Supplementary materials

Synthesis, Structure, and Magnetic Properties of Linear Trinuclear Cu^{II} and Ni^{II} Complexes of Porphyrin Analogues Embedded with Binaphthol Units

Jun-ichiro Setsune^{*}, Shintaro Omae, Yukinori Tsujimura, Tomoyuki Mochida, Takahiro Sakurai, and Hitoshi Ohta

NMR spectra

Figure S1: ¹H NMR spectra of (*S*)-3,3'-bis(5-carboethoxy-4-ethyl-3-methyl-2-pyrryl)-1,1'-bi-2-naphthol ((*S*)-**2a**) and (*S*)-3,3'-bis(5-carboethoxy-3,4- diethyl-2-pyrryl)-1,1'-bi-2-naphthol ((*S*)-**2b**).

Figure S2: ¹H NMR spectra of (*S*)-3,3'-bis(4-ethyl-3-methyl-2-pyrryl)-1,1'-bi-2-naphthol ((*S*)-**3a**) and (*S*)-3,3'-bis(3,4-diethyl-2-pyrryl)-1,1'-bi-2-naphthol ((*S*)-**3b**).

Figure S3: ¹H NMR spectra of the bis(binaphthol)tetrapyrrole (*S*)-4a and (*S*)-4b.

Figure S4: Variable temperature ¹H NMR spectra of the Cu₃ complex of bis(binaphthol)tetrapyrrole ((*S*)-**5a**). Figure S5: Variable temperature ¹H NMR spectra of the Cu₃ complex of bis(binaphthol)tetrapyrrole ((*S*)-**5b**). Figure S6: Variable temperature ¹H NMR spectra of the Ni₃ complex of bis(binaphthol)tetrapyrrole ((*S*)-**6a**). Figure S7: Variable temperature ¹H NMR spectra of the Ni₃ complex of bis(binaphthol)tetrapyrrole ((*S*)-**6b**). Figure S8: 2D COSY spectrum of the Cu₃ complex of bis(binaphthol)tetrapyrrole ((*S*)-**5a**) at 313 K. Figure S9: 2D COSY spectrum of the Ni₃ complex of bis(binaphthol)tetrapyrrole ((*S*)-**5a**) at 293 K.

UV-Vis and CD spectra

Figure S10: CD spectra of (*R*)-4a and (*S*)-4a in CH₂Cl₂ and their HPLC traces on chiral column.Figure S11: CD and UV-Vis spectral changes of (*S*)-5a upon addition of butylamine in CH₂Cl₂.Figure S12: CD and UV-Vis spectral changes of (*S*)-6a in CH₂Cl₂ upon addition of butylamine.

X-ray and DFT data

Table S1: Cu-to-H distances (Å) in the X-ray structure of (*S*)-5a.

Table S2: Structural data (distance (Å) and angle (°)) of the Cu₃O₄ core of (*S*)-**5a** obtained by X-ray crystallography and theoretical DFT calculations.

Figure S13: DFT-calculated structure of (*S*)-**5a** of doublet (top) and quartet (bottom) using B3LYP functional (left) and wB97XD functional (right).

Table S3: Spin density of (*S*)-**5a** calculated by DFT (6-31G(d), LANL2DZ/*ω*B97XD). Table S4: Spin density of (*S*)-**5a** calculated by DFT (6-31G(d), LANL2DZ/B3LYP).

NMR spectra

Figure S1. ¹H NMR spectra of (*S*)-3,3'-bis(5-carboethoxy-4-ethyl-3-methyl-2-pyrryl)-1,1'-bi-2-naphthol ((*S*)-2a) (bottom) and (*S*)-3,3'-bis(5-carboethoxy-3,4-diethyl-2-pyrryl)-1,1'-bi-2-naphthol ((*S*)-2b) (top). Signals at 1.55 ppm and 0.88 ppm are due to water and hexane.

Figure S2. ¹H NMR spectra of (*S*)-3,3'-bis(4-ethyl-3-methyl-2-pyrryl)-1,1'-bi-2- naphthol ((*S*)-**3a**) (bottom) and (*S*)-3,3'-bis(3,4-diethyl-2-pyrryl)-1,1'-bi-2- naphthol ((*S*)-**3b**) (top). A broad signal at 1.6 ppm (water) and signals at 3.76 (impurity) are seen.

Figure S3. ¹H NMR spectra of the bis(binaphthol)tetrapyrrole (*S*)-**4a** (bottom) and (*S*)-**4b** (top). Signals at 0.89 ppm and 1.27 ppm are due to hexane and singlet at 1.97 ppm (impurity) is seen (bottom); signals at 3.47 ppm (methanol) and 1.25 ppm (impurity) are seen (top).

Figure S4. Variable temperature ¹H NMR spectra of the Cu₃ complex of bis(binaphthol)tetrapyrrole ((*S*)-**5a**). 50 °C ~ 0 °C (top) and -10 °C ~ -60 °C (bottom).

Figure S5. Variable temperature ¹H NMR spectra of the Cu₃ complex of bis(binaphthol)tetrapyrrole ((*S*)-**5b**). 50 °C ~ 0 °C (top) and -10 °C ~ -60 °C (bottom).

Figure S6. Variable temperature ¹H NMR spectra of the Ni₃ complex of bis(binaphthol)tetrapyrrole ((*S*)-**6a**). 50 °C ~ 0 °C (top) and -10 °C ~ -60 °C (bottom).

Figure S7. Variable temperature ¹H NMR spectra of the Ni₃ complex of bis(binaphthol)tetrapyrrole ((*S*)-**6b**). 50 °C ~ 0 °C (top) and -10 °C ~ -60 °C (bottom).

Figure S8. 2D COSY spectrum of the Cu₃ complex of bis(binaphthol)tetrapyrrole ((*S*)-**5a**) at 313 K.

Figure S9. 2D COSY spectrum of the Ni₃ complex of bis(binaphthol)tetrapyrrole ((*S*)-**6a**) at 293 K.

Figure S10. CD spectra of (*R*)-4a and (*S*)-4a in CH₂Cl₂ (left) and HPLC traces of (*R*)-4a (retention time 20.05 min) and (*S*)-4a (retention time 24.0 min) (right). Column: CHIRALCEL®-IA; Eluent: hexane/EtOH = 100/1; Flow: 1.0 ml/min; UV-vis detection at 575 nm.

Figure S11. CD (left) and UV-Vis (right) spectral changes of (*S*)-**5a** (7.89 μ M in CH₂Cl₂) by adding CH₂Cl₂ solution of butylamine (47.4 mM) at 25 °C. Inset: The observed CD intensity changes at 630 nm with molar equivalents of BuNH₂ and a titration curve (blue) simulated by one-to-one binding isotherm (K = 3.2 x 10³ M⁻¹).

Figure S12. CD (left) and UV-Vis (right) spectral changes of (*S*)-**6a** in CH₂Cl₂ upon addition of butylamine (0 ~ 2.5 equiv).

_

Table S1. Cu-to-H distances (Å) in the X-ray structure of (*S*)-**5a**

	Cu(1)	Cu(2)	Cu(1')	
naphthyl-4,4'-H	5.180, 5.117	5.798, 5.964	7.638, 7.731	
naphthyl-5,5'-H	7.224, 7.211	7.129, 7.239	8.196, 8.301	
naphthyl-6,6'-H	8.717, 8.742	8.135, 8.010	8.431, 8.436	
naphthyl-7,7'-H	8.588, 8.598	7.309, 7.410	7.168, 7.178	
naphthyl-8,8'-H	6.772, 6.859	5.364, 5.397	5.311, 5.348	
	5.455, 5.343	6.847, 6.559	8.851, 8.761	
pyrrole-16,16′-CH₃	5.735, 5.836	7.261, 7.346	9.344, 9.636	
	5.964, 5.907	7.847, 7.643	10.101,10.063	
manuale 17 17/ CII	5.457, 5.741	8.137, 8.088	10.988, 10.804	
pyrrole-17,17 -CH2	5.591, 5.998	8.334, 8.461	11.104, 11.052	
phenyl-0,0'-H	5.159, 5.501	7.883, 8.315	10.712, 11.163	

¹ Distances from the specific hydrogens to three Cu atoms, Cu(1), Cu(2), and Cu(1').

	X-ray	DFT (S = 1/2)		DFT (S	DFT (S = 3/2)	
		B3LYP	<i>ω</i> B97XD	B3LYP	<i>ω</i> B97XD	
Cu(1)–O(1),O(1' or 3)	1.877	1.946, 1.927	1.924	1.941	1.925	
Cu(1)–O(2),O(2' or 4)	1.893	1.947, 1.927	1.929	1.941	1.930	
Cu(2)–O(1),O(1' or 3)	1.949	2.001, 2.007	1.952	1.986	1.955	
Cu(2)–O(2),O(2' or 4)	1.922	2.005, 2.009	1.952	1.986	1.956	
Cu(2)–Cu(1),Cu(1' or 3)	2.910	2.887, 3.055	2.930	2.922	2.911	
Cu(1)–Cu(2)–Cu(1' or 3)	174.7	180	179.7	180	179.6	

Table S2. Structural data (distance (Å) and angle (°)) of the Cu₃O₄ core of (*S*)-**5a** obtained by X-ray crystallography and theoretical DFT calculations

Figure S13. DFT-calculated structure of (*S*)-**5a** of doublet (top) and quartet (bottom) using B3LYP functional (left) and wB97XD functional (right). Peripheral alkyl groups and meso-phenyl groups were omitted for clarithy.

