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Abstract: This paper studies the second kind linear Volterra integral equations (IEs) with a
discontinuous kernel obtained from the load leveling and energy system problems. For solving this
problem, we propose the homotopy perturbation method (HPM). We then discuss the convergence
theorem and the error analysis of the formulation to validate the accuracy of the obtained solutions.
In this study, the Controle et Estimation Stochastique des Arrondis de Calculs method (CESTAC)
and the Control of Accuracy and Debugging for Numerical Applications (CADNA) library are
used to control the rounding error estimation. We also take advantage of the discrete stochastic
arithmetic (DSA) to find the optimal iteration, optimal error and optimal approximation of the HPM.
The comparative graphs between exact and approximate solutions show the accuracy and efficiency
of the method.

Keywords: stochastic arithmetic; homotopy perturbation method; CESTAC method; CADNA library;
Volterra integral equation with piecewise continuous kernel

1. Introduction

The problem of finding approximate solution for linear Volterra IEs is one of the oldest problems
in the applied mathematics researches. Specially, this problem with discontinuous kernel has many
applications in the load leveling problems, energy storage with renewable and diesel generation,
charge/discharge storages control and others [1–3].
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There are various methods for solving linear and nonlinear problems [4–10] specially the Volterra
IEs with discontinuous kernel. Muftahov et al. in [11] applied the Lavrentiev regularization and
direct quadrature method, Sidorov in [12] used the successive approximations and Noeiaghdam et al.
studied the Taylor-collocation method for solving Volterra IEs with discontinuous kernel [1,13]. Also,
the nonlinear system of Volterra IE with applications was studied in [14,15]. Furthermore, the existence
of a continuous solution depending on free parameters and sufficient conditions for the existence of
a unique continuous solution of the system of Volterra IE with discontinuous kernels were derived
in [16]. The class of integral operator equations of Volterra type with applications to p-Laplacian
equations was illustrated in [17]. The problem of generalized solution (in the Sobolev-Schwartz sense)
to the Volterra equations with piecewise continuous kernel was illustrated in [18]. Belbas and Bulka
in [19] considered the multiple Volterra IEs. The problem of global solution’s existence and blow-up of
nonlinear Volterra IEs were discussed in [20]. For systematic study of the qualitative theory of Volterra
IE with discontinuous kernels readers may refer to monograph [21] and part 1 in monograph [22].

The parametric continuation method for the first time was justified by Bernstein [23] for partial
differential equations. Here readers may also refer to excellent review by Lusternik [24]. In community
of numerical analysts the parametric continuation method is known as the HPM. This method is
among of semi-analytical methods that was popularized by J.H. He [25–27]. Then, this method has
been extended by many other researchers for solving different problems. The HPM was applied to
find the approximate analytical solution of the Allen-Cahn equation in [28], to study the maximum
power extraction from fractional order doubly fed induction generator based wind turbines in [29],
dissipative nonplanar solitons in an electronegative complex plasma in [30] and others [31–33].
Convergence of the parameter continuation method in the homotopy method based on the theorem of
V.A. Trenogin (see [34], Section 14, p. 146) will be global with respect to a parameter if there is an a
priori estimate of the solution for all values of the parameter (this condition can be replaced with a more
stringent requirement for the existence of a unique solution bounded for all values of the parameter).
If there is no a priori estimate of the solution, then on the basis of the inverse operator theorem (see [34]
p. 135), at least local convergence in the homotopy method can be guaranteed. Due to the models
complexity, we addressed only some classes of the results in this field. Many other interesting results
concerning nonlinear equations with discontinuous symmetric kernels with application of group
symmetry have remained beyond this paper. Results of present paper in combination with methods of
representation theory and group analysis in the bifurcation theory [35,36] make it possible to construct
solutions of nonlinear models with discontinuous kernels using the HPM.

In the mentioned studies and many other researches, the numerical results have been obtained
from the floating point arithmetic (FPA) and the accuracy of the method has been discussed using the
traditional absolute error as follows

|w(t)− wn(t)| < ε, (1)

where w(t) and wn(t) are the exact and approximate solutions. This condition depends on the existence
of the exact solution and optimal value of ε. Also, based on condition (1) we will not be able to find
the more accurate approximation because we do not have information about optimal ε and in some
cases we do not know the exact solution. For small values of ε, the numerical algorithm can not be
stopped and extra iterations will be produced without improving the accuracy. For large values of ε,
the numerical algorithm will be stopped in initial steps without producing enough iterations. Moreover,
in condition (1), researchers do not have any idea about optimal approximations, optimal errors or
numerical instabilities. The aim of this study is to apply the HPM to solve the second kind linear
Volterra IEs with jumping kernel and validate the numerical results using the CESTAC method [37–40].
In this method, instead of applying the condition (1), we need to produce other and better condition
without having the disadvantages of (1) as follows:

|wn(t)− wn+1(t)| = @.0, (2)
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where @.0 is the informatical zero sign [41] and wn(t) and wn+1(t) are two successive approximations.
Condition (2) is based on the DSA and Theorem 2 can support us to apply this condition theoretically.
In this condition, not only we do not need to have the exact solution but also we would be able to
identify the optimal approximation, optimal iteration and optimal error of numerical procedure.

Also, the CADNA library is applied as an important software for this validation. The CESTAC
method and the CADNA library have been introduced and developed during decades by researchers
from LIP6, the computer science laboratory in Sorbonne University in Paris, France (https://www-
pequan.lip6.fr/). This principle was introduced in [38] and it was extended to various quadrature rules
in [42–44] and others [45,46]. The CADNA library should be done on the LINUX operating system
and its codes should be written using C, C++ or ADA codes [40,47–49]. The CESTAC method is based
on the DSA and instead of applying the absolute error to show the precision of method, a termination
criterion is applied based on two successive approximations [50–53]. Thus in this technique we do not
need to have the exact solution to compare the results. Also, we will prove that number of common
significant digits (NCSD) of two successive approximations are almost equal to the NCSD of exact
and approximate solutions. So the new theorem gives the license to apply the new stopping condition
instead of previous one. This technique has some advantages than other methods based on the
FPA [37,39,50,52,53]. Due to the advantages of the CESTAC method we can find the optimal iteration
of iterative and numerical methods, optimal approximation and optimal error. Furthermore, the extra
iterations can be neglected and some of numerical instabilities can be detected too [13,54–56].

In recent years, this scheme was applied to estimate the round-off errors in different problems such
as the numerical integration rules by Newton-Cotes and Gaussian rules [54,57–60], interpolation [61],
solving IEs by Sinc-collocation method [55,62], homotopy analysis method for solving IEs [63] and
Taylor-collocation method for discontinuous Volterra IEs [13]. Furthermore, this technique is applied
for finding the optimal regularized parameter of the regularization method [56], solving ill-posed
problems [56] and many other topics [64–66].

This paper is arranged as follows: In the next section, the preliminaries are described regarding to
the HPM. In third section, the DSA and the CESTAC method are discussed. Also, algorithm of the
CESTAC method and sample code of the CADNA library are presented. In forth section the main
idea is described. Then using the HPM we solve the second kind linear Volterra IEs with jumping
kernel. Furthermore, the convergence theorem is proved. Also, a theorem is presented which proves
that instead of traditional absolute error which depends on the exact and approximate solutions,
a termination criterion can be applied which depends on two successive approximations. Section five
includes some examples. Also, several tables are presented to show the efficiency of method. The last
section is conclusion.

2. Preliminaries

For operator F, given function g and prepared function x we get the following operator equation as

F(x) = g(z), z ∈ Γ. (3)

We can write the operator F in the following form

F(x) = L(x) +N (x), (4)

where the remain part of F showed by N and L is the linear operator. Now, Equation (3) can be
presented as

L(x) +N (x) = g(z), z ∈ Γ. (5)

According to the traditional homotopy [25–27], for parameter â ∈ [0, 1], the homotopy operator H
can be presented as

H(v, â) = (1− â)(L(v)−L(x0)) + â(F(v)− g(z)), (6)

https://www-pequan.lip6.fr/
https://www-pequan.lip6.fr/
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where v(z, â) is defined on Γ× [0, 1]→ R and x0 is the initial guess of Equation (3). Now, by applying
Equation (4) we get

