
symmetryS S

Article

PT -Symmetric Qubit-System States in the
Probability Representation of Quantum Mechanics

Vladimir N. Chernega 1, Margarita A. Man’ko 1,* and Vladimir I. Man’ko 1,2,3,4

1 Lebedev Physical Institute, Leninskii Prospect 53, 119991 Moscow, Russia; chernegavn@lebedev.ru (V.N.C.);
manko.vi@phystech.edu (V.I.M.)

2 Moscow Institute of Physics and Technology (State University), Institutskii per. 9, Dolgoprudnyi,
141700 Moscow, Russia

3 Russian Quantum Center, Skolkovo, 143025 Moscow, Russia
4 Department of Physics, Tomsk State University, Lenin Avenue 36, 634050 Tomsk, Russia
* Correspondence: mankoma@lebedev.ru; Tel.: +7-499-668-8888 (ext. 6197)

Received: 17 September 2020; Accepted: 13 October 2020; Published: 16 October 2020
����������
�������

Abstract: PT -symmetric qubit-system states are considered in the probability representation of
quantum mechanics. The new energy eigenvalue equation for probability distributions identified
with qubit and qutrit states is presented in an explicit form. A possibility to test PT -symmetry
and its violation by measuring the probabilities of spin projections for qubits in three perpendicular
directions is discussed.
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1. Introduction

In the conventional formulation of quantum mechanics, the pure states of physical systems are
identified with state vectors |ψ〉 belonging to a Hilbert space H [1] and with the wave functions [2,3]
ψ(x) = 〈x|ψ〉 satisfying the Schrödinger equation [2] determined by the Hamiltonian operator Ĥ
acting in the Hilbert space and being the Hermitian operator, i.e., Ĥ† = Ĥ. The eigenfunctions of the
Hamiltonian describe the energy levels of quantum systems. The eigenfunctions of the Hamiltonian
are associated with the stationary states of the quantum systems. For qubits (two-level atoms or
spin-1/2 systems), the Hilbert space H is a two-dimensional space, and the Hamiltonian operator
Ĥ is represented by the Hermitian 2 × 2-matrix with real eigenvalues and orthogonal eigenvectors.
Additionally, in conventional quantum mechanics, the superposition principle means that, for any two
arbitrary state vectors |ψ1〉 and |ψ2〉, there exists the vector |ψ〉 = c1|ψ1〉+ c2|ψ2〉, with c1 and c2 being
the complex numbers; this vector |ψ〉 describes the state of the system which does exist [1].

Recently, the problem of non-Hermitian Hamiltonian operators with real eigenvalues was
discussed in [4–8] in connection with PT -symmetry (parity–time) of the physical problems, where the
eigenvectors and eigenvalues of non-Hermitian Hamiltonians with such symmetries are associated
with specific properties of the physical systems (see, for example, [9,10]), including the dynamical
Casimir effect reviewed in [11,12] where the non-Hermiticity of the Hamiltonian is related to
accounting for the dissipation processes [13]. The problems of non-Hermitian quantum mechanics were
studied in [14–18]. The differences between conventional quantum mechanics and non-Hermitian
quantum mechanics in the Hilbert-space representation of pure and mixed quantum states were
analyzed in [19]. The applications of the PT -symmetry approach in quantum optics and physics of
oscillators were discussed in [20]. The anti-PT -symmetry approach in qubit states was presented
in [21]. An exactly solvable pseudo-Hermitian system with SU(1, 1) symmetry was studied in [22].
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The system of oscillators with PT -symmetries was considered in [23]. The Heisenberg representation
for the non-Hermitian systems was given in [24]. The PT -symmetric states of different systems,
including time-dependent oscillators, were investigated in [25,26]. The experimental study of a single
dissipative qubit connected with quantum-state tomography related to the system behavior near
exceptional points associated with PT -symmetry 0f the non-Hermitian Hamiltonian was presented
in [27].

In conventional quantum mechanics, in addition to the wave functions [2] and density
matrices [28,29], different representations of quantum states were introduced. The Wigner function
W(q, p) [30], Husimi–Kano function Q(q, p) [31,32], and Glauber–Sudarshan P(q, p)-function [33,34]
are important examples of the phase–space representations of the states of quantum systems with
continuous variables, e.g., oscillator systems.

On the other hand, the probability representation of quantum states for such systems
was suggested in [35], where the states were identified with fair tomographic-probability
distributions—symplectic tomograms w(X|µ, ν) of the oscillator position X depending on real
parameters µ and ν determining the reference frames in the phase space where the position X is
measured. A recent review of the tomographic-probability representation of quantum states can
be found in [36]. The tomogram is connected with the density matrix and Wigner function by the
invertible Radon integral transform [37]. The relation of the tomographic-probability representation
with the phase–space representation [38] of quantum state was discussed in [39]. The probability
representation was found for such systems as oscillators and photon states, and others. In the case
of two-level atoms (qubit, spin-1/2 system), the quantum-system states were identified with fair
probability distributions of three dichotomic random variables [40–46]. It was shown that the states
of quantum systems, such as oscillators and qubits, can completely be described by fair probability
distributions. This approach provided the possibility to study new entropic-information inequalities for
quantum states associated with the descriptions of the states by probability distributions determining
the entropy in conventional probability theory [47,48].

