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Abstract: In this work is introduced one new hierarchical decomposition for cubical tensor of size 2n,
based on the well-known orthogonal transforms Principal Component Analysis and Karhunen–Loeve
Transform. The decomposition is called 3D Frequency-Ordered Hierarchical KLT (3D-FOHKLT).
It is separable, and its calculation is based on the one-dimensional Frequency-Ordered Hierarchical
KLT (1D-FOHKLT) applied on a sequence of matrices. The transform matrix is the product of n
sparse matrices, symmetrical at the point of their main diagonal. In particular, for the case in which
the angles which define the transform coefficients for the couples of matrices in each hierarchical
level of 1D-FOHKLT are equal to π/4, the transform coincides with this of the frequency-ordered
1D Walsh–Hadamard. Compared to the hierarchical decompositions of Tucker (H-Tucker) and the
Tensor-Train (TT), the offered approach does not ensure full decorrelation between its components,
but is close to the maximum. On the other hand, the evaluation of the computational complexity (CC)
of the new decomposition proves that it is lower than that of the above-mentioned similar approaches.
In correspondence with the comparison results for H-Tucker and TT, the CC decreases fast together
with the increase of the hierarchical levels’ number, n. An additional advantage of 3D-FOHKLT is
that it is based on the use of operations of low complexity, while the similar famous decompositions
need large numbers of iterations to achieve the coveted accuracy.

Keywords: cubical tensor decomposition; 3D hierarchical adaptive PCA transform; 3D Frequency-
Ordered Hierarchical KLT; computational complexity

1. Introduction

The well-known tensor decompositions Canonical Polyadic Decomposition (CPD), Higher-Order
Singular Value Decomposition (HOSVD) [1–3], Tensor Train (TT) Decomposition [4], Hierarchical
Tucker decomposition (H-Tucker) [5] and some of their modifications [6,7] are based on the calculation
of the eigenvalues and eigenvestors of the decomposed tensor. The basic attribute of this group is
that they are optimal regarding the minimization of the mean square approximation error derived
from the “truncation” of the low-energy components. For the calculation of the retained components,
we use iterative methods which need relatively large numbers of mathematical operations to achieve
the requested accuracy (Power method [8], Jacoby method [9], etc.).

The hierarchical tensor decompositions based on the H-Tucker algorithm are generalized in
publications [7] and [10]. In [7], Vasilescu and Kim introduced a compositional hierarchical tensor
factorization that disