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Abstract: In this research, the fourth axiom to improve the well-defined examination of similarity
measures is studied, where the measures have a symmetric structure. We first provide a theoretic
enhancement of three correlation coefficient similarity measures that were proposed by a source paper.
Second, we use the same numerical example proposed by the source paper for pattern recognition
problems to illustrate that the weighted correlation coefficient similarity measure is dependent on
the set of weights. Finally, we demonstrate that the correlation coefficient similarity measure in the
intuitionistic fuzzy set environment can address the issue of practical fault diagnosis when solving
the turbine engine problems using similarity measures with symmetric characteristics.
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1. Introduction

Since Zadeh [1] developed fuzzy sets and Atanassov [2] constructed intuitionistic fuzzy sets (IFSs),
numerous studies have examined fuzzy sets and IFSs to determine their theoretic evolution and devise
applications to practical problems. Recently, motivated by Ye [3], for a correlation coefficient similarity
measure, Zhang et al. [4] developed three new similarity measures, one for fuzzy sets and two for IFSs.

A research tendency has emerged to improve the mathematical approach of analytical methods and
algebraic procedures in previously published papers. For example, a series of papers—Deng et al. [5],
Tang et al. [6], Lan et al. [7], Yang et al. [8], Deng [9], Chang et al. [10], Jung et al. [11],
and Deng et al. [12]—make revisions to existing proofs. Motivated by these articles, Zhang et al. [4]
provided a new direction for similarity measures with correlation coefficient types, which is worthy
of careful examination. Based on the detailed study of Zhang et al. [4], we found that there is a
questionable result about their proof on a well-defined similarity measure. Specifically, Zhang et al. [4]
only adopted the axioms of Gerstenkorn and Manko [13] to solve the problem. However, following a
comprehensive study, we concluded that most researchers tend to include the fourth axiom [14] than
to use Gerstenkorn and Manko [13] alone. For example, Ye [3] mentioned that the systems of axioms
of both Gerstenkorn and Manko [13] and Li and Cheng [14] area well-defined similarity measure.
However, in an examination of the satisfying axioms for well-defined similarity measures, Ye [3] only
investigated the three axioms of Li and Cheng [14] and neglected their fourth proposed axiom. Hence,
the first goal of this paper is to provide a revision to enhance the proof of Zhang et al. [4] on their
similarity measures for the fourth axiom of Li and Cheng [14].

Moreover, we note that the third similarity measure proposed by Zhang et al. [4], which isa
weighted correlation coefficient similarity measure, is dependent on the weights for elements in the
universe of discourse.

Symmetry 2020, 12, 1735; doi:10.3390/sym12101735 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-1779-130X
https://orcid.org/0000-0002-1189-4922
https://orcid.org/0000-0003-3728-1013
http://dx.doi.org/10.3390/sym12101735
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/10/1735?type=check_update&version=2


Symmetry 2020, 12, 1735 2 of 16

Finally, we demonstrate that the second similarity measure proposed by Zhang et al. [4] addressed
a practical pattern recognition problem of fault diagnosis for the turbine engine. If a turbine engine
does not operate optimally, an engineer attempts to determine the cause of possible problems and may
replace malfunctioning components. Potential explanations for the suboptimal performance can be
treated as patterns and the engineer represents a sample facing pattern recognition problem. Using
fuzzy sets or IFSs to address practical issues involving significant uncertainty and missing information
can present a vague environment in a well-defined setting.

2. Brief Review of Similarity Measures with Intuitionistic Fuzzy Sets

Zadeh [1] was the first author to develop the fuzzy set theorem to deal with uncertain conditions.
More than twenty thousand papers and hundreds of books have followed his approach to investigate
complicated and dynamic real-world issues. One extension of the fuzzy set theorem is the proposal
of IFSs by Atanassov [2], which have been used extensively in numerous variations to address the
problem of uncertainty. In the following, we recall the definition of an intuitionistic fuzzy set and
several related similarity measures.

Definition 1. (Atanassov [2]). We assume that X is the universe of discourse; then, an intuitionistic fuzzy set
on X is an object having the expression

A =
{〈

x, µA(x)〉, vA(x) : x ∈ X
}
, (1)

where µA(x) : X→ [0, 1] is the membership function and vA(x) : X→ [0, 1] is the non-membership function
with µA(x) + vA(x) ≤ 1.

πA(x) = 1− µA(x) − vA(x) (2)

is the hesitation degree with πA(x) : X→ [0, 1] .

Hundreds of similarity measures have been defined for intuitionistic fuzzy sets. Several are
listedin the following.

Li and Cheng [14] assumed an auxiliary notation, ϕA(x) with

ϕA(x) =
µA(x) + 1− vA(x)

2
, (3)

Then, for two intuitionistic fuzzy sets, A and B, Li and Cheng [14] defined a similarity measure,
Sp

d(A, B), as

Sp
d(A, B) = 1−

1
p√n

p

√√ n∑
i=1

(ϕA(xi) −ϕB(xi))
p, (4)

where the universe of discourse is X = {x1, x2, . . . , xn}.
For two intuitionistic fuzzy sets, A and B, Hung and Wang [15] considered a new similarity

measure, Cnew
IFS (A, B), as

Cnew
IFS (A, B) =

1
n

∑n

i=1

µA(xi)µB(xi) + vA(xi)vB(xi) + πA(xi)πB(xi)√
µ2

A(xi) + v2
A(xi) + π

2
A(xi)

√
µ2

B(xi) + v2
B(xi) + π

2
B(xi)

, (5)

where the universe of discourse is X = {x1, x2, . . . , xn}.
For two intuitionistic fuzzy sets, A and B, Hung et al. [16] developed a new similarity measure,

Sp
λ, W(A, B),
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Sp
λ, W(A, B) = 1−

∑n

i=1
wi


∣∣∣µA(xi) − µB(xi)

∣∣∣+ λ∣∣∣πA(xi) − πB(xi)
∣∣∣

2

p
1/p

, (6)

where W = {w1, w2, . . . , wn} is the set of weights for elements in the universe of discourse, with∑n
i=1 wi = 1, 1 ≤ p < ∞, and λ is the preference value for the decision-maker, with 0 ≤ λ ≤ 1.