The Schrödinger equations determining the energy levels of quantum systems with Hermitian
Hamiltonians and the evolution of the wave functions in the probability representation take the form
of equations for the probability distributions determining quantum states [49,50]. Till now the systems
with non-Hermitian Hamiltonians were not considered in the probability representations of quantum
states. The aim of our work was to construct, for an example of qubit states, the representation of these
states by the probability distributions of dichotomic random variables. We present the Schrödinger
equation for eigenvectors of non-Hermitian Hamiltonians with real eigenvalues in the form of linear
equations for dichotomic probability distributions of random variables determined by matrix elements
of the non-Hermitian matrices with PT -symmetry properties. In fact, we show the way to construct
an invertible map of the problem of solving the Schrödinger eigenvalue equation for non-Hermitian
Hamiltonians with real eigenvalues, considering the problem of solving the corresponding linear
equation for the probabilities associated with some sets in simplex, analogously to the case of
quantum-mechanical states with Hermitian Hamiltonians studied in [48]. Additionally, we constructed
the probability representation for eigenvectors of arbitrary complex matrices with complex eigenvalues.

2. Two-Level Atom States

We start with the example of qubit state. We consider the generic non-Hermitian Hamiltonian
operator for the two-level atom

Ĥ = α|1〉〈1|+ β|2〉〈2|+ γ|1〉〈2|+ δ|2〉〈1|, 〈j|k〉 = δjk, (1)
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where α, β, γ, and δ are complex numbers. The matrix H of the Hamiltonian on the basis of two vectors
|1〉 and |2〉, such that 〈1|1〉 = 〈2|2〉 = 1 and 〈1|2〉 = 0, has the form

H =

(
α γ

δ β

)
; (2)

complex eigenvalues of this matrix read

λ1 =
α + β

2
+

√(
α− β

2

)2
+ γδ, λ2 =

α + β

2
−

√(
α− β

2

)2
+ γδ. (3)

If Im (α + β) = 0 and the number
(
[(α− β)/2]2 + γδ

)
is a real number s2 ≥ 0, the eigenvalues λ1

and λ2 of the matrix H and its eigenvectors are expressed in terms of the matrix elements of the matrix
H as follows:

|ψ1,2〉 = N1,2

(
1

(λ1,2 − α) /γ

)
. (4)

Two nonnegative normalization constants N1,2 satisfy the equation

|N1,2|2
[

1 +
∣∣∣∣λ1,2 − α

γ

∣∣∣∣2
]
= 1, (5)

where eigenvalues λ1,2 are determined by Equation (3).
To construct the probability representation of non-Hermitian Hamiltonian eigenvectors |ψ1〉

and |ψ2〉, we review the probability representation of qubit states (spin-1/2 states, two-level atom
states) [40–46]. For Hermitian Hamiltonians Ĥ† = Ĥ, the matrix elements of matrix H in Equation (2)
satisfy the conditions Im α = Im β = 0 and δ = γ∗. In this case, the eigenvalues of matrix H satisfy the
equalities Im λ1 = Im λ2 = 0. The energy levels E1 = λ1 and E2 = λ2 of two-level atom are expressed
in terms of the matrix elements of Hamiltonian (2), i.e., real numbers α and β and complex numbers γ

and δ = γ∗, as follows:

E1,2 =
α + β

2
±

√(
α− β

2

)2
+ |γ|2. (6)

In the case of Hermitian matrix H, the eigenvectors (4) are expressed in terms of the matrix
elements of matrix H: they read

|ψE1,2〉 =
(

N1,2

N1,2 (E1,2 − α) /γ

)
, (7)

where nonnegative normalization constants N1,2 are expressed in terms of the matrix elements of
Hamiltonian matrix H, i.e.,

N1,2 = |γ|
[
|γ|2 + (E1,2 − α)2

]−1/2
. (8)

The eigenvectors (7) satisfy the orthogonality condition 〈ψE1 |ψE2〉 = 0 and the normalization
conditions 〈ψE1 |ψE1〉 = 〈ψE2 |ψE2〉 = 1. The density 2 × 2-matrices of pure states of the two-level atom
with Hermitian Hamiltonian has the form determined by the density operator

ρ̂1,2 = |ψE1,2〉〈ψE1,2 | = ρ
E1,2
11 |1〉〈1|+ ρ

E1,2
22 |2〉〈2|+ ρ

E1,2
12 |1〉〈2|+ ρ

E1,2
21 |2〉〈1|, (9)

with the density matrix ρE1,2 .
As it was shown in [40–46], the physical meanings of the matrix elements of density

operator (9) can be associated with three dichotomic probability distributions (p1, 1− p1), (p2, 1− p2),
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and (p3, 1− p3) of spin-1/2 projections m = ±1/2 in three perpendicular directions in the
space, i.e., x, y, and z directions. One can check that the traces of the product of ρE1,2 with three
density matrices
1
2

