior of the classical Chua’s circuit with two nonlinear resistors. The existence
of two nonlinear resistors in that case implies that the system has three equilibrium points.

Figure 1. Chua’s circuit [14].

In 2011, Sprott [19] studied a simple chaotic jerk circuit, as shown in Figure 2, consisting of
only five electronic components: two capacitors, an inductor, an adaptive resistor and a nonlinear
resistor. His work shows a chaotic behavior of the trajectories around the equilibriums of the system,
and launches a quest for other circuits that chaotically oscillate. Indeed, this circuit can be formulated
into a third-order ODE consisting of a nonlinear term, called a “jerk”or the third-order derivative of
a variable.

Figure 2. A chaotic jerk circuit [19].
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According to much recent interest about chaotic oscillators based on jerk equations, this paper
investigates the chaotic behavior of a new chaotic jerk circuit. We modify the chaotic jerk circuit in [19]
so that there is a Chua’s diode connected parallel to the nonlinear resistor as in Figure 3. The existence of
Chua’s diode discriminates the proposed system to the system [19]. The voltage-current characteristic
of the Chua’s diode satisfies a symmetric piecewise linear relation. To describe our system
(see Section 2), we apply fundamental laws in electrical circuit theory to formulate a mathematical
model in terms of a third-order (jerk) nonlinear ODE, or a system of three first-order ODE. The analysis
in Section 3 shows that this system has three collinear symmetric equilibrium points. The time
waveform about each equilibrium point depends on its associated eigenvalues. We prove that all three
equilibrium points are of type saddle focus node, meaning that the trajectories of (x(t), y(t)) diverge
in a spiral form but z(t) converges to the equilibrium point for any initial value (x(0), y(0), z(0)).
Numerical simulation in Section 4 illustrates the chaotic phenomenon, including time waveforms,
trajectories about each equilibrium point, effects of changing initial points, and existence of a chaotic
hidden attractor. Finally, we summarize the paper in Section 5. In particular, we compare our work
to [14,19].

Figure 3. A modified chaotic jerk circuit with Chua’s diode.

2. Formulation of a Modified Chaotic Jerk Circuit with Chua’s Diode to a System of ODEs

In this section, we formulate a mathematical model for a modified chaotic jerk circuit with Chua’s
diode in terms of a system of ODEs concerning a piecewise linear function and exponential term.
We divide the circuit into four parts, as illustrated in Figure 3. Our analysis is based on fundamental
theory of electrical circuit analysis such as Ohm’s law, Kirchhoff’s current law (KCL) and Kirchhoff’s
voltage law (KVL).

For Part 1, using KCL and the current-voltage equation for the capacitor, we have

vR1

R1
= iR1 = iC1 = C1

dvC1

dt
= C1v̇C1 .

Now, since vR1 = vC2 , we obtain v̇C1 = vC2 /(R1C1). Without loss of generality, we may normalize
the value of R1C1 to be 1 ms and we thus have

v̇C1 = vC2 . (1)

Similarly, for Part 2 we reach v̇C2 = vC3 /(R2C2). Setting the time constant R2C2 := 1 yields

v̇C2 = vC3 . (2)
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For Part 3, we have by KCL that iR3b + iNR + iD = iR3a + iC3 . It follows that

v̇C3 = −
vC1

R3bC3
−

vC3

R3aC3
+

iNR

C3
+

iD
C3

.

Setting the time constants R3aC3 and R3bC3 to be 1ms, we get

v̇C3 = −vC1 − vC3 + R3a(iNR + iD). (3)

The circuit in Figure 4 is a more complicated one since it consists of two nonlinear resistors.
For the nonlinear resistor on the left, we have by Ohm’s law that vNR = iR3 R3, ve = (R2c + R3c)iR3

and vNR − ve = ixR1, where ve is the voltage of the op-amp on the left hand side. Combining these
three equations to get vNR = ixRx where

Rx = −R1cR3c

R2c
.