For two intuitionistic fuzzy sets, A and B, under a continuous domain, Julian et al. [17] assumed
the following similarity measure, Snew,p(A, B),

Snew,p(A, B) = 1−
(∫

w(x)
∣∣∣µA(x) − µB(x)

∣∣∣p)1/p

−

(∫
w(x)

∣∣∣φA(x) −φB(x)
∣∣∣p)1/p

,
(7)

where w(x) is the weight function, with w(x) ≥ 0 and
∫

w(x)dx = 1, with 1 ≤ p < ∞.
Chu and Guo [18] constructed a similarity measure for two intuitionistic fuzzy sets, A and B,

as follows:
S(A, B) =

1

1 +
(∑n

i=1 wi(∆1 + ∆2 + ∆3)
)1/α

, (8)

where ∆1 = δ1
∣∣∣µA(xi) − µB(xi)

∣∣∣α, ∆2 = δ2
∣∣∣vA(xi) − vB(xi)

∣∣∣α, and ∆3 = δ3
∣∣∣πA(xi) − πB(xi)

∣∣∣α are three
abbreviations to simplify the expressions; wi are the weights for elements in the universe of discourse,
for i = 1, 2, . . . , n, and δ1, δ2, and δ3 are weights of the membership, non-membership, and hesitation
functions; α ≥ 1 is a constant.

For two intuitionistic fuzzy sets, A and B, Yen et al. [19] constructed two similarity measures,
Sq,ρ,w(A, B) and Sq,ρ,w,M(A, B),

Sq,ρ,w(A, B) = 1−

∑n

i=1
wi


∣∣∣µA(xi) − µB(xi)

∣∣∣+ ρ∣∣∣πA(xi) − πB(xi)
∣∣∣

2

q
1/q

, (9)

and

Sq,ρ,w, M(A, B) = 1−
(∑n

i=1
wi(Ω1 + Ω2)

q
)1/q

, (10)

where Ω1 =
|µA(xi)−µB(xi)|

2max{µA(xi),µB(xi)}
and Ω2 =

ρ|πA(xi)−πB(xi)|

2max{πA(xi),πB(xi)}
are two abbreviations to simplify the

expressions and W = {w1, w2, . . . , wn} is the set of weights for elements in the universe of discourse,
with

∑n
i=1 wi = 1, 1 ≤ q < ∞, and ρ is the preferred rate for the decision-maker, with 0 ≤ ρ.

3. Review of the Source Paper

Based on Gerstenkorn and Manko [13] and Ye [3], Zhang et al. [4] mentioned that the three axioms
for a well-defined similarity measure denoted as (A1), (A2), and (A3) in the following

S : IFSs(X) × IFSs(X)→ [0, 1] should satisfy the following three requirements:
For three IFSs A, B and C in IFSs(X),

(A1) 0 ≤ S(A, B) ≤ 1;
(A2) If A = B, then S(A, B) = 1;
(A3) S(A, B) = S(B, A).

Zhang et al. [4] developed three similarity measures. We cite them in the following.
For two FSs, A = (µA(x1),µA(x2), . . . ,µA(xn)) and B = (µB(x1),µB(x2), . . . ,µB(xn)) with the

universe of discourse X = {x1, x2, . . . , xn}, the first similarity measure is defined as

SFS(A, B) =
1
n

n∑
i=1

2µA(xi)µB(xi)

µ2
A(xi) + µ2

B(xi)
. (11)
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For two IFSs A and B, the second similarity measure is defined as

SIFS(A, B) =
1
n

n∑
i=1

2[µA(xi)µB(xi) + vA(xi)vB(xi)]

µ2
A(xi) + µ2

B(xi) + v2
A(xi) + v2

B(xi)
. (12)

For two IFSs A and B, the third similarity measure is defined as

WSIFS(A, B) =
n∑

i=1

wi
2[µA(xi)µB(xi) + vA(xi)vB(xi)]

µ2
A(xi) + µ2

B(xi) + v2
A(xi) + v2

B(xi)
, (13)

where 0 ≤ wi for i = 1, 2, . . . , n and
n∑

i=1
wi = 1.

4. Our Patchwork for the Fourth Axiom (A4) for the Source Paper

Li and Cheng [14] claimed that, besides the three axioms (A1), (A2), and (A3), a well-defined
similarity measure should also satisfy the fourth axiom (A4) as cited below:

(A4) If A ⊆ B ⊆ C, then S(A, C) ≤ S(A, B), and S(A, C) ≤ S(B, C).

Up to now, 624 papers have cited Li and Cheng [14] in their references—for example, Hung and
Lin [20] Julian et al. [17], Tung et al. [21] Hung and Lin [22], Yen et al. [19], Hung and Wang [15], Chu
and Guo [18], Tung and Hopscotch [23], and Hung et al. [16]—to indicate that to include (A4) for a
well-defined similarity measure isaccepted by the research community. We compare the above ten
papers in Table 1.