H(v, â) = L(v)−L(x0) + âL(x0) + â(N (v)− g(z)). (7)

Putting â = 0 in Equation (7) leads to H(v, 0) = L(v)−L(x0) and we get L(v)−L(x0) = 0. Now,
for â = 1 we have H(v, 1) = 0 which it can produce the solution of Equation (3). Thus, when â : 0→ 1
we can change the solution v from x0 to x. Now, the power series

v =
∞

∑
j=0

âjvj, (8)

can be applied to find the solution of H(v, â) = 0. Then comparing the same powers of parameter â
we can find the successive functions vj, j = 0, · · · , n.

Finally, applying

w = lim
â→1

v =
∞

∑
j=0

vj, (9)

the solution of Equation (3) can be found and the n-th order approximation is in the following form

wn =
n

∑
j=0

vj. (10)

3. Stochastic Arithmetic and the CESTAC Method

In this section, the CESTAC method is described and the algorithm of this method is presented.
Also, a sample program of the CADNA library is demonstrated and finally advantages of presented
method based on the DSA are investigated in comparison with the traditional FPA [37–40,50].

Assume that some representable values are produced by computer and they are collected in set A.
Then W ∈ A can be produced for w ∈ R withR mantissa bits of the binary FPA in the following form

W = w− χ2E−Rξ, (11)

where sign of w showed by χ, missing segment of the mantissa presented by 2−Rξ and the binary
exponent of the result characterized by E. Moreover, there are single and double precisions by choosing
R = 24, 53 [40,50–53].

Assume ξ is the casual variable that uniformly distributed on [−1, 1]. After making perturbation
on final mantissa bit of w we will have (µ) and (σ) as mean and standard deviation for results of W
which they have important rule in precision of W. Repeating this process J times for Wi, i = 1, . . . , J we
will have quasi Gaussian distribution for results. It means that µ for these data equals to the exact w.
It is clear that we should find µ and σ based on Wi, i = 1, . . . , J. For more consideration, the following
Algorithm 1 is presented where τδ is the value of T distribution as the confidence interval is 1− δ with
J − 1 freedom degree [52].

Usually, in order to find the numerical results we need to apply the usual packages like
Mathematica and Matlab. Here, instead of them we introduce the CADNA library and the CESTAC
method to validate the numerical results [1,55,56,62].

This library should run on LINUX operating system and all commands should be written by C,
C++, FORTRAN or ADA codes [13,54,59,60,63].

We have many advantages to apply the CESTAC method and the CADNA library instead of
traditional schemes using the FPA. In this method, a novel criterion independence of absolute error
and tolerance value like ε is presented. Applying the CADNA library, we can find the optimal
iteration, approximation and error of numerical methods. Moreover, the numerical instabilities can be
identified [13,54–56]. A sample program of the CADNA library is presented as
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Algorithm 1:
Step 1- Make the perturbation of the last bit of mantissa to produce J
samples of W as Φ =

{
W1, W2, ..., WJ

}
.

Step 2- Find Wave =
∑J

i=1 Wi

J
.

Step 3- Compute σ2 =
∑J

i=1(Wi −Wave)2

J − 1
.

Step 4- Find the NCSDs of w and Wave applying CWave ,w = log10

√
J |Wave|
τδσ

.

Step 5- Print W = @.0 if Wave = 0, or CWave ,W ≤ 0.

]include <cadna.h>
cadna−init(-1);
main()
{
double−st Parameter;
do
{
Write the main codes here;
printf(" %s ",strp(Parameter));
}
while(u[n]-u[n-1]!=0);
cadna−end();
}

4. Main idea

Consider the following second kind linear IE

w(t) = g(t) +
∫ t

0
k(t, s)w(s)ds, a = 0 ≤ t ≤ T ≤ b, (12)

where k(t, s) is discontinuous along continuous curves γi, i = 0, 1, · · · , m− 1 and it can be written in
the following form

w(t) = g(t) +
∫ γ1(t)

γ0(t)
k1(t, s)w(s)ds +

∫ γ2(t)

γ1(t)
k2(t, s)w(s)ds + · · ·+

∫ γm(t)

γm−1(t)
km(t, s)w(s)ds, (13)

and finally for brief form we get

w(t) = g(t) +
m

∑
i=1

∫ γi(t)

γi−1(t)
ki(t, s)w(s)ds. (14)

Indeed, the kernel is the principal part of the IE (14). One may think about considered Volterra IE
as generalization of classic Duhamel integral. So, the kernel can be understood as instrumental response
function (IF, or spectral sensitivity, transmission function, point spread function, frequency response),
see e.g., [67]. In this study, we do not focus on specific physical problems, but more on numerical
aspects of solutions only.