Similarly, for the nonlinear resistor on the right, we obtain that vNR = iyRy where

Ry = −R4cR6c

R5c
.

Using KCL at node c, we have iNR − ix − iy = 0. Then the current iNR satisfies the relation

vNR = iNR(Rx + Ry).

However, as pointed out in [19], the behavior of iNR depends on the voltage vC1 . Indeed,
when ve < v f , the graph of iNR with respect to vC1 is as follows:

From Figure 5, we have

iNR =

(
1

Rx
+

1
R4c

)
vC1 +

1
2

(
1

Ry
− 1

R4c

) ( ∣∣∣∣∣vC1 +
v f ,max

v f
vC1

∣∣∣∣∣−
∣∣∣∣∣vC1 −

v f ,max

v f
vC1

∣∣∣∣∣
)

, (4)

where v f ,max is the maximum voltage at the node f . The current iD through the diode D depends on
the time-derivative of the voltage vC1 (see, e.g., [18]) as follows:

iD = k2T2ev̇C1
/kT ,

where k is the Boltzmann constant and T is the absolute temperature of the P-N junction. Let us denote
α := kT. Of particular interest is that the chaos persists when α tends to zero. Since

lim
α→0+

α2ey/α = ∞.

At Part 4, we use KCL to analyze this part and we get iR4b = iR4a . From Parts 2 and 4, we have by
Ohm’s law that vC2 /R4b = vR4a /R4a and, thus, the second capacitive voltage is

vC2 =
R4b
R4a

vR4a .

For convenience, denote

m0 = R3a

(
1

Rx
+

1
Ry

)
, m1 = R3a

(
1

Rx
+

1
R4c

)
.
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Figure 4. Two nonlinear resistors in Chua’s circuit.

Figure 5. I-V characteristic of nonlinear resistors.

Let us rescale the variables vC1 , vC2 , vC3 to new variables x, y, z so that the current iNR is reduced to

g(x) = m1x + 0.5(m0 −m1) (|x + 1| − |x− 1|) , (5)

so that the characteristic in Figure 5 becomes that in Figure 6.
Thus, the third-order (jerk) system can be described by the group of Equations (1)–(3),

or equivalently, the following system of three first-order ODEs:

ẋ = y,

ẏ = z,

ż = −x− z + g(x) + α2e
y
α .

(6)
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Figure 6. Changing scales of I-V characteristic of nonlinear resistors.

3. Analysis for Chaotic Behavior of the System

In order to analyze the behavior of the dynamical system (6), we need to find all its equilibrium
points. Note that Figure 6 illustrates how the three-segment piecewise function g(x) depends on the
range of x. The investigation of equilibrium points is thus divided into three cases in Sections 3.1–3.3.
We then prove that each equilibrium point is of type saddle focus in Section 3.4. In Section 3.5,
we describe how to find an initial point to localize a hidden attractor of the system.

3.1. Case 1: −1 < x < 1

From Equation (5), we have g(x) = m0x. At the equilibrium point, we get y = ẋ = 0, z = ẏ = 0, and

−x− z + m0x + α2ey/α = ż = 0.

Thus, the equilibrium for Case 1 is given by E1 = (x1, y1, z1) = ( α2

1−m0
, 0, 0). When α tends to 0,

the equilibrium point reaches the origin (0, 0, 0).
The system (6) can be put in the vector form

X′(t) = AX(t) + B(t), (7)

where

X(t) =

x(t)
y(t)
z(t)

 , B(t) =

 0
0

α2ey(t)/α

 , A =

 0 1 0
0 0 1

m0 − 1 0 −1

 .

3.2. Case 2: − v f
ve

6 x 6 −1

In this case, we have g(x) = m1x − m0 + m1. At the equilibrium point, we obtain y = ẋ = 0,
z = ẏ = 0, and

−x− z + m1x−m0 + m1 + α2ey/α = ż = 0.
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Thus, the equilibrium for Case 2 is given by

E2 = (x2, y2, z2) = (
α2 −m0 + m1

1−m1
, 0, 0).