Table 1. Comparisons among several papers citing Li and Cheng [14].

Counterexample Theoretical
Improvement

New
Measure

Check Axiom
A4

Iterative
Algorithm

Real
Application

[14] √ √ √

[20] √ √ √

[17] √ √ √

[21] √ √

[22] √ √

[19] √ √ √ √

[15] √ √ √ √ √

[18] √ √ √ √

[23] √ √

[16] √ √ √ √ √ √

Especially, inthe last three years, 152 papers have cited Li and Cheng [14] in their references. We pay
attention to those 17 papers which are related to decision sciences in the following. Aggarwal et al. [24]
applied Hurwicz optimism–pessimism criterion to solve Atanassov’s I-fuzzy linear programming
problems by changing convex breakpoints into concave breakpoints on the lines with the indeterminacy
factor resolution principle. Farhadinia and Xu [25] established a metrical T-norm-based similarity
measure to compare with a metrical T-norm-based entropy measure for hesitant fuzzy sets. Fei et al. [26]
defined a new vector-valued similarity measure for intuitionistic fuzzy sets that contain a similarity
measure and an uncertainty measure to express all data in the universe of discourse that satisfy all
axioms of intuitionistic fuzzy sets. Joshi and Kumar [27] considered a new approach to applying
exponential hesitant fuzzy entropy in multiple attribute decision-making problems. They constructed
two methods to derive criterion weight. Khanmohammadi et al. [28] constructed a new fuzzy
logarithmic least squares method to rank the strategic objectives by the fuzzy similarity technique
to improve efficiency and the significance level. Li and Liu [29] extended two classical distances
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with fuzzy sets to intuitionistic fuzzy sets that satisfy the approximation and continuity properties
of a method while dealing with intuitionistic fuzzy reasoning. Lin [30] used the technique for order
preference by similarity to the ideal solution method to solve a group multi-criteria decision-making
problem with a new distance measure that satisfied axioms of distance measure.Mishra and Rani [31]
developed an interval-valued intuitionistic fuzzy method to derive weights for attributes and experts
for a reservoir flood control management policy. Rani et al. [32] applied the Shapley function to deal
with interval-valued intuitionistic fuzzy methods and then addressed an investment problem with an
incomplete and uncertain information environment. Rouyendegh [33] constructed a new intuitionistic
fuzzy index of hesitation degree method to handle multi-criteria decision-making problems under
incomplete information conditions. Shen et al. [34] generalized the technique for order preference
by similarity to the ideal solution method by a new similarity measure under an intuitionistic fuzzy
set environment that was applied to solve credit risk evaluation problems. Shokeen and Rana [35]
provided a brief introduction for advanced fuzzy sets that is the generalization of fuzzy sets, rough
sets (for incomplete data), interval-valued fuzzy sets (for uncertainty and vagueness), and soft sets
(for insufficiency of parameterization).Wang et al. [36] developed two fuzzy aggregate operators
to deal with multi-criteria decision-making problems with Pythagorean fuzzy linguistics that are
generalizations for many previously existing operators. Wei [37] constructed new similarity measures
for fuzzy sets, interval-valued intuitionistic fuzzy sets, and picture fuzzy sets and then applied those
similarity measures to solve building material recognition problems. Zhang et al. [38] used the
technique for order preference by similarity to the ideal solution method to estimate dynamic agents to
the positive ideal agent and the negative ideal agent under the intuitionistic fuzzy number conditions.
Zhou et al. [39] developed the hesitant fuzzy envelopment analysis model, the deviation-oriented
hesitant fuzzy envelopment analysis model, and the score-oriented hesitant fuzzy envelopment analysis
model to derive score and deviation values. Hence, the subjective preferences of decision-makers for
the attributes can be examined in the evaluation procedure.

In Zhang et al. [4], they only proved that their three similarity measures satisfy three axioms
(A1), (A2), and (A3). However, Zhang et al. [4] did not discuss the fourth axiom (A4). Therefore, the
first goal of our paper is to provide a patchwork to verify three similarity measures developed by
Zhang et al. [4] that satisfy (A4) to complete the proof for well-defined similarity measures.

Based on Liang and Shi [40] and Atanassov [2,41,42], we know that for three IFSs(X) A, B, and C
satisfying A ⊆ B ⊆ C if and only if for every xi in the universe of discourse, µA(xi) ≤ µB(xi) ≤ µC(xi)

and vA(xi) ≤ vB(xi) ≤ vC(xi), where µA is the membership function and vA is the non-membership
function for the intuitionistic fuzzy set, A.

We present our first theoretic result for the similarity measure proposed by Zhang et al. [4] for
fuzzy sets.

Lemma 1. For three FSs A, B and C satisfying A ⊆ B ⊆ C, we prove that SFS(A, C) ≤ SFS(A, B).