1 +
1
2

σx =

(
1/2 1/2
1/2 1/2

)
;

1
2

1 +
1
2

σy =

(
1/2 −i/2
i/2 1/2

)
;

1
2

1 +
1
2

σx =

(
1/2 0

0 −1/2

)
+

1
2

1,

expressed in terms of three Pauli matrices
1
2
+

1
2

Tr
(
ρE1, 2 σx,y,z

)
, are equal to three probabilities

0 ≤ pE1, 2
1 , pE1, 2

2 , pE1, 2
3 ≤ 1.

According to Born’s rule, the trace of the density matrix ρE1, 2 with the other density matrix
ρj = |ψj〉〈ψi|, i.e., Tr

(
ρE1, 2 ρj

)
, is equal to the probability pE1, 2

j to obtain the properties of the state |ψj〉

in the state ρE1, 2 . For the pure state, this probability is pE1, 2
j = |〈ψE1, 2 |ψj〉|2.

For mixed states with density matrices ρA and ρB, Born’s rule also provides the expression of
analogous probabilities PA

B . The probabilities PA
B are the probabilities of the results obtained following

the procedure: (i) one needs to obtain the properties of the system in the state ρA; (ii) for that,
one performs the measurement for this system prepared in the state ρB; (iii) finally, one employs Born’s
rule, which provides the equality PA

B = Tr (ρAρB).
In view of this method, it was found [40–46] that any density 2 × 2-matrix of the qubit state can

be mapped onto three probability distributions; i.e., the qubit-state density matrix reads

ρ =

(
p3 (p1 − 1/2)− i (p2 − 1/2)

(p1 − 1/2) + i (p2 − 1/2) 1− p3

)
. (10)

Thus, an arbitrary qubit state is determined by three probabilities 0 ≤ p1, p2, p3 ≤ 1 satisfying
the nonnegativity condition of the density operator

(p1 − 1/2)2 + (p2 − 1/2)2 + (p3 − 1/2)2 ≤ 1/4. (11)

Here, numbers p1, p2, and p3 are the probabilities of the result of the experiment with qubit
state, where one measures spin projections m = +1/2 in three perpendicular directions x, y,
and z. The form of the density matrix (10) demonstrates that any qubit state is identified with the
probability distributions of dichotomic random variables, which we call the probability representation
of quantum state.

3. Schrödinger’s Equation for Energy Levels in the Probability Representation

The energy levels of quantum system satisfy the eigenvalue equation for a Hamiltonian operator
Ĥ acting in a Hilbert space

Ĥ|ψE〉 = E|ψE〉. (12)

We consider the operator Ĥ to be non-Hermitian one, i.e., Ĥ† 6= Ĥ. Thus, we have the equality

〈ψE|Ĥ† = E∗〈ψE|. (13)

In the case of PT -symmetry, one has the property E = E∗. Then, in view of Equation (13), for the
operator ρ̂E = |ψE〉〈ψE|, we obtain the following equations:

1
2

[
Ĥρ̂E + ρ̂EĤ†

]
= Eρ̂E,

[
Ĥρ̂E − ρ̂EĤ†

]
= 0. (14)

Vectors |ψE〉 can be chosen to satisfy the normalization condition Tr ρ̂E = 〈ψE|ψE〉 = 1.
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In [40,41], the qudit-state density matrices were introduced in the probability representation,
i.e., as Hermitian trace-one matrices |ψE〉〈ψE| with nonnegative eigenvalues. The matrix elements of
these Hermitian matrices are ρjk =

(
p(jk)

1 − 1/2
)
− i
(

p(jk)
2 − 1/2

)
for j < k and j; k = 1, 2, . . . , N,

ρjj = p(jj)
3 for j = 1, 2, . . . , N − 1, and ρNN = 1− ∑N−1

j=1 p(jj)
3 . The matrix elements ρjk satisfy the

Silvester criterion of the nonnegativity of the eigenvalues of matrix ρjk; the nonnegative numbers

p(jk)
1,2,3 can be interpreted as the probability distributions of dichotomic random variables. For the states
|ψE〉, the eigenvalues of matrix ρjk satisfy this condition.

Now we consider the example of pure qubit state in the case of Hermitian Hamiltonian Ĥ.
Since the density matrix ρjk of qubit state (10) is determined by three probability distributions of
dichotomic random variables (p1, 1− p1), (p2, 1− p2), and (p3, 1− p3), namely, ρ11 = p3, ρ12 =

ρ∗21 = (p1 − 1/2)− i(p2 − 1/2), and ρ22 = (1− p3), we can obtain the state vectors of the qubit.