When α → 0, we have (x2, y2, z2) reaches the point (−m0+m1
1−m1

, 0, 0). The system (6) can be put in
the vector form (7) where

A =

 0 1 0
0 0 1

m1 − 1 0 −1

 , B(t) =

 0
0

−m0 + m1 + α2ey(t)/α

 .

3.3. Case 3: 1 6 x 6
v f
ve

We have g(x) = m1x + m0 −m1 and, thus, the equilibrium point is given by

E3 = (x3, y3, z3) = (
α2 + m0 −m1

1−m1
, 0, 0).

When α → 0, we have (x3, y3, z3) reaches (m0−m1
1−m1

, 0, 0). We also have the vector form (7) where
the Jacobian matrix A is the same as that in the previous case, and

B(t) =

 0
0

m0 −m1 + α2ey(t)/α

 .

Thus, the system (6) has three colinear equilibrium points on the X-axis. Note that when
α → 0, we have that the points E2 and E3 are opposite to each other with respect to the origin
E1. This observation shows the symmetry of the equilibrium points.

3.4. Type of Equilibrium Points

Recall the following theorem:

Theorem 1 (see, e.g., [36]). Let A(t) = [aij(t)] ∈ Rn×n be a continuous matrix-valued function on an interval
I (i.e., each aij(t) is a real-valued continuous function on I). Let B(t) ∈ Rn be a continuous vector-valued
function on I. Then the following initial value problem

X′(t) = A(t)X(t) + B(t), X(0) = X0,

has a unique solution X(t) ∈ Rn on the interval I.

This theorem guarantees the Equation (7) has a unique solution X(t) on any time interval
(note that, in this case, A is a constant matrix). Thus in all cases of x, given an initial
point (x(0), y(0), z(0)), the trajectory of (x(t), y(t), z(t)) is uniquely determined. The trajectory
of (x(t), y(t), z(t)) in a neighborhood of each equilibrium point depends on the signs of the
real/imaginary parts of the eigenvalues of the coefficient matrix A.

For Case 1: −1 < x < 1, we have the characteristic equation

det (λI − A) = λ3 + λ2 + 1−m0 = 0.



Symmetry 2020, 12, 1803 8 of 16

Since all parameters of the equation are real and the equation degree is odd, we have that a root
(says λ1) is real and other roots are a conjugate pair of complex numbers. Note that m0 < 0 from
Figure 6. Now, the product of all roots (eigenvalues) satisfies

λ1λ2λ3 = m0 − 1 < 0.

Since (λ2, λ3) is a complex conjugate pair, the real root λ1 must be negative. Write λ2 = a + ib
and λ3 = a− ib, where a, b ∈ R. Since the sum of products of two roots of the cubic equation satisfies

λ1λ2 + λ2λ3 + λ3λ1 = 1,

we get

a2 + 2λ1a + b2 = 1.

Solving this quadratic equation to obtain

a = −λ1 ±
√

λ2
1 − b2 − 1.

Since λ1 < 0 and
√

λ2
1 − b2 − 1 < |λ1|, we get a > 0. Hence, an eigenvalue is a negative real and

two other eigenvalues are a conjugate pair of complex numbers having positive real parts. Therefore,
this equilibrium is a saddle focus, and the trajectory of (x(t), y(t)) diverges in a spiral form, but z(t)
converges to the equilibrium point for any initial point (x(0), y(0), z(0)).

For Cases 2 and 3, the Jacobian matrices are the same and we have the characteristic equation

det (λI − A) = λ3 + λ2 + 1−m1 = 0.

Since m1 < 0 (from Figure 6), we obtain the same conclusion as in Case 1, i.e., the equilibrium
point is a saddle focus.