Proof. We know that

SFS(A, C) =
1
n

n∑
i=1

2µA(xi)µC(xi)

µ2
A(xi) + µ2

C(xi)
(14)

and

SFS(A, B) =
1
n

n∑
i=1

2µA(xi)µB(xi)

µ2
A(xi) + µ2

B(xi)
, (15)

under the restriction µA(xi) ≤ µB(xi) ≤ µC(xi) for every ui in X = {x1, x2, . . . , xn}.
For i = 1, 2, . . . , n, we compute that

µB(xi)

µ2
A(xi)+µ

2
B(xi)
−

µC(xi)

µ2
A(xi)+µ

2
C(xi)

=
[µC(xi)−µB(xi)][µB(xi)µC(xi)−µ

2
A(xi)]

[µ2
A(xi)+µ

2
B(xi)][µ2

A(xi)+µ
2
C(xi)]

.
(16)
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Owing to µA(xi) ≤ µB(xi) ≤ µC(xi), we derive that

µB(xi)

µ2
A(xi) + µ2

B(xi)
−

µC(xi)

µ2
A(xi) + µ2

C(xi)
≥ 0, (17)

and then it yields that
µA(xi)µB(xi)

µ2
A(xi) + µ2

B(xi)
≥

µA(xi)µC(xi)

µ2
A(xi) + µ2

C(xi)
(18)

for i = 1, 2, . . . , n, so we verify that SFS(A, C) ≤ SFS(A, B). �

Lemma 2. For three FSs A, B and C satisfying A ⊆ B ⊆ C, we prove that SFS(A, C) ≤ SFS(B, C).

Proof. We know that

SFS(A, C) =
1
n

n∑
i=1

2µA(xi)µC(xi)

µ2
A(xi) + µ2

C(xi)
, (19)

and

SFS(B, C) =
1
n

n∑
i=1

2µB(xi)µC(xi)

µ2
B(xi) + µ2

C(xi)
, (20)

under the restriction µA(xi) ≤ µB(xi) ≤ µC(xi) for every ui in X = {x1, x2, . . . , xn}.
For i = 1, 2, . . . , n, we compute that

µB(xi)

µ2
B(xi)+µ

2
C(xi)
−

µA(xi)

µ2
A(xi)+µ

2
C(xi)

=
[µB(xi)−µC(xi)][µ2

C(xi)−µA(xi)µB(xi)]
[µ2

A(xi)+µ
2
B(xi)][µ2

A(xi)+µ
2
C(xi)]

.
(21)

Owing to µA(xi) ≤ µB(xi) ≤ µC(xi), we derive that

µB(xi)

µ2
B(xi) + µ2

C(xi)
−

µA(xi)

µ2
A(xi) + µ2

C(xi)
≥ 0, (22)

and then it yields that
µB(xi)µC(xi)

µ2
B(xi) + µ2

C(xi)
≥

µA(xi)µC(xi)

µ2
A(xi) + µ2

C(xi)
(23)

for i = 1, 2, . . . , n, so we verify that SFS(A, C) ≤ SFS(B, C). �

Based on our proven Lemma 1 and Lemma 2, we verify that the first similarity measure proposed
by Zhang et al. [4] satisfies the fourth axiom (A4). Hence, we derive our first main result.

Theorem 1. The first similarity measure proposed by Zhang et al. [4] SFS(A, B) satisfies the fourth axiom (A4).

To prove that the second and third similarity measures of Zhang et al. [4] satisfy the fourth axiom
(A4), we need the following lemma.

Lemma 3. If 1
2 ≥

a
A ≥

b
B and 1

2 ≥
c
C ≥

d
D , then a+c

A+C ≥
b+d
B+D , where a, b, c, d and A, B, C, D are positive

numbers.

Proof. From the conditions of Lemma 3, we know that a
A ≥

b
B and c

C ≥
d
D , and then we derive that A is

bounded above by a
b B and C is bounded above by c

d D.
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We observe a+c
A+C to know that

a + c
A + C

≥
a + c

A + C

∣∣∣∣∣A= a
b B,C= c

d D =
α b + β d
αB + βD

(24)

where α = ad and β = bc are two abbreviations to simplify the expression.
We compute

α b + β d
αB + βD

−
b + d
B + D

=
(α− β)(bD− dB)

(αB + βD)(B + D)
(25)

to imply that if (a) α ≥ β and bD− dB ≥ 0, or (b) α ≤ β and bD− dB ≤ 0, then Lemma 3 is valid.
From the conditions of Lemma 3, we know that a

A ≥
b
B and c

C ≥
d
D , and then we derive that a is

bounded below by A
B b and c is bounded below by C

D d.
We observe a+c

A+C to know that

a + c
A + C

≥
a + c

A + C

∣∣∣∣∣a=A
B b,c= C

D d =
δ b + ϕ d
δB + ϕD

. (26)

where δ = AD and ϕ = BC are two additional abbreviations to simplify the expression.
We compute

δ b + ϕ d
δB + ϕD

−
b + d
B + D

=
(δ−ϕ)(bD− dB)
(δB + ϕD)(B + D)

(27)

to imply that if (c) ϕ ≤ δ and bD− dB ≥ 0, or (d) ϕ ≥ δ and bD− dB ≤ 0, then Lemma 3 is valid.
There are four cases: (C1) α ≥ β and bD − dB ≥ 0, (C2) α ≤ β and bD − dB ≤ 0, (C3) α ≤ β and

bD− dB ≥ 0, and (C4) α ≥ β and bD− dB ≤ 0.
We already obtain that Case (C1) is (a) and Case (C2) is (b).
For Case (C3), with the condition bD− dB ≥ 0, we derive that

δ−ϕ = AD− BC
≥ AD− BC ad

bc
≥ AC d

c − BC
(

A
B b

)
d
bc ≥ 0,

(28)

since α = ad ≤ β = bc and D ≥ C d
c .