Based on the HPM and applying Equations (4) and (5) for solving Equation (14), operators L(v)
and N (v) should be defined as follows

L(v) = v,
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and

N (v) =
m

∑
i=1

∫ γi(t)

γi−1(t)
ki(t, s)w(s)ds. (15)

For next step, using Equation (7) the homotopy map can be constructed as follows

H(v, â) = v(t)− w0(t) + â

[
w0(t)−

m

∑
i=1

∫ γi(t)

γi−1(t)
ki(t, s)w(s)ds− g(t)

]
, (16)

and we have

∞

∑
j=0

âjvj(t) = w0(t) + â[g(t)− w0(t)] +
∞

∑
j=1

âj
m

∑
i=1

∫ γi(t)

γi−1(t)
ki(t, s)vj−1(s)ds. (17)

Now, Equation (17) can be written in the following form

∞

∑
j=0

âjvj(t) = w0(t) + â[g(t)− w0(t)] +
∞

∑
j=1

âj Aj−1(t), (18)

where

Aj−1(t) =
m

∑
i=1

∫ γi(t)

γi−1(t)
ki(t, s)vj−1(s)ds.

By disjointing the different powers of â in both sides of Equation (18) the following successive
iterations can be obtained as

â0 : v0(t) = w0(t),

â1 : v1(t) = g(t)− w0(t) + A0(t)

= g(t)− w0(t) +
m

∑
i=1

∫ γi(t)

γi−1(t)
ki(t, s)v0(s)ds,

â2 : v2(t) = A1(t) =
m

∑
i=1

∫ γi(t)

γi−1(t)
ki(t, s)v1(s)ds,

...
...

...

ân : vn(t) = An−1(t) =
m

∑
i=1

∫ γi(t)

γi−1(t)
ki(t, s)vn−1(s)ds.

(19)

Applying Equation (10) and successive iterations (19), the approximate solution of Equation (14) can
be obtained.

Theorem 1. Assume that functions ki(t, s) and g(t) of Equation (14) are continuous in η1 = [a, b]× [a, b]
and η = [a, b] respectively where these functions are bounded. If

∃αi, N1; |ki(t, s)| ≤ αi, |g(t)| ≤ N1, ∀s, t ∈ η, i = 1, 2, · · · , m,

then for initial approximation w0 which is continuous in [a, b], the series solution (9) will be uniformly
convergent to the exact solution for each â ∈ [0, 1].
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Proof. Assume w0(t) ∈ C[a, b], then we have a positive number N0 such that |w0(t)| ≤ N0. Therefore,
we can write

|v0(t)| = |w0(t)| ≤ N0,

|v1(t)| =

∣∣∣∣g(t)− w0(t) +
∫ γ1(t)

γ0(t)
k1(t, s)v0(s)ds +

∫ γ2(t)

γ1(t)
k2(t, s)v0(s)ds

+ · · ·+
∫ γm(t)

γm−1(t)
km(t, s)v0(s)ds

∣∣∣∣
≤ |g(t)|+ |w0(t)|+

∫ γ1(t)

γ0(t)
|k1(t, s)||v0(s)|ds +

∫ γ2(t)

γ1(t)
|k2(t, s)||v0(s)|ds

+ · · ·+
∫ γm(t)

γm−1(t)
|km(t, s)||v0(s)|ds|

≤ N1 + N0 + α1N0(γ1 − γ0) + α2N0(γ2 − γ1) + · · ·+ αmN0(γm − γm−1) = β,

|v2(t)| =

∣∣∣∣∫ γ1(t)

γ0(t)
k1(t, s)v1(s)ds +

∫ γ2(t)