We summarize the above discussion in the following theorem:

Theorem 2. The system (6) has three equilibrium points, each of which is of type saddle focus. Moreover,
the trajectory of (x(t), y(t)) diverges in a spiral form, but z(t) converges to the equilibrium point for any initial
point (x(0), y(0), z(0)).

Since the equilibrium points are saddle foci, our system has chaotic behavior.

3.5. Localization of a Hidden Attractor of The System

Recall that an oscillation in a dynamical system can be numerically localized if an initial condition
from its neighborhood leads to asymptotic behavior. Such an oscillation is known as an attractor,
and its attracting set is called the basin of attraction. If the basin of attraction intersects a small
neighborhood of an equilibrium point, then such attractor is said to be self-excited; otherwise it is
called a hidden attractor. The hidden attractor was discovered in [37] for a generalized Chua’s circuit,
and then was discovered in the classical Chua’s circuit [38].

In order to find a hidden attractor of the system, we will find a suitable initial point
(x(0), y(0), z(0)) so that our system will have chaos. First, let us write the system (6) into a first-order
vector differential equation

X′(t) = AX(t) + ψ(rTX(t))q (8)

where X(t) = [x(t) y(t) z(t)]T ∈ R3, A ∈ R3×3, r ∈ R3, q ∈ R3, and q : R → R is a continuous
piecewise-differentiable function. Here, (·)T denotes the transposition operation. To find a periodic
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oscillation, we introduce a coefficient k of harmonic linearization so that the matrix A0 = A + kqrT of
the linear system

X′(t) = A0X(t)

has a pair of pure-imaginary eigenvalues ±iω0 for some ω0 > 0, and the rest of the eigenvalues have
negative real parts. Then the system (8) has a periodic solution X(t) such that

σ(t) := rTX(t) ≈ a cos ω0t,

where the amplitude a is a solution of the integral equation

∫ 2π/ω0

0
(ψ(a cos ω0t))a cos ω0t− k(a cos ω0t)2 dt = 0.

Denoting φ(σ) = ψ(σ)− kσ, we can write Equation (8) to

X′(t) = A0X(t) + qφ(rTx).

Let us change φ(σ) to εφ(σ) where ε is a small positive number, and investigate a periodic solution
of the system

X′(t) = A0X(t) + εqφ(rTx). (9)

Let us introduce the describing function

Φ(a) =
∫ 2π/ω0

0
φ(a cos (ω0t)) cos (ω0t) dt.

We make an invertible linear transformation X(t) = SY(t) where S ∈ R3×3 is a nonsingular
matrix. The following theorem tells us how to choose an initial point in order to get a hidden attractor
of the system.

Theorem 3 ([39]). If there is a positive number a0 such that Φ(a0) = 0 and b1Φ′(a0) < 0, then the system (9)
has a stable periodic solution with initial point

X(0) = S[y1(0) y2(0) y3(0)]T

where y1(0) = a0 + O(ε), y2(0) = 0, and y3 = On−2(ε) with period O(ε) + 2π
ω0

.

4. Numerical Experiment

In this section, we provide a numerical experiment to illustrate the chaotic behavior of the
proposed circuit via MATLAB. Consider the circuit in Figure 3 with the following parameters:
R1 = 1 kΩ, R2 = 200 Ω, R3a = 500 Ω, R3b = 500 Ω, R4a = 1 kΩ, R4b = 1 kΩ, R1c = 250 Ω,
R2c = 250 Ω, R3c = 500 Ω, R4c = 750 Ω, R5c = 180 Ω, R6c = 400 Ω, C1 = 1 µF, C2 = 5 µF,
C3 = 2 µF, m0 = −0.1768, m1 = −1.1468, and α = 0.026077. We set the initial condition to be
X(0) = (x(0), y(0), z(0)) = (0,−0.7, 0).

Remark 1. In order to obtain the chaotic phenomenon, one can adjust some parameter values of electronics
devices in the circuit so that the eigenvalues of the Jacobian matrix satisfy the condition for the type of equilibrium
point (see Section 3.4).



Symmetry 2020, 12, 1803 10 of 16

4.1. Mathematical Analysis of the System

For the case of −1 < x < 1, the equilibrium points of the system are given by

E1 = (
α2

1−m0
, 0, 0) = (5.77838× 10−4, 0, 0).

In this case, we reach the system X′(t) = AX(t) + B(t) where

A =

 0 1 0
0 0 1

−1.1768 0 −1

 , B(t) =

 0
0

α2ey(t)/α

 .

The eigenvalues of the system associated with the equilibrium point E1 are the solutions of the
cubic equation

λ3 + λ2 + 1.1768 = 0.

We get the following eigenvalues

λ1 = −1.51364, λ2 = 0.25682 + 0.84351i, λ3 = 0.25682− 0.84351i.

For the case −v f /ve 6 x 6 −1, we can obtain the equilibrium point

E2 = (
α2 −m0 + m1

1−m1
, 0, 0) = (−0.969422, 0, 0)

associated with eigenvalues

λ1 = −1.72307, λ2 = 0.36154 + 1.05603i, λ3 = 0.36154− 1.05603i.

For the case 1 6 x 6 v f /ve, the system has the equilibrium point E3 = (0.452152, 0, 0). Note that
E2 and E3 have the same eigenvalues since their associated matrices are the same.

From the signs of real/imaginary parts of the associated eigenvalues, we conclude that the three
equilibrium points E1, E2, E3 are saddle foci. Hence, the proposed circuit has a chaotic behavior.

4.2. Time Waveforms and Trajectories of The System

The time waveforms of x(t), y(t) and z(t) are reported in Figures 7–9, where the time interval is
in ms. We see that the oscillations in the figures are non-periodic.

Figure 7. The time waveform of x(t).
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Figure 8. The time waveform of y(t).

Figure 9. The time waveform of z(t).

The trajectories of x(t), y(t), z(t) in 2D and 3D are numerically simulated in Figures 10–13. We see
that the trajectory of (x(t), y(t)) diverges in a spiral form, but z(t) converges to the equilibrium point.
The trajectories are dense and seem to have no periodic. Thus, chaotic behavior occurs in the modified
jerk circuit with Chua’s diode. Moreover, the attractor of the system is shown by the blue lines in
Figures 10–13. From the 3D plot in Figure 13, we see that the oscillation does not connect with the
equilibrium points E1, E2, E3, thus the system has a hidden attractor.

Figure 10. The trajectories of (x(t), y(t)) in 2D.
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Figure 11. The trajectories of (x(t), z(t)) in 2D.

Figure 12. The trajectories of (y(t), z(t)) in 2D.

4.3. Effects of Changing Initial Points

Now, we investigate the effect of changing initial points. First, we compare the system
behavior when initial values have small changes in the X-axis, namely, I1 = (0,−0.7, 0) and
I2 = (0.0001,−0.7, 0); see Figure 14. Next, we consider the case of small changes in the Y-axis,
namely, I1 = (0,−0.7, 0) and I2 = (0,−0.7001, 0); the resulting simulation is shown in Figure 15.
Finally, the effect of small changes in the Z-axis of the initial point, namely, I1 = (0,−0.7, 0) and
I2 = (0,−0.7, 0.0001) is illustrated in Figure 16.

From Figures 14–16, we see that a small difference in initial points leads to a big difference in
oscillations of x(t), y(t), z(t). Thus our dynamical system is highly sensitive to initial conditions,
a characteristic of a chaotic system.
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Figure 13. The trajectories of (x(t), y(t), z(t)) in 3D.

Figure 14. Effects of changing initial points in X-axis from I1 = (0,−0.7, 0) to I2 = (0.0001,−0.7, 0).

Figure 15. Effects of changing initial points in Y-axis from I1 = (0,−0.7, 0) to I2 = (0,−0.7001, 0).
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Figure 16. Effects of changing initial points in Z-axis from I1 = (0,−0.7, 0) to I2 = (0,−0.7, 0.0001).

5. Conclusions

We modify a jerk circuit with Chua’s diode, and investigate its chaotic properties. This system
can be mathematically described by a system of ordinary differential equations with a piecewise linear
function and exponential term. The analysis shows that this system has three collinear equilibrium
points. The time waveform about each equilibrium point depends on its associated eigenvalues.
Indeed, all three equilibrium points are of type saddle focus, meaning that the trajectories of x(t)
and y(t) diverge in a spiral form but z(t) converges to the equilibrium point for any initial point
(x(0), y(0), z(0)). Numerical simulation illustrates that the oscillations are dense, have no period,
are highly sensitive to initial conditions, and has a chaotic hidden attractor. Table 1 shows the
comparison between three chaotic systems: the proposed system in this paper and the two existing
systems in [14,19]. One of the advantages of the proposed system is a higher sensitivity to initial
conditions. Therefore, the proposed system enables an alternative model for chaotic theory.

Table 1. The comparisons of a modified chaotic jerk circuit and other related systems.

No. Terms of Comparison Ref. [19] Ref. [14] This Paper

1 Number of equilibrium points 1 3 3

2 Number of eigenvalues 3 9 9

3 Types of trajectories 1 saddle focus node
1 stable focus node and

2 saddle foci 3 saddle foci

4 Number of components 14 5 15

5 Positions of equilibrium points a point 3 symmetric points 3 symmetric points

6 Jerk-circuit type yes no yes

7 Existence of Chua’s diode no yes yes

8 Existence of chaotic attractors yes yes yes

9 Sensitivity to initial conditions
√√ √ √√√

10 Nonlinear system yes yes yes

Funding: The author would like to thank King Mongkut’s Institute of Technology Ladkrabang Research Fund,
grant no. KREF046205 for financial supports.

Acknowledgments: This work was supported by King Mongkut’s Institute of Technology Ladkrabang.

Conflicts of Interest: The author declares no conflict of interest.



Symmetry 2020, 12, 1803 15 of 16

References

1. Sprott, J.C. Some simple chaotic jerk functions. Am. J. Phys. 1997, 65, 537–543. [CrossRef]
2. Sprott, J.C. Elegant Chaos: Algebraically Simple Chaotic Flows; World Scientific: Singapore, 2010.
3. Lorenz, E.N.; Emanuel, K.A. Optimal sites for supplementary weather observations: Simulation with a small

model. J. Atmos. Sci. 1998, 55, 399–414. [CrossRef]
4. Thomas, R. Deterministic chaos seen in terms of feedback circuits: Analysis, synthesis, ‘labyrnth chaos. Int. J.

Bifurcat. Chaos Appl. Sci. Eng. 1999, 9, 1889–1905. [CrossRef]
5. Chlouverakis, K.E.; Sprott, J.C. Chaotic hyperjerk systems. Chaos Solit. Frac. 2006, 28, 739–746. [CrossRef]
6. Mumuangsaen, B.; Srisuchinwong, B. Elementary chaotic snap flows. Chaos Solit. Frac. 2011, 44, 995–1003.

[CrossRef]
7. Rössler, O.E. An equation for hyperchaos. Phys. Lett. A 1979, 71, 155–157. [CrossRef]
8. Liu, Z.; Lai, Y.C.; Matias, M.A. Universal scaling of Lyapunov exponents in coupled chaotic oscillators.

Phys. Rev. E 2003, 67, 1–4. [CrossRef] [PubMed]
9. Cuomo, K.M.; Oppenheim, A.V. Circuit implementation of synchronized chaos with applications to

communications. Phys. Rev. Lett. 1993, 71, 65–68. [CrossRef]
10. Blakely, J.N.; Eskridge, M.B.; Corron, N.J. A simple Lorenz circuit and its radio frequency implementation.