Hence, we derive that ϕ ≤ δ that is (c) with the condition bD− dB ≥ 0.
For Case (C4) with the condition α ≥ β and bD− dB ≤ 0, we obtain that

δ−ϕ = AD− BC
≤ AD bc

ad − BC
≤

(
B a

b

)
D bc

ad − B
(
D c

d

)
≤ 0,

(29)

since α = ad ≤ β = bc, B a
b ≥ A, and D d

c ≥ C.
Therefore, we know that δ ≤ ϕ that is (d) with the condition bD− dB ≤ 0.
Based on the above discussion, we finish the proof of Lemma 3. �

For the second measure of Zhang et al. [4], we begin to verify that it satisfies the fourth axiom (A4).

Lemma 4. For three FSs A, B and C satisfying A ⊆ B ⊆ C we prove that SIFS(A, C) ≤ SIFS(A, B).

Proof. We know that

SIFS(A, C) =
1
n

n∑
i=1

2[µA(xi)µC(xi) + vA(xi)vC(xi)]

µ2
A(xi) + µ2

C(xi) + v2
A(xi) + v2

C(xi)
(30)
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and

SIFS(A, B) =
1
n

n∑
i=1

2[µA(xi)µB(xi) + vA(xi)vB(xi)]

µ2
A(xi) + µ2

B(xi) + v2
A(xi) + v2

B(xi)
, (31)

under the restriction µA(xi) ≤ µB(xi) ≤ µC(xi) and vA(xi) ≤ vB(xi) ≤ vC(xi) for every xi in X =

{x1, x2, . . . , xn}.
First, we recall Theorem 1 to know that

µA(xi)µB(xi)

µ2
A(xi) + µ2

B(xi)
≥

µA(xi)µC(xi)

µ2
A(xi) + µ2

C(xi)
. (32)

We repeated to apply Theorem 1 again to obtain that

vA(xi)vB(xi)

v2
A(xi) + v2

B(xi)
≥

vA(xi)vC(xi)

v2
A(xi) + v2

C(xi)
. (33)

We know that
1
2
≥

µA(xi)µB(xi)

µ2
A(xi) + µ2

B(xi)
(34)

and
1
2
≥

vA(xi)vB(xi)

v2
A(xi) + v2

B(xi)
(35)

such that the conditions of Lemma 3 are satisfied.
Next, we use Lemma 3 for Equations (32) and (33) to yield that

µA(xi)µB(xi) + vA(xi)vB(xi)

µ2
A(xi) + µ2

B(xi) + v2
A(xi) + v2

B(xi)
≥

µA(xi)µC(xi) + vA(xi)vC(xi)

µ2
A(xi) + µ2

C(xi) + v2
A(xi) + v2

C(xi)
, (36)

for i = 1, 2, . . . , n, so we verify that SIFS(A, B) ≥ SIFS(A, C). �

Lemma 5. For three FSs A, B and C satisfying A ⊆ B ⊆ C, we prove that SIFS(A, C) ≤ SIFS(B, C).

Proof. We know that

SIFS(A, C) =
1
n

n∑
i=1

2[µA(xi)µC(xi) + vA(xi)vC(xi)]

µ2
A(xi) + µ2

C(xi) + v2
A(xi) + v2

C(xi)
(37)

and

SIFS(B, C) =
1
n

n∑
i=1

2[µB(xi)µC(xi) + vB(xi)vC(xi)]

µ2
B(xi) + µ2

C(xi) + v2
B(xi) + v2

C(xi)
(38)

under the restriction µA(xi) ≤ µB(xi) ≤ µC(xi) and vA(xi) ≤ vB(xi) ≤ vC(xi) for every xi in X =

{x1, x2, . . . , xn}.
First, we recall Theorem 1 to know that

µB(xi)µC(xi)

µ2
B(xi) + µ2

C(xi)
≥

µA(xi)µC(xi)

µ2
A(xi) + µ2

C(xi)
. (39)

We repeated to apply Theorem 1 again to obtain that

vB(xi)vC(xi)

v2
B(xi) + v2

C(xi)
≥

vA(xi)vC(xi)

v2
A(xi) + v2

C(xi)
. (40)



Symmetry 2020, 12, 1735 9 of 16

We know that
1
2
≥

µB(xi)µC(xi)

µ2
B(xi) + µ2

C(xi)
, (41)

and
1
2
≥

vB(xi)vC(xi)

v2
B(xi) + v2

C(xi)
. (42)

such that the conditions of Lemma 3 are satisfied.
Next, we apply Lemma 3 for Equations (39) and (40) to derive that

µB(xi)µC(xi) + vB(xi)vC(xi)

µ2
B(xi) + µ2

C(xi) + v2
B(xi) + v2

C(xi)
≥

µA(xi)µC(xi) + vA(xi)vC(xi)

µ2
A(xi) + µ2

C(xi) + v2
A(xi) + v2

C(xi)
, (43)

for i = 1, 2, . . . , n, so we verify that SIFS(B, C) ≥ SIFS(A, C). �

Based on our Lemmas 4 and 5, we verify that the second similarity measure proposed by
Zhang et al. [4] satisfies the fourth axiom (A4). Hence, we derive our second main result.

Theorem 2. The second similarity measure proposed by Zhang et al. [4] SIFS(A, B) satisfies the fourth
axiom (A4).

For the third measure of Zhang et al. [4], we begin to show that it satisfies the fourth axiom (A4).

Lemma 6. For three FSs A, B and C satisfying A ⊆ B ⊆ C, we prove that WSIFS(A, C) ≤WSIFS(A, B).