For pure states, |ψ〉 =
(

ψ1

ψ2

)
, the vector |ψ〉 can be written in the form [48,51]

|ψ〉 =
( √

p3√
1− p3 eiϕ

)
, cos ϕ =

p1 − 1/2√
p3(1− p3)

, sin ϕ =
p2 − 1/2√
p3(1− p3)

, (15)

where the probabilities pj; j = 1, 2, 3 satisfy the equality

(p1 − 1/2)2 + (p2 − 1/2)2 + (p3 − 1/2)2 = 1/4. (16)

We choose the phase of ψ1 to be equal to zero due to the gauge symmetry property of the wave
functions of quantum systems [52].

The probability parametrization of an arbitrary normalized vector |ψ〉 can be used, including the
case of eigenvectors of non-Hermitian Hamiltonian Ĥ; this means that one can provide the invertible
map of the solutions of Equation (12) onto a set of three probability distributions of dichotomic random
variables, using Equation (15). In the case of E = E∗, after introducing the Hamiltonian matrix H of the
Hamiltonian operator Ĥ, relation (14) takes the form of the system of equations for the probabilities(

H11 H12

H21 H22

)(
p3 p∗

p 1− p3

)
+

(
p3 p∗

p 1− p3

)(
H∗11 H∗21
H∗12 H∗22

)
= 2 E

(
p3 p∗

p 1− p3

)
, (17)

where p = (p1 − 1/2)− i(p2 − 1/2) and inequality (16) is valid.
Equation (12) can be written in the form of a system of linear equations for the four-vector |ρE〉,

with components ρE1 , ρE2 , ρE3 , and ρE4 , expressed in terms of probabilities of dichotomic random
variables, as follows:

ρE1 = p3, ρE2 = (p1 − 1/2)− i (p2 − 1/2) , ρE3 = ρ∗E2
, ρE4 = 1− p3.

Since ρ̂E = |ψE〉〈ψE〉, one can check that there exists the system of four equations given in vector
form; it reads

(H × 1) |ρE〉 = E|ρE〉, (1× H∗) |ρE〉 = E∗|ρE〉. (18)

In these equations given in vector forms, vectors |ρE〉 satisfy Equation (14) written for
PT -symmetric systems with Hamiltonians having real eigenvalues.

4. Probability Representation of the Eigenvalue Equations for Generic Non-Hermitian
Hamiltonians of Qubit Systems

Our aim now is to extend the probability representation of the eigenvalue equation for the
PT -symmetric qubit system (17) and derive a system of equations for generic non-Hermitian
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Hamiltonian with 2 × 2-matrix H, employing the vector representation of operator ρ̂E, where the
matrix of this operator is presented as vector |ρE〉. We consider an example of the density matrix

ρjk; j, k = 1, 2 written in the form of four-vector |ρE〉 =


p3

p∗

p
1− p3

. Vector 〈ρE| has the form

〈ρE| = (p3, p, p∗, 1− p3), where p1, p2, and p3 are interpreted as probabilities of spin projections
m = +1/2 in three perpendicular directions.

Equation (18) take the matrix form
H11 0 H12 0

0 H11 0 H12

H21 0 H22 0
0 H21 0 H22




p3

p∗

p
1− p3

 = E


p3

p∗

p
1− p3

 , (19)


H∗11 H∗12 0 0
H∗21 H∗22 0 0

0 0 H∗11 H∗12
0 0 H∗21 H∗22




p3

p
p∗

1− p3

 = E∗


p3

p
p∗

1− p3

 , (20)

where the complex number E is the eigenvalue of non-Hermitian Hamiltonian matrix H. In the
case of PT -symmetry E = E∗, and Equations (19) and (20) for the eigenvector of non-Hermitian
Hamiltonians with real eigenvalues are given by (17). Analogous forms of Equations (19) and (20)
in the probability representation of eigenstates of generic Hamiltonian matrix can be written for
N-dimensional states |ψE〉.

5. The Schrödinger Equation for States with Eigenvalues of Energy as Equations for Eigenvectors
with Components—Probabilities Determining Qubit States

Employing Equations (19) and (20), we obtain a new form of the Schrödinger equation for
probabilities p1, p2, p3, (1− p1), (1− p2), and (1− p3) determining stationary states of the spin-1/2
particle. First, we consider the Hermitian Hamiltonian for which in (19) and (20) E = E∗, Im H11 =

Im H22 = 0, and H∗12 = H21. Equations (19) and (20) are written for four-vectors. For matrices

H1 =


H11 0 H12 0

0 H11 0 H12

H21 0 H12 0
0 H21 0 H22

 , H2 =


H11 H21 0 0
H12 H22 0 0

0 0 H11 H21

0 0 H12 H22

 (21)

and vector |ρE〉, the condition
det (H1,2 − E14) = 0 (22)

means that the following relation:

[(H11 − E) (H22 − E)− H12H21]
2 = 0 (23)

is valid. For generic complex Hamiltonian matrix H, the relation

[(H∗11 − E∗) (H∗22 − E∗)− H∗12H∗21]
2 = 0 (24)

corresponds to Equation (20).



Symmetry 2020, 12, 1702 7 of 14

One can see that for an arbitrary complex 2 × 2-matrix H =

(
H11 H12

H21 H12

)
, the Schrödinger

Equations (12) and (13) in the form of eigenvalue equations for the four-vector |ρE〉 yield the system of
complex conjugate eigenvalue equations for probabilities p1, p2, and p3.

Thus, we obtained the system of linear equations for the spectrum of complex 2 × 2-matrix H in
the form of equations for the four-vector |ρE〉, with components expressed in terms of three probability
distributions (p1, 1− p1), (p2, 1− p2) , and (p3, 1− p3) of three dichotomic random variables.
This result can be extended to the case of arbitrary qudit states. In the next section, we consider the
qutrit state.

6. A Probability Representation for the Non-Hermitian Hamiltonian Eigenvalue Equation of the
Qutrit State

Our goal in this section is to demonstrate the extension of the approach to other states; for this, we
construct the probability representation of eigenvectors for qudit system on the example of the qutrit
state. As it was shown in [51,53], an arbitrary N×N matrix ρ, such that ρ = ρ†, Tr ρ = 1, with nonzero
eigenvalues, has matrix elements which can be parameterized as follows: ρjj = p(jj)

3 ; j = 1, 2, . . . , N,

ρNN = 1 = ∑N−1
j=1 p(jj)

3 , and ρjk =
(

p(jk)
1 − 1/2

)
− i
(

p(jk)
2 − 1/2

)
; j < k, where numbers p(jk)

1,2,3 are
probabilities of dichotomic random variables satisfying the Silvester criterion for the N×N matrix ρ.

The density matrix ρ for the qutrit state can be mapped onto nine-vector 〈ρ| with components
ρ1 = p(11)

3 , ρ2 =
(

p(12)
1 − 1/2

)
+ i
(

p(12)
2 − 1/2

)
, ρ3 =

(
p(13)

1 − 1/2
)
+ i
(

p(12)
2 − 1/2

)
, ρ4 = ρ∗2 ,

ρ5 = ρ
(22)
3 , ρ6 =

(
p(23)

1 − 1/2
)
+ i
(

p(23)
2 − 1/2

)
, ρ7 = ρ∗3 , ρ8 = ρ∗6 , and ρ9 = 1− p(11)

3 − p(22)
3 .

Numbers ρ
(jk)
1,2,3 are probabilities of dichotomic random variables; these probabilities satisfy the Silvester

criterion for 3×3-matrix ρ. The spectrum for the 3×3-matrix ρ of the generic Hamiltonian matrix H
satisfies the system of Equation (18). These equations have the form of a system of equations for the
probability distributions of dichotomic random variables, where numbers ρ

(jk)
1,2,3 can be interpreted as

probabilities to have artificial spin projections m = +1/2 in eight directions in the space.
The presented probability-representation construction is valid for an arbitrary 3×3-matrix ρ,

such that ρ = ρ†, Tr ρ = 1, with nonnegative eigenvalues. The tool we used is the application of the
density matrix representation |ψ〉〈ψ| of eigenvectors |ψ〉 in the case of the Hamiltonian 3×3-matrix.

The eigenvalue equations for non-Hermitian Hamiltonian 3×3-matrix of the three-level atom
H 6= H† in the vector form for the nine-vector |ρEj〉; j = 1, 2, . . . , 9 read

9

∑
k=1

{
(H × 1)jk

}
|ρEk〉 = E|ρEj〉, (25)

9

∑
k=1

{
(1× H∗)jk

}
|ρEk〉 = E∗|ρEj〉. (26)

Since the vector components ρEj are expressed in terms of dichotomic probabilities pEj
1, 2, 3; j, k = 1, 2 , 3,

linear Equations (25) and (26) have the form of a system of equations for the set of probability
distributions pEj

1, 2, 3 determining the qutrit Hamiltonian eigenstates. The explicit probabilistic form of
Equation (25) reads
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

H11 0 0 H12 0 0 H13 0 0
0 H11 0 0 H12 0 0 H13 0
0 0 H11 0 0 H12 0 0 H13

H21 0 0 H22 0 0 H23 0 0
0 H21 0 0 H22 0 0 H23 0
0 0 H21 0 0 H22 0 0 H23

H31 0 0 H32 0 0 H33 0 0
0 H31 0 0 H32 0 0 H33 0
0 0 H31 0 0 H32 0 0 H33


·



p(11)
3

p∗(12)

p∗(13)

p(12)

p(22)
3

p∗(23)

p(13)

p(22)

p(33)
3


= E



p(11)
3

p∗(12)

p∗(13)

p(12)

p(22)
3

p∗(23)

p(13)

p(22)

p(33)
3


, (27)

and explicit probabilistic form of Equation (26) is



H∗11 H∗12 H∗13 0 0 0 0 0 0
H∗21 H∗22 H∗23 0 0 0 0 0 0
H∗31 H∗32 H∗33 0 0 0 0 0 0

0 0 0 H∗11 H∗12 H∗13 0 0 0
0 0 0 H∗21 H∗22 H∗23 0 0 0
0 0 0 H∗31 H∗32 H∗33 0 0 0
0 0 0 0 0 0 H∗11 H∗12 H∗13
0 0 0 0 0 0 H∗21 H∗22 H∗23
0 0 0 0 0 0 H∗31 H∗32 H∗33


·



p(11)
3

p∗(12)

p∗(13)

p(12)

p(22)
3

p∗(23)

p(13)

p(22)

p(33)
3


= E∗



p(11)
3

p∗(12)

p∗(13)

p(12)

p(22)
3

p∗(23)

p(13)

p(22)

p(33)
3


, (28)

where p(33)
3 = 1− p(11)

3 − p(22)
3 .

Thus, for the three-level atom, we can obtain the energy spectrum for an arbitrary non-Hermitian
Hamiltonian with 3×3-density matrix H by solving Equations (27) and (28) written for dichotomic
probabilities p(11)

3 and p(22)
3 and complex numbers p(13), p(13), and p(23) expressed as linear

combinations of dichotomic probabilities p(jk)
1, 2 , namely,

p(jk) =
(

p(jk)
1 − 1/2

)
+ i
(

p(jk)
2 − 1/2

)
; j < k, j, k = 1, 2, 3.

The result obtained demonstrates that for PT -symmetric systems the probability description of
Hamiltonian spectrum is described by Equations (27) and (28), with E = E∗. It is worth pointing out
that specific behavior of the three-level atom with a non-Hermitian Hamiltonian was experimentally
studied in [27].

7. An Example of a Non-Hermitian Hamiltonian with PT -Symmetry

The particular case of non-Hermitian Hamiltonian

H =

(
z s
s z∗

)
, s = s∗, s2 ≥ (Im z)2 (29)

was considered in [4,5,19]. Here, we consider a particular example of the Hamiltonian with z = 1 + i;
i.e., we have the energy levels E1 = 1 +

√
s2 − 1 and E2 = 1−

√
s2 − 1, where s > 1, and there exists

the matrix a,

a =

 1 s−1
(√

s2 − 1− i
)

1 −s−1
(√

s2 − 1− i
)  , (30)
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which provides the matrix equality

a

(
1 + i s

s 1− i

)
=

(
E1 0
0 E2

)
a. (31)

The normalized eigenvectors |1〉 and |2〉 of the Hamiltonian H in Equation (29) read

|1〉 = 1√
2

 1
√

s2 − 1− i
s

 , |2〉 = 1√
2

 1

−
√

s2 − 1− i
s

 . (32)

For s→ ∞, |1〉 → 1√
2

(
1
1

)
and |2〉 → 1√

2

(
1
−1

)
.

The density matrices of pure states |1〉 and |2〉 read

ρ1 =


1
2

√
s2 − 1 + i

2 s√
s2 − 1− i

2 s
1
2

 , ρ2 =


1
2

−
√

s2 − 1 + i
2 s

−
√

s2 − 1− i
2 s

1
2

 . (33)

The probability parameters p1(s), p2(s), and p3(s), describing the qubit states ρ1 and ρ2, are

for pure state |1〉, p(1)3 (s) =
1
2

, p(1)1 (s) =
1
2
+

1
2s

√
s2 − 1, p(1)2 (s) =

1
2
− 1

2s
,

for pure state |2〉, p(2)3 (s) =
1
2

, p(2)1 (s) =
1
2
− 1

2s

√
s2 − 1, p(2)2 (s) =

1
2
− 1

2s
.

One can see that for the spin-1/2 state (qubit state), we have the following interpretation of the
written states |1〉 and |2〉: in these states, the probability to have the projection m = +1/2 in the
z direction is equal to 1/2. However, there are different probabilities to have the spin projection equal
to m = +1/2 in the x and y directions. In the state ρ1, we have the probability p1(s) as the probability
of the spin projection m = +1/2 on the x axis and p2(s) as the probability of the spin projection
m = +1/2 on the y axis. Thus, we have both states with specific symmetry properties with respect
to the two directions determined by the x and y axes. Born’s rule provides the dependence of the
probability Tr (ρ1 ρ2) = s−2.