Chaos 2007, 17, 1–5. [CrossRef]
11. Matsumoto, T.; Chua, L.O.; Komuro, M. The double scroll. IEEE Trans. Circuits Syst. 1985, 32, 797–818.

[CrossRef]
12. Bartissol, P.; Chua, L.O. The double hook. IEEE Trans. Circuits Syst. 1988, 35, 1512–1522. [CrossRef]
13. Chua, L.O.; Lin, G.-N. Canonical realization of Chua’s circuit family. IEEE Trans. Circuits Syst. 1990, 37,

885–902. [CrossRef]
14. Chua, L.O. The genesis of Chua’s circuit. Archiv. Elektron. Übertragungstechnik 1992, 46, 250–257.
15. Elwakil, A.S.; Kennedy, M.P. High frequency Wien-type chaotic oscillator. Electron Lett. 1998, 34, 1161–1162.

[CrossRef]
16. Srisuchinwong, B.; Treetanakorn, R. Current-tunable chaotic jerk circuit based on only one unity-gain

amplifier. Electron Lett. 2014, 50, 1815–1817. [CrossRef]
17. Srisuchinwong, B.; Nopchinda, D. Current-tunable chaotic jerk oscillator. Electron Lett. 2013, 49, 587–589.

[CrossRef]
18. Sprott, J.C. Simple chaotic systems and circuits. Am. J. Phys. 2000, 68, 758–763. [CrossRef]
19. Sprott, J.C. A new chaotic jerk circuit. IEEE Trans. Circuits Syst. II 2011, 58, 240–243. [CrossRef]
20. Xu, M. Cryptanalysis of an image encryption algorithm based on DNA sequence operation and hyper-chaotic

system. 3D Res. 2017, 8, 15–24. [CrossRef]
21. Morbidelli, A. Chaotic diffusion in celestial mechanics. Regul. Chaotic Dyn. 2001, 6, 339–353. [CrossRef]
22. Eduardo, L.; Ruiz, A. Chaos in discrete structured population models. SIAM J. Appl. Dyn. Syst. 2012, 11,

1200–1214.
23. Sivakumar, B. Chaos theory in hydrology: Important issues and interpretations. J. Hydrol. 2000, 227, 1–20.

[CrossRef]
24. Bozóki, Z. Chaos theory and power spectrum analysis in computerized cardiotocography. Eur. J. Obstet.

Gynecol. Reprod. Biol. 1997, 71, 163–168. [CrossRef]
25. Glass, L. Dynamical Disease: The Impact of Nonlinear Dynamics and Chaos on Cardiology and Medicine.

In The Impact of Chaos on Science and Society; Grebogi, C., Yorke, J.A., Eds.; United Nations University Press:
Tokyo, Japan, 1997.

26. Saperstain, A.M. Chaos–a model for the outbreak of war. Nature 1984, 309, 303–305. [CrossRef]
27. Grossmann, S.; Mayer-Kress, G. Chaos in the international arms race. Nature 1989, 337, 702–704. [CrossRef]
28. Huang, L.; Bae, Y. Analysis of chaotic behavior in a novel extended love model considering positive and

negative external environment. Entropy 2018, 20, 365, doi:10.3390/e20050365 [CrossRef]
29. Yoon, J.H.; Bak, G.M. Youngchul Bae, Fuzzy control for chaotic confliction model. Int. J. Fuzzy Syst. 2020, 22,