Table S3. Spin density of (*S*)-**5a** calculated by DFT (6-31G(d), LANL2DZ/*@*B97XD)

	S = 1/2		S =	S = 3/2	
Cu(1), Cu(1')	0.5977		0.6	083	
Cu(2)	-0.6	-0.6169		366	
naphthyl-O(1),O(1')	-0.0018	-0.0032	0.1428	0.1453	
dipyrrin-N(1),N(1')	0.1061	0.1051	0.1099	0.1093	
naphthyl-C(1),C(1')	-0.0160	-0.0183	0.0237	0.0262	
naphthyl-C(2),C(2')	0.0119	0.0133	-0.0111	-0.0128	
naphthyl-C(3),C(3')	-0.0078	-0.0085	0.0120	0.0128	
naphthyl-C(4),C(4')	0.0061	0.0069	-0.0082	-0.0092	
naphthyl-C(5),C(5')	0.0047	0.0053	-0.0052	-0.0058	
naphthyl-C(6),C(6')	-0.0060	-0.0067	0.0066	0.0073	
naphthyl-C(7),C(7')	0.0043	0.0048	-0.0048	-0.0053	
naphthyl-C(8),C(8')	-0.0054	-0.0060	0.0063	0.0070	
naphthyl-C(9),C(9')	0.0068	0.0075	-0.0066	-0.0074	
naphthyl-C(10),C(10')	-0.0073	-0.0081	0.0082	0.0091	
pyrrole α-C(11),C(11')	0.0026	0.0029	-0.0006	-0.0013	
pyrrole β -C(12),C(12')	0.0034	0.0036	0.0047	0.0053	
pyrrole β-C(13),C(13')	0.0072	0.0072	0.0067	0.0062	
pyrrole α-C(14),C(14′)	-0.0029	-0.0029	-0.0029	-0.0030	
meso-like-C(15)	0.00	0.0010		0.0034	
methyl-C(16),C(16')	0.0010	0.0010	0.0009	0.0009	
methylene-C(17),C(17')	0.0004	0.0003	0.0005	0.0004	

Table S4. Spin density of (*S*)-**5a** calculated by DFT (6-31G(d), LANL2DZ/B3LYP).

	S = 1/2		S	= 3/2
Cu(1)	0.558750		0.5	565394
Cu(2)	0.006671		0.5	518978
Cu(3)	-0.000749		0.5	565394
naphthyl-O(1),O(3)	0.082622	-0.000766	0.158765	0.158795
naphthyl-O(2),O(4)	0.083406	-0.000694	0.158741	0.158769
dipyrrin-N(1),N(3)	0.116518	0.000020	0.116626	0.116647
dipyrrin-N(2),N(4)	0.117220	0.000034	0.116624	0.116637
naphthyl-C(4),C(4')	-0.000631	0.000052	-0.008633	-0.008638
-C(24),C(24')	-0.000871	0.000044	-0.008626	-0.008633
naphthyl-C(5),C(5')	0.000223	0.000025	-0.007438	-0.007422
-C(25),C(25')	0.000149	0.000015	-0.007423	-0.007439
naphthyl-C(6),C(6')	-0.000026	-0.000024	0.014233	0.014241
-C(26),C(26')	0.000054	-0.000006	0.014222	0.014236
naphthyl-C(7),C(7')	-0.000064	0.000055	-0.007992	-0.007998
-C(27),C(27')	-0.000161	0.000049	-0.007985	-0.007993
naphthyl-C(8),C(8')	0.000577	-0.000055	0.013538	0.013547
-C(28),C(28')	0.000672	-0.000044	0.013528	0.013542
pyrrole β-C(12),C(12')	0.005894	0.000065	0.006143	0.006149
-C(32),C(32')	0.005879	0.000054	0.006141	0.006141
pyrrole β-C(13),C(13')	0.006522	0.000069	0.009656	0.009648
-C(33),C(33')	0.006017	0.000090	0.009667	0.009655
methyl-C(16),C(16')	0.000989	-0.000004	0.000947	0.000947
-C(36),C(36')	0.000998	-0.000003	0.000947	0.000948
methylene-C(17),C(17')	0.000487	-0.000010	0.000288	0.000289
-C(37),C(37')	0.000523	-0.000012	0.000288	0.000288