Proof. We know that

WSIFS(A, B) =
n∑

i=1

wi
2[µA(xi)µB(xi) + vA(xi)vB(xi)]

µ2
A(xi) + µ2

B(xi) + v2
A(xi) + v2

B(xi)
, (44)

and

WSIFS(A, C) =
n∑

i=1

wi
2[µA(xi)µC(xi) + vA(xi)vC(xi)]

µ2
A(xi) + µ2

C(xi) + v2
A(xi) + v2

C(xi)
, (45)

Based on Equation (36), we derived that

wi
µA(xi)µB(xi) + vA(xi)vB(xi)

µ2
A(xi) + µ2

B(xi) + v2
A(xi) + v2

B(xi)
≥ wi

µA(xi)µC(xi) + vA(xi)vC(xi)

µ2
A(xi) + µ2

C(xi) + v2
A(xi) + v2

C(xi)
, (46)

with wi ≥ 0, for i = 1, 2, . . . , n, so we verify that WSIFS(A, B) ≥WSIFS(A, C). �

Lemma 7. For three FSs A, B and C satisfying A ⊆ B ⊆ C, we prove that WSIFS(A, C) ≤WSIFS(B, C).

Proof. We know that

WSIFS(B, C) =
n∑

i=1

wi
2[µB(xi)µC(xi) + vB(xi)vC(xi)]

µ2
B(xi) + µ2

C(xi) + v2
B(xi) + v2

C(xi)
, (47)

and

WSIFS(A, C) =
n∑

i=1

wi
2[µA(xi)µC(xi) + vA(xi)vC(xi)]

µ2
A(xi) + µ2

C(xi) + v2
A(xi) + v2

C(xi)
. (48)
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Based on Equation (33), we derived that

wi
µA(xi)µB(xi) + vA(xi)vB(xi)

µ2
A(xi) + µ2

B(xi) + v2
A(xi) + v2

B(xi)
≥ wi

µA(xi)µC(xi) + vA(xi)vC(xi)

µ2
A(xi) + µ2

C(xi) + v2
A(xi) + v2

C(xi)
, (49)

with wi ≥ 0, for i = 1, 2, . . . , n, so we verify that WSIFS(B, C) ≥WSIFS(A, C). �

Based on our proven Lemmas 6 and 7, we verify that the third similarity measure proposed by
Zhang et al. [4] satisfies the fourth axiom (A4). Hence, we derive our second main result.

Theorem 3. The third similarity measure proposed by Zhang et al. [4] WSIFS(A, B) satisfies the fourth
axiom (A4).

Therefore, we provide revisions to prove that the three similarity measures proposed by
Zhang et al. [4] all satisfy the fourth axiom (A4) to complete the verification of a well-defined
examination for similarity measures proposed by Zhang et al. [4].

5. Numerical Examples

In our first three examples, we reconsider the pattern recognition problem proposed by
Zhang et al. [4] with three different settings of weights to illustrate that the weighed similarity
measure was proposed by Zhang et al. [4] which will be influenced by weights. We recall the pattern
recognition proposed by Zhang et al. [4] with three patterns C1, C2, and C3, and one sample Q, where

C1 = {〈x1, 1, 0〉, 〈x2, 0.8, 0〉, 〈x3, 0.7, 0.1〉}, (50)

C2 = {〈x1, 0.8, 0.1〉, 〈x2, 1, 0〉, 〈x3, 0.9, 0〉}, (51)

C3 = {〈x1, 0.6, 0.2〉, 〈x2, 0.8, 0〉, 〈x3, 1, 0〉} (52)

and
Q = {〈x1, 0.5, 0.3〉, 〈x2, 0.6, 0.2〉, 〈x3, 0.8, 0.1〉}. (53)

We develop three examples with different settings of wi, for i = 1, 2, 3. For the first example, we
follow Zhang et al. [4] to assume that w1 = 0.5, w2 = 0.3 and w3 = 0.2. For the second example, we
set that w1 = 0.05, w2 = 0.05 and w3 = 0.9, and then for the third example, we take that w1 = 0.09,
w2 = 0.01, and w3 = 0.9. The computation results are listed in the next Table 2.

Table 2. Computation results for Examples 1–3.

Example WSIFS(C1,Q) WSIFS(C2,Q) WSIFS(C3,Q) Implication

1 0.848318 0.888747 0.957349 C3 � C2 � C1

2 0.975641 0.973963 0.967530 C1 � C2 � C3

3 0.968569 0.974424 0.969626 C2 � C3 � C1

From Table 2, to consider Example 1, we derive that sample Q should have belonged to the pattern
C3. Our derivation is consistent with Zhang et al. [4].

However, for our Example 2, with a different set of wi, for i = 1, 2, 3, then we obtain that the
sample Q should have belonged to the pattern C1. Our result is different from that of Zhang et al. [4].

Moreover, for our Example 3, with another set of wi, for i = 1, 2, 3, then we imply that the sample
Q should have belonged to the pattern C2. Our finding of Example 3 is different from that of Examples
1 and 2. Hence, we can conclude that the weighted similarity measure proposed by Zhang et al. [4]
will be significantly influenced by the setting of wi, for i = 1, 2, 3.
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For our fourth example, we recall an application of similarity measures under an intuitionistic
fuzzy sets environment for the fault diagnosis of turbine generators that was discussed by Li and
Wan [43] and Chu et al. [44]. They used the amplitude ratio of vibration signal in six different frequency
ranges, less than 0.4 f , 0.5 f , f , 2 f , 3 f and more than 3 f , as the characteristic values to construct their
universe of discourse, where f is the fundamental frequency of the turbine generator. There are three
typical failures to be used as the failure patterns: P1 (oil whip), P2 (unbalance), and P3 (misalignment),
and two samples B1 and B2 to be tested for its pattern. We cite Tables 1 and 2 of Chu et al. [44] for the
six different frequency ranges of three patterns and two samples, respectively, in our Table 3 under an
intuitionistic fuzzy sets environment.