γ1(t)
k2(t, s)v1(s)ds

+ · · ·+
∫ γm(t)

γm−1(t)
km(t, s)v1(s)ds

∣∣∣∣ ,

|v2(t)| ≤
∫ γ1(t)

γ0(t)
|k1(t, s)||v1(s)|ds +

∫ γ2(t)

γ1(t)
|k2(t, s)||v1(s)|ds

+ · · ·+
∫ γm(t)

γm−1(t)
|km(t, s)||v1(s)|ds

≤ α1(γ1 − γ0)β + α2(γ2 − γ1)β + · · ·+ αm(γm − γm−1)β

= β
m

∑
i=1

αi(γi − γi−1).

Accordingly, we obtain the following general form

|vj(t)| ≤ β

(
m

∑
i=1

α
j−1
i

(γi − γi−1)
j−1

(j− 1)!

)
, s, t ∈ [a, b], j ≥ 2. (20)

Finally, for series solution (8) and for any â ∈ [0, 1] we can write

∞

∑
j=0

âjvj(t) ≤
∞

∑
j=0
|vj(t)| ≤

∞

∑
j=0

aj = N0 + β + β exp

(
m

∑
i=1

αi(γi − γi−1)

)
,

where a0 = N0, a1 = β, aj = β
(

∑m
i=1 α

j−1
i

(γi−γi−1)
j−1

(j−1)!

)
, j ≥ 2. It means that series solution (8) for any

â ∈ [0, 1] is uniformly convergent in interval [a, b].

From Equation (20), the following remark can be deduced:



Symmetry 2020, 12, 1730 8 of 16

Remark 1. Based on the n-th order approximate solution (10), the error function En = supt∈[a,b] |w(t)−
wn(t)| can be approximated as follows:

|w(t)− wn(t)| =

∣∣∣∣∣ ∞

∑
j=0

vj(t)−
n

∑
j=0

vj(t)

∣∣∣∣∣ =
∣∣∣∣∣ ∞

∑
j=n+1

vj(t)

∣∣∣∣∣ ≤ ∞

∑
j=n+1

|vj(t)|

≤ β
∞

∑
j=n+1

(
m

∑
i=1

α
j−1
i

(γi − γi−1)
j−1

(j− 1)!

)
.

Order of error En can be obtained in the following form:

En = O
[

∞

∑
j=n+1

1
(j− 1)!

(
m

∑
i=1

α
j
i(γi − γi−1)

j

)]
= O

(
Ln

n!

)
,

where L is a positive real number.

Definition 1 ([38]). For numbers z1, z2 ∈ R, the NCSDs can be computed as follows:

(1) for z1 6= z2,

Cz1,z2 = log10

∣∣∣∣ z1 + z2

2(z1 − z2)

∣∣∣∣ = log10

∣∣∣∣ z1

z1 − z2
− 1

2

∣∣∣∣ , (21)

(2) for all real numbers z1, Cz1,z1 = +∞.

Theorem 2. Let w(t) and wn(t) be the exact and numerical solutions of problem (12) which wn(t) is obtained
by using the HPM and Equation (10). Based on assumptions of Theorem 1 and Remark 1 for n enough large
we have

Cwn(t),wn+1(t) ' Cwn(t),w(t), (22)

where Cwn(t),w(t) shows the NCSDs of wn(t), w(t) and Cwn(t),wn+1(t) is the NCSDs of two successive iterations
wn(t), wn+1(t).

Proof. Using Definition 1 and Remark 1 we get

Cwn(t),wn+1(t) = log10

∣∣∣∣ wn(t)
wn(t)− wn+1(t)

− 1
2

∣∣∣∣
= log10

∣∣∣∣ wn(t)
wn(t)− wn+1(t)

∣∣∣∣+ log10

∣∣∣∣1− 1
2wn(t)

(wn(t)− wn+1(t))
∣∣∣∣

= log10

∣∣∣∣ wn(t)
wn(t)− wn+1(t)

∣∣∣∣+O(wn(t)− wn+1(t)
)

= log10

∣∣∣∣ wn(t)
(wn(t)− w(t))− (wn+1(t)− w(t))

∣∣∣∣+O[(wn(t)− w(t))− (wn+1(t)− w(t))
]

= log10

∣∣∣∣∣∣ wn(t)

(wn(t)− w(t))
[
1− wn+1(t)−w(t)

wn(t)−w(t)

]
∣∣∣∣∣∣+O(En) +O(En+1)

= log10

∣∣∣∣ wn(t)
wn(t)− w(t)

∣∣∣∣− log10

∣∣∣∣1− wn+1(t)− w(t)
wn(t)− w(t)

∣∣∣∣+O( Ln

n!