If one has spin-1/2 states, which are eigenstates |ρE1, 2〉 of the PT -symmetric Hamiltonian (32),
and measures the probabilities to get spin projections m = +1/2 on three perpendicular directions pE1

1 ,
pE1

2 , pE1
3 , pE2

1 , pE2
2 , and pE2

3 in these states, there exists a difference in the behavior of spin-1/2 states for
eigenstates of any Hermitian Hamiltonian and the non-Hermitian Hamiltonian we are now discussing.
For spin-1/2 states defined as eigenstates of any Hermitian Hamiltonian, the probabilities PE1

1 , PE1
2 ,

PE1
3 , PE2

1 , PE2
2 , and PE2

3 of spin projections m = +1/2 on three perpendicular directions must satisfy
the equality

Tr

[(
PE1

3 (PE1
1 − 1/2)− i (PE1

2 − 1/2)
(PE1

1 − 1/2) + i (PE1
2 − 1/2) 1−PE1

3

)

×
(

PE2
3 (PE2

1 − 1/2)− i (PE1
2 − 1/2)

(PE2
1 − 1/2) + i (PE2

2 − 1/2) 1−PE2
3

)]
= 0. (34)

In view of Born’s rule, Tr
(
ρE1 ρE2

)
= WE2

E1
is the probability given by the scalar product of the

wave functions |〈ψE1 |ψE2〉|2 = WE2
E1

.
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For two density matrices of the form (10), one has

WE2
E1

= 2
[

1 + PE1
1 P

E2
1 + PE1

2 +PE∈∈ + PE∞
3 P

E2
3 −P

E1
1 −P

E1
2 −P

E1
3 −P

E2
1 −P

E2
2 −P

E2
3

]
. (35)

For PT -symmetric Hamiltonian, the written trace of the product of these two density matrices,
expressed in terms of probabilities pE1

1 (s), pE1
2 (s), pE1

3 (s), pE2
1 (s), pE2

2 (s), and pE2
3 (s), is different from

zero. For considered example, Tr
(
ρE1 ρE2

)
= WE2

E1
depends on the parameter s and is equal to zero

only at s→ ∞. This difference can be a tool for detecting the PT -symmetric behavior of qubit (spin or
two-level atom) systems.

In the limit s→ 1 (exceptional point), WE2
E1
→ 1.

Thus, the PT -symmetric behavior can be detected, if one measures the probabilities of spin
projections m = +1/2 in three directions, x, y, and z, in the two states with the given qubit state
vectors |ψE1〉 and |ψE2〉.

8. The Superposition Principle and PT -Symmetric States

According to the superposition principle in conventional quantum mechanics, the state |χ〉,
being a superposition of existing states |ψ0〉 and |ϕ0〉 of the form

|χ〉 = c1|ψ0〉+ c2|ϕ0〉, (36)

where c1 and c2 are complex numbers, does exist. Let us consider two qubit states |ψ0〉 =
(

1
0

)
and

|ϕ0〉 =
(

0
1

)
. The states |ψE1〉 and |ψE2〉 are normalized superposition states

|ψE1 〉 =
1√
2
|ψ0〉+

1
s
√

2

(√
s2 − 1− i

)
|ϕ0〉, |ψE2 〉 =

1√
2
|ψ0〉 −

1
s
√

2

(√
s2 − 1 + i

)
|ϕ0〉. (37)

We see that these states are superpositions of two states with spin projections on the z axis
m = +1/2 for the state |ψ0〉 and m = −1/2 for the state |ϕ0〉. According to the superposition principle
of quantum mechanics, these states exist. On the other hand, these states are the eigenstates of the

PT -symmetric Hamiltonian H =

(
1 + i s

s 1− i

)
. Consequently, one can produce a measurement

of spin projections in the z direction and other directions in the states |ψE1〉 and |ψE2〉 given by (37)
and experimentally obtain the probabilities to get positive values of the projections. The experimental
value of the probability WE2

E1
given by Born’s rule characterizes the presence of the PT -symmetry in

the qubit states depending on the parameter s of the non-Hermitian matrix H.

9. Qubit States with Broken PT -Symmetry

The discussed approach provides the possibility to understand how to detect the states with
broken PT -symmetry Hamiltonians, using the probability representation of these states. We address
the question: How can one find experimental characteristics of qubit states, which are the eigenstates
of non-Hermitian Hamiltonians with complex eigenvalues? To consider the case of system with broken
PT -symmetry Hamiltonian, we formulate the following problem.

Take two qubit vectors |ψ〉 =
(

ψ1

ψ2

)
and |ϕ〉 =

(
ϕ1

ϕ2

)
. Let us construct the matrices ρψ =

|ψ〉〈ψ| and ρϕ = |ϕ〉〈ϕ| and assume that the vector |ψ〉 is the eigenvector of a complex matrix H with
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a complex eigenvector E1 along with the vector |ϕ〉, which is the eigenvector of a complex matrix H
with another complex eigenvector E2. Then we have the relations

H|ψ〉〈ψ| = E1|ψ〉〈ψ| , H|ϕ〉〈ϕ| = E2|ϕ〉〈ϕ| ,
(38)

|ψ〉〈ψ|H† = E∗1 |ψ〉〈ψ| , |ϕ〉〈ϕ|H† = E∗2 |ϕ〉〈ϕ| .

It is easy to have the situation where E2 = E∗1 , if the eigenvalues are not real.
Now we consider the example of the real parameter s in (29) in the case of inequality 0 < s < 1.