Table 3. Data for patterns and samples (reproduced from Tables 1 and 2 of Chu et al. [44]).

Frequency Range

<0.4f 0.5f f 2f 3f >3f

Pattern P1 <0.06,0.84> <0.84,0.02> <0.20,0.75> <0.02,0.89> <0.20,0.75> <0.01,0.92>

Pattern P2 <0.01,0.93> <0.02,0.90> <0.90,0.01> <0.08,0.85> <0.01,0.89> <0.02,0.93>

Pattern P3 <0.01,0.94> <0.01,0.94> <0.40,0.42> <0.40,0.44> <0.28,0.56> <0.01,0.61>

Sample B1 <0.01,0.96> <0.00,0.97> <0.37,0.60> <0.46,0.51> <0.31,0.66> <0.21,0.75>

Sample B2 <0.00,0.98> <0.05,0.92> <0.69,0.27> <0.04,0.93> <0.03,0.84> <0.00,0.97>

Based on our previous discussion for the weighted similarity measure WSIFS proposed by
Zhang et al. [4], we know that it is influenced by the different settings of wi for i = 1, 2, . . . , 6 such that
we only consider SIFS proposed by Zhang et al. [4] in our fourth example.

To be compatible with Chu et al. [44], Julian et al. [17], Tung et al. [21], Li and Wan [43],
Yusoff et al. [45], and Zeng [46], we cite Table 3 of Chu et al. [44] in our Table 4 along with ourfindings
afterwe apply the second similarity measure proposed by Zhang et al. [4] of Equation (12).

Table 4. Comparison of seven methods.

Sample B1 Sample B2

Patterns Patterns

P1 P2 P3 P1 P2 P3

[4] 0.772 0.857 0.984 0.768 0.985 0.884
[44] 0.779 0.827 0.918 0.797 0.939 0.822
[17] 0.163 0.393 0.839 0.185 0.795 0.481
[21] 0.582 0.696 0.920 0.593 0.897 0.741
[43] 0.554 0.704 0.926 0.582 0.893 0.721
[45] 0.670 0.745 0.953 0.713 0.933 0.787
[46] 0.582 0.697 0.923 0.593 0.898 0.747
[47] 0.773 0.927 0.980 0.604 0.629 0.606
[48] 0.422 0.431 0.637 0.425 0.555 0.137
[49] 0.366 0.643 0.652 0.401 0.544 0.235
[50] 0.805 0.853 0.904 0.788 0.835 0.713

[51] with (61) 0.797 0.715 0.908 0.633 0.834 0.423
[51] with (62) 0.924 0.920 0.975 0.790 0.902 0.773

In the following, we consider several recent published papers to apply their similarity measures
for this pattern recognition problem.
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For ξ = [ξ1, ξ2, ξ3, ξ4,ω1,ω2] and η = [η1,η2,η3,η4, κ1, κ2], two generalized trapezoidal fuzzy
numbers, Dutta [47] defined a new similarity measure DS(ξ,η) as

DS(ξ,η) =
2(ω1κ1 +ω2κ2 + |ω1 − κ1|+ |ω2 − κ2|+

∑
ξiηi)

ω2
1 +ω

2
2 + κ

2
1 + κ

2
2 + |ω1 − κ1|

2 + |ω2 − κ2|
2 +

∑(
ξ2

i + η
2
i

) , (54)

where [η1,η2,η3,η4] is a trapezoidal number with left heightω1 and right heightω2.
For an intuitionistic fuzzy set on X, µA(x) : X→ [0, 1] is the membership function and

vA(x) : X→ [0, 1] is the non-membership function.We can convert the intuitionistic fuzzy into a
generalized trapezoidal fuzzy number as follows,

ξ = [µA(x),µA(x), 1− vA(x), 1− vA(x), 1, 1], (55)

and then we can apply the similarity measure proposed by Dutta [47].
For A =

{
[y, ξA(y),ηA(y),νA(y)] : y ∈ Y

}
and B =

{
[y, ξB(y),ηB(y),νB(y)] : y ∈ Y

}
, two spherical

fuzzy sets, where ξA, ηA, and νA:Y→ [0, 1] are the degree of positive, neutral, and negative membership
functions, with Y =

{
y1, . . . , ym

}
and ξA(y) + ηA(y) + (y) ≤ 1, Rafiq et al. [48] developed a cotangent

similarity measure, SC(A, B) as follows,

SC(A, B) =
1
m

∑m

i=1
cot

(
π

4
+ Πi

)
, (56)

where Πi is an abbreviation to simplify the expression, where

Πi = max
{∣∣∣∣ξ2

A

(
yi

)
− ξ2

B

(
yi

)∣∣∣∣, ∣∣∣∣η2
A

(
yi

)
− η2

B

(
yi

)∣∣∣∣, ∣∣∣∣ν2
A

(
yi

)
− ν2

B

(
yi

)∣∣∣∣, Ψi

}
, (57)

and Ψi is a second abbreviation to simplify the expression, with

Ψi =
∣∣∣∣ξA

(
yi

)
+ ηA

(
yi

)
+ νA

(
yi

)
− ξB

(
yi

)
− ηB

(
yi

)
− νB

(
yi

)∣∣∣∣. (58)

We can generalize an intuitionistic fuzzy set A =
{
[y, ξA(y),νA(y)] : y ∈ Y

}
to a spherical fuzzy

set A =
{
[y, ξA(y),ηA(y),νA(y)] : y ∈ Y

}
with ηA

(
yi

)
= 0, for i = 1, 2, . . . , m.