)

= log10

∣∣∣∣ wn(t)
wn(t)− w(t)

∣∣∣∣− log10

∣∣∣∣1− wn+1(t)− w(t)
wn(t)− w(t)

∣∣∣∣+O( Ln

n!

)
.

(23)
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Also,

Cwn(t),w(t) = log10

∣∣∣∣ wn(t)
wn(t)− w(t)

− 1
2

∣∣∣∣
= log10

∣∣∣∣ wn(t)
wn(t)− w(t)

∣∣∣∣+O(wn(t)− w(t))

= log10

∣∣∣∣ wn(t)
wn(t)− w(t)

∣∣∣∣+O( Ln

n!

)
.

(24)

Applying Equations (23) and (24) we have

Cwn(t),wn+1(t) = Cwn(t),w(t) − log10

∣∣∣∣1− wn+1(t)− w(t)
wn(t)− w(t)

∣∣∣∣+O( Ln

n!

)
.

From Remark 1, we can write wn+1(t)−w(t)
wn(t)−w(t) =

O
(

Ln+1
(n+1)!

)
O( Ln

n! )
= O

(
1
n

)
. Thus for n enough large we get

O
(

1
n

)
<< 1 and consequently

Cwn(t),wn+1(t) ' Cwn(t),w(t).

Theorem 2 shows that when n increases, the NCSDs between two sequential results obtained from
the algorithm is almost equal to the common significant digits of the n-th iteration and the exact solution
at the given point t which means that for an optimal index like n = no pt, when wn(t)−wn+1(t) = @.0
then wn(t)− w(t) = @.0.

5. Numerical Results

In this section, several examples of second kind linear Volterra IEs with discontinuous kernel
are presented. The numerical process is based on the HPM that we discussed in previous sections.
Also, using the CESTAC method and the CADNA library for all examples we will arrange some
numerical procedures based on the following algorithm to find the optimal approximation, optimal
error and optimal step of the HPM for solving linear Volterra IEs with jumping kernels. Having the
exact solution in the examples is only to compare the numerical results based on both conditions (1)
and (2). Some comparative graphs between exact and approximate solutions are plotted to show the
accuracy and efficiency of the method.

Algorithm 2:
Step 1- Let n = 1.
Step 2- Do the following steps while |wn(t)− wn+1(t)| 6= @.0
{
Step 2-1- Produce wn(t) using Equations (10) and (19).
Step 2-2- Print n, wn(x), |w(t)− wn(t)| , |wn(t)− wn+1(t)|.
Step 2-3- n = n + 1.
}

Example 1. Consider the following second kind Volterra IE with discontinuous kernel

w(t) = −t +
13t2

9
− 41t3

162
− 5t4

324
+
∫ t

3

0
(s + t)w(s)ds +

∫ t

t
3

w(s)ds, (25)
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with exact solution w(t) = t2 − t. Applying the homotopy map (16) and relations (17), (18) and successive
iterations (19) we get

â0 : v0(t) = w0(t) = g(t) = −t +
13t2

9
− 41t3

162
− 5t4

324
,

â1 : v1(t) = g(t)− w0(t) +
∫ t

3

0
(s + t)v0(s)ds +

∫ t

t
3

v0(s)ds

= −4t2

9
+

577t3

1458
− 1055t4

26244
− 3199t5

787320
− 23t6

1417176
,

â2 : v2(t) =
∫ t

3

0
(s + t)v1(s)ds +

∫ t

t
3

v1(s)ds

=
104t3

729
+

5365t4

59049
− 411953t5

63772920
− 1237231t6

1721868840
− 761899t7

216955473840
− 713t8

520693137216
,

ân : vn(t) =
∫ t

3

0
(s + t)vn−1(s)ds +

∫ t

t
3

vn−1(s)ds, n ≥ 2,

and finally using series solution (10), the approximate solution for n = 5 can be obtained as follows

w5(t) = −t + t2 + 0.000166742 t7 − 0.0000302385 t8 − 1.52193× 10−6 t9 − 5.93206× 10−9 t10

−2.63436× 10−12 t11 − 1.3852× 10−16 t12 − 8.13306× 10−22 t13 − 4.25383× 10−28 t14.