1961–1971. [CrossRef]
30. Morgul, O. Inductorless realization of Chua oscillator. Electron. Lett. 1995, 31, 1403–1404. [CrossRef]

http://dx.doi.org/10.1119/1.18585
http://dx.doi.org/10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2
http://dx.doi.org/10.1142/S0218127499001383
http://dx.doi.org/10.1016/j.chaos.2005.08.019
http://dx.doi.org/10.1016/j.chaos.2011.08.008
http://dx.doi.org/10.1016/0375-9601(79)90150-6
http://dx.doi.org/10.1103/PhysRevE.67.045203
http://www.ncbi.nlm.nih.gov/pubmed/12786425
http://dx.doi.org/10.1103/PhysRevLett.71.65
http://dx.doi.org/10.1063/1.2723641
http://dx.doi.org/10.1109/TCS.1985.1085791
http://dx.doi.org/10.1109/31.9914
http://dx.doi.org/10.1109/31.55064
http://dx.doi.org/10.1049/el:19980845
http://dx.doi.org/10.1049/el.2014.3079
http://dx.doi.org/10.1049/el.2013.0029
http://dx.doi.org/10.1119/1.19538
http://dx.doi.org/10.1109/TCSII.2011.2124490
http://dx.doi.org/10.1007/s13319-017-0126-y
http://dx.doi.org/10.1070/RD2001v006n04ABEH000182
http://dx.doi.org/10.1016/S0022-1694(99)00186-9
http://dx.doi.org/10.1016/S0301-2115(96)02628-0
http://dx.doi.org/10.1038/309303a0
http://dx.doi.org/10.1038/337701a0
http://dx.doi.org/10.3390/e20050365
http://dx.doi.org/10.1007/s40815-020-00839-4
http://dx.doi.org/10.1049/el:19950975


Symmetry 2020, 12, 1803 16 of 16

31. Aissi, C.; Kazakos, D. An improved realization of the Chua’s circuit using RC-op amps. In Proceedings of
the WSEAS International Conference on Signal Processing, Istanbul, Turkey, May 27-30, 2008; Volume 7,
pp. 115–118.

32. Stouboulos, I.N.; Kyprianidis, I.M.; Papadopoulou, M.S. Complex chaotic dynamics of the double-bell
attractor. WSEAS Trans. Circuits Syst. 2008, 7, 13–21.

33. Kyprianidis, I.M. New chaotic dynamics in Chua’s canonical circuit. WSEAS Trans. Circuits Circuits Syst.
2006, 5, 1626–1633.

34. Kyprianidis, I.M.; Fotiadou, M.E. Complex dynamics in Chua’s canonical circuit with a cubic nonlinearity.
WSEAS Trans. Circuits Syst. 2006, 5, 1036–1043.

35. Limphodaen, L.; Chansangiam, P. Mathematical analysis for classical Chua’s circuit with two nonlinear
resistors. Songklanakarin J. Sci. Technol. 2020, 42, 678–687.

36. Goode, S.W. Differential Equations and Linear Algebra; Prentice Hall: Englewood Cliffs, NJ, USA, 2000.
37. Kuznetsov, N.V.; Leonov, G.A.; Vagaitsev, V.I. Analytical-numerical method for attractor localization of

generalized Chua’s system. Int. Fed. Autom. Control. Proc. 2010, 4, 29–33. [CrossRef]
38. Leonov, G.A.; Kuznetsov, N.V.; Vagaitsev, V. Localization of hidden Chua’s attractors. Phys. Lett. A 2011, 375,

2230–2233. [CrossRef]
39. Leonov, G.A.; Kuznetsov, N.V. Hidden attractors in dynamical systems. From hidden oscillations in

Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits.
Int. Bifurc. Chaos 2013, 23. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3182/20100826-3-TR-4016.00009
http://dx.doi.org/10.1016/j.physleta.2011.04.037
http://dx.doi.org/10.1142/S0218127413300024
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Formulation of a Modified Chaotic Jerk Circuit with Chua’s Diode to a System of ODEs
	Analysis for Chaotic Behavior of the System
	Case 1: -1 < x < 1
	Case 2: -vfve x -1
	Case 3: 1 x vfve
	Type of Equilibrium Points
	Localization of a Hidden Attractor of The System

	Numerical Experiment
	Mathematical Analysis of the System
	Time Waveforms and Trajectories of The System
	Effects of Changing Initial Points

	Conclusions
	References