For A =
{
[y, ξA(y),ηA(y),νA(y)] : y ∈ Y

}
and B =

{
[y, ξB(y),ηB(y),νB(y)] : y ∈ Y

}
, two spherical

fuzzy sets, Khan et al. [49] defined a new similarity measure, SS(A, B), as

SS(A, B) =

∑m
i=1

[
ξ2

A

(
yi

)
ξ2

B

(
yi

)
+ η2

A

(
yi

)
η2

B

(
yi

)
+ ν2

A

(
yi

)
ν2

B

(
yi

)]
∑m

i=1

{
max

{
ξ4

A

(
yi

)
, ξ4

B

(
yi

)}
+ max

{
η4

A

(
yi

)
,η4

B

(
yi

)}
+ max

{
ν4

A

(
yi

)
,ν4

B

(
yi

)}} . (59)

For two intuitionistic fuzzy sets, Muthuraj and Devi [50] constructed a new tangent similarity
measure, TIFMS(A, B), as follows

TIFMS(A, B) = 1− 1
n
∑n

i=1 tan
[
π
12 (

∣∣∣µA(xi) − µB(xi)
∣∣∣ + ∣∣∣vA(xi) − vB(xi)

∣∣∣+∣∣∣∣πA(xi) −πB(xi)
∣∣∣)]. (60)

For A =
{
[y, sA(y), iA(y), dA(y)] : y ∈ Y

}
and B =

{
[y, sB(y), iB(y), dB(y)] : y ∈ Y

}
, two T-spherical

fuzzy sets, where sA(y), iA(y), dA(y) and rA(y) : X→ [0, 1] are the membership, hesitancy,
non-membership, and refusal degree, Wu et al. [51] assumed two cosine similarity measures,
TSFCS1(A, B) and TSFCS2(A, B), in the following:

TSFCS1(A, B) =
1
m

∑m

i=1
cos

(
π

2
max

{
αi,βi,γi, δi

})
, (61)
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where
∣∣∣∣s4

A

(
yi

)
− s4

B

(
yi

)∣∣∣∣ = αi,
∣∣∣∣i4A(

yi

)
− i4B

(
yi

)∣∣∣∣ = βi,
∣∣∣∣d4

A

(
yi

)
− d4

B

(
yi

)∣∣∣∣ = γi, and
∣∣∣∣r4

A

(
yi

)
− r4

B

(
yi

)∣∣∣∣ = δi are
auxiliary notations to simplify the expression, and

TSFCS2(A, B) =
1
m

∑m

i=1
cos

(
π

4
(αi + βi + γi + δi)

)
. (62)

We can generalize an intuitionistic fuzzy set A =
{
[y, ξA(y),νA(y)] : y ∈ Y

}
to a T-spherical

fuzzy set A =
{
[y, sA(y), iA(y), dA(y)] : y ∈ Y

}
with sA

(
yi

)
= ξA

(
yi

)
, iA

(
yi

)
= 1 − ξA

(
yi

)
− νA

(
yi

)
,

dA

(
yi

)
= νA

(
yi

)
, and ηA

(
yi

)
= 0, for i = 1, 2, . . . , m.

Based on similarity measures discussed from Equation (54) to Equation (62), we evaluate the
pattern recognition problems of Table 3 and then add them to the following Table 4.

From the fourth column of Table 4, the sample B1 should have belonged to the pattern P3 and in
the sixth column of Table 4, the sample B2 should have belonged to the pattern P2. The results derived
by the similarity measure proposed by Zhang et al. [4] are the same as decided by Chu et al. [44],
Julian et al. [17], Tung et al. [21], Li and Wan [43], Yusoff et al. [45], Zeng [46], Dutta [47], Rafiq et al. [48],
Khan et al. [49], Muthuraj et al. [50], and Wu et al. [51]. Our fourth example illustrates that the similarity
measure proposed by Zhang et al. [4] can be applied for a practical application of fault diagnosis of
turbine generators.

6. Directions for Future Research

In this paper, we discuss three similarity measures proposed by Zhang et al. [4] that only refer to
membership function and non-membership function, without considering the hesitation function. We
can predict that to prove the similarity measures based on the inner product including membership,
non-membership, and hesitation functions, satisfying the fourth axiom proposed by Li and Cheng [14]
will be an interesting research topic. Some other applications require similarity measures. For example,
a similarity angle mapper has been widely used as a similarity measure for comparing two vectors in
hyperspectral image applications such as Kwan et al. [52] and Qu et al. [53]. Researchers applying
similarity metrics in hyperspectral images will be an interesting topic for future practitioners.

7. Conclusions

In this paper, we first provide a patchwork to prove that three similarity measures proposed by
Zhang et al. [4] satisfy the fourth axiom (A4) proposed by Li and Cheng [14]. Next, we examine the
same example proposed by Zhang et al. [4] for a pattern recognition problem to point out that their
third similarity measure, the weighted similarity measure, is dependent on weights such that how to
derive a proper setting for weights becomes a critical issue. Finally, we provide a practical application
for the second similarity measure of Zhang et al. [4] to demonstrate the usefulness of their second
similarity measure.
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