In this example, in order to show the accuracy of method, the CESTAC method and the CADNA library
are applied according to Algorithm 2. Also, instead of applying the termination criterion (1) and using the
traditional absolute error, the stopping condition (2) is applied. This condition is based on two successive
approximations wn(t) and wn+1(t). When the difference of these terms is @.0 the CESTAC algorithm will be
stopped. It shows that the NCSDs of the difference between two successive iterates is zero. The numerical results
using the DSA are presented in Table 1 for t = 0.2 in double precision. According to this table the optimal step
of iterations for the HPM is nopt = 10, the optimal approximation is −0.16 and the optimal absolute error is
0.231× 10−13. Figure 1, shows the comparison between the exact and approximate solutions for optimal value
nopt = 10 obtained from the CESTAC method.

0.2 0.4 0.6 0.8 1.0
t

-0.25

-0.20

-0.15

-0.10

-0.05

w(t)

w10(t)

w(t)

Figure 1. Comparison between the exact and optimal approximate solutions for nopt = 10.
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Table 1. Applying Algorithm 2 for Example 1 with t = 0.2.

n wn(t) |wn(t)−wn+1(t)| |w(t)−wn(t)|

1 −0.158949024126688 0.158949024126688 0.1050975873312× 10−2

2 −0.159947054328260 0.9980302015726× 10−3 0.529456717393× 10−4

3 −0.159997865982876 0.508116546153× 10−4 0.21340171239× 10−5

4 −0.159999928407226 0.2062424350× 10−5 0.715927734× 10−7

5 −0.159999997943235 0.695360085× 10−7 0.2056764× 10−8

6 −0.159999999946935 0.20037004× 10−8 0.530644× 10−10

7 −0.159999999999848 0.52913× 10−10 0.151× 10−12

8 −0.159999999999976 0.128× 10−12 0.231× 10−13

9 −0.159999999999999 0.23× 10−13 @.0
10 −0.160000000000000 @.0 @.0

Example 2. Consider the following Volterra IE [11]

w(t) =
1
8

t3 − 271
8192

t4 − 1099
20480

t5 − 31
40960

t6 +
∫ t

4

0
(1 + t + s)w(s)ds +

∫ t
2

t
4

(2 + ts)w(s)ds +
∫ t

t
2

(1 + t + s)w(s)ds, (26)

where the exact solution is w(t) = t3

8 . Applying the homotopy map (16) and relations (17), (18) and successive
iterations (19) we can find the approximate solution in the following form

w5(t) = 0.125 t3 − 2.60209× 10−18 t8 − 2.32004× 10−6 t9 − 0.0000188571 t10 − 0.0000644212 t11

−0.000118496 t12 − 0.000123946 t13 − 0.0000701359 t14 − 0.0000170219 t15 − 2.00669× 10−7 t16

−2.8387× 10−10 t17 − 5.39533× 10−14 t18 − 1.37516× 10−18 t19 − 4.46435× 10−24 t20

−1.5236× 10−30 t21

In this example, the DSA and the CADNA library are applied to validate the numerical approximations.
Also, using the stopping condition (2) we do not need to have the exact solution to show that accuracy of presented
method. The numerical results are presented in Table 2 for t = 0.3 by applying Algorithm 2. Using these results,
the optimal approximation is 0.337499999999999× 10−2 and the optimal absolute error is 0.26× 10−15 and
nopt = 11 is the optimal step of iteration for HPM method for solving Example 2. Comparison between the exact
and approximate solutions for nopt = 11 is demonstrated in Figure 2.