In this case, one has two complex eigenvalues of the matrix H, which are E1 = 1 + i
√

1− s2 and
E2 = 1− i

√
1− s2 = E∗1 . In this case, the eigenvectors are

|ψ〉 = N1

 1
i
s

(√
1− s2 − 1

)  , N1 =

[
1 +

(
√

1− s2 − 1)2

s2

]−1/2

,

(39)

|ϕ〉 = N2

 1

− i
s

(√
1− s2 + 1

)  , N2 =

[
1 +

(
√

1− s2 + 1)2

s2

]−1/2

.

For any state |ψ〉, the density matrix ρ = |ψ〉〈ψ|, and for states (39) we have two density matrices

ρ1 = N2
1

 1 − i
s

(√
1− s2 − 1

)
i
s

(√
1− s2 − 1

)
N−2

1 − 1

 ,

(40)

ρ2 = N2
2

 1
i
s

(√
1− s2 + 1

)
− i

s

(√
1− s2 + 1

)
N−2

2 − 1

 .

Then, in view of (10), we obtain the probability representations of two states, which are eigenstates
of non-Hermitian Hamiltonian with broken PT -symmetry. The probabilities p(1,2)

1,2,3 determining the
density matrices ρ1 and ρ2 (40) are expressed as follows:

p(1)1 (s) =
1
2

, p(1)2 (s) =
1
2
+

N2
1

s

(√
1− s2 − 1

)
, p(1)3 (s) = N2

1 ,
(41)

p(2)1 (s) =
1
2

, p(2)2 (s) =
1
2
−

N2
2

s

(√
1− s2 + 1

)
, p(2)3 (s) = N2

2 .

The specific properties of the states with density matrices (33) are that Tr (ρ1ρ2) 6= 0 and one of
the probability distributions p(1,2)

2 (s) corresponds to the completely chaotic distribution (1/2, 1/2).
Thus, such states can be detected as existing superposition states by measuring the spin-1/2 positive
projections; i.e., in the case of experimental obtaining the probabilities of the form (41), the latter ones
can witness the presence of non-Hermitian Hamiltonian violating the PT -symmetry.

In the generic case of non-Hermitian Hamiltonian H with complex eigenvalues E1 and E2,
which are given by four real parameters and violate the PT -symmetry, one can also construct the
probability representation of two eigenvectors of such a Hamiltonian. One can check that, in this
case, the density matrices of the eigenstates of such Hamiltonians violating the PT -symmetry
are not orthogonal, and Born’s probability given by scalar product of normalized eigenvectors∣∣〈ψE1 |ψE2〉

∣∣2 = W2
1 depends on the Hamilton parameters and is not equal to zero. This case can

be also detected while measuring the probabilities of spin projections, because the results for WE2
E1

,
where E1 and E2 are complex numbers, are different for the situations with the PT -symmetry and
with Hermitian Hamiltonians.
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10. Conclusions

To conclude, we point out the main results of our work.
In Hermitian and non-Hermitian Hamiltonian systems with corresponding real eigenvalues,

the pure states describing the eigenvectors of such Hamiltonians can be expressed in terms of
probabilities of dichotomic random variables. We demonstrated this result on the example of qubit
systems. We wrote the Schrödinger equation for such a system for the eigenvector of Hamiltonian H
in a new form of the eigenvalue equation for the HamiltonianH = H ⊗ 1, where components of the
eigenvector are expressed in the form of probabilities of classical-like dichotomic variables.

For qubit states (spin-1/2 states), these probabilities are the probabilities to have the spin projection
m = +1/2 in three perpendicular directions x, y, and z. For systems with Hermitian Hamiltonians,
these probabilities satisfies the conditions of orthogonalities of two-dimensional eigenvectors of the
2 × 2 matrix H. For PT -symmetric Hamiltonians, which are non-Hermitian ones, the probabilities
are such that the trace of pure-state density matrices ρ1 = |ψE1〉〈ψE1 | and ρ2 = |ψE2〉〈ψE2 |, i.e.,
k12 = Tr (ρ1ρ2), where E1 and E2 are real eigenvalues of the matrix H, is not equal to zero, and
the value k12 characterizes properties of the PT -symmetric system. The nonorthogonality of the
non-Hermitian Hamiltonian eigenvectors associated with PT -symmetry properties of quantum
systems was mentioned, e.g., in [19,27].

The systems with broken PT -symmetry, for which the Hamiltonian has complex eigenvalues,
we also expressed the complex state vectors of the Hamiltonian in terms of probabilities of dichotomic
random variables given in terms of the probabilities to have spin projection m = +1/2 in three
perpendicular directions x, y, and z. In principle, these probabilities and corresponding means of
the spin projections can be measured experimentally, and qubit systems with PT -symmetry can be
compared with systems characterized by Hermitian Hamiltonians. Additionally, qubit systems with
broken PT -symmetry can be compared with PT -symmetric ones, in view of values of the probabilities
and corresponding parameters determined by Born’s rule. The result can be extended to the case
of PT -symmetric qudit systems, and the probability representation of qudit systems with generic
complex Hamiltonian can be obtained by employing the approach demonstrated in this paper.
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