0.2 0.4 0.6 0.8 1.0
t

0.02

0.04

0.06

0.08

0.10

0.12

w(t)

w11(t)

w(t)

Figure 2. Comparison between the exact and optimal approximate solutions for nopt = 11.
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Table 2. Applying Algorithm 2 for Example 2 with t = 0.3.

n wn(t) |wn(t)−wn+1(t)| |w(t)−wn(t)|

1 0.333953193046557× 10−2 0.333953193046557× 10−2 0.35468069534420× 10−4

2 0.337246339699770× 10−2 0.3293146653212× 10−4 0.253660300229× 10−5

3 0.337484790802514× 10−2 0.238451102744× 10−5 0.15209197485× 10−6

4 0.337499213815335× 10−2 0.14423012820× 10−6 0.7861846644× 10−8

5 0.337499968103952× 10−2 0.7542886169× 10−8 0.31896047× 10−9

6 0.337499999258881× 10−2 0.31154929× 10−9 0.741118× 10−11

7 0.337499999979560× 10−2 0.720678× 10−11 0.20439× 10−12

8 0.337499999998390× 10−2 0.18830× 10−12 0.1609× 10−13

9 0.337499999999973× 10−2 0.1582× 10−13 0.26× 10−15

10 0.337499999999998× 10−2 0.25× 10−15 @.0
11 0.337499999999999× 10−2 @.0 @.0

Table 3. Numerical approximations for Example 3 with t = 0.2.

n wn(t) |wn(t)−wn+1(t)| |w(t)−wn(t)|

1 0.997548914719302× 10−5 0.997548914719302× 10−5 0.245108528069× 10−7

2 0.100010710205707× 10−4 0.255818733777× 10−7 0.10710205707× 10−8

3 0.999995689009746× 10−5 0.111413047328× 10−8 0.4310990253× 10−10

4 0.100000016025571× 10−4 0.4471245970× 10−10 0.16025571× 10−11

5 0.999999994481069× 10−5 0.16577464× 10−11 0.5518930× 10−13

6 0.100000000017666× 10−4 0.5695594× 10−13 0.17666× 10−14

7 0.999999999994729× 10−5 0.18193× 10−14 0.527× 10−16

8 0.100000000000014× 10−4 0.5418× 10−16 0.14× 10−17

9 0.999999999999996× 10−5 0.15× 10−17 0.3× 10−19

10 0.100000000000000× 10−4 @.0 @.0

Example 3. Consider the following linear Volterra IE of the second kind

w(t) = t5 − 811201
1572864

t6 +
38249

14680064
t7 − 3938545

939524096
t8

+
∫ t

8

0
(1− 3t− s)w(s)ds +

∫ t
2

t
8

(2 + s3 − t)w(s)ds +
∫ 3t

4

t
2

(2t2s + 1)w(s)ds− 4
∫ t

3t
4

w(s)ds,

(27)

where the exact solution is w(t) = t5.
The numerical results are presented in Table 3. The optimal iteration of the HPM for solving this example

is nopt = 10, the optimal approximation is 0.1× 10−4 and the optimal error is 0.3× 10−19 . To validate the
results, the CADNA library is applied based on the termination criterion (2). Theorem 2 is able to permit us
to apply the stopping condition instead of the traditional condition (1). In Figure 3, the graph of exact and
approximate solutions for optimal value nopt = 10 is studied.
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0.2 0.4 0.6 0.8 1.0
t

0.2

0.4

0.6

0.8

1.0

w(t)

w10(t)

w(t)

Figure 3. Comparison between exact and optimal approximate solutions for nopt = 10.

6. Conclusions

Volterra IEs with discontinuous kernel are among applicable problems in power engineering and
especially in load leveling problems. In this study, we applied the HPM while the CESTAC method
and the CADNA library used to examine the numerical results. Applying this method not only the
optimal iteration of the HPM, the optimal approximation and the optimal error can be found but also
some of numerical instabilities can be detected. Furthermore, the substantial theorem is provided
which approves the appropriateness of the termination criterion (2) instead of traditional absolute
error. We will focus on validating the nonlinear Volterra IEs with discontinuous kernel in fuzzy and
crisp forms using the CESTAC method for our future works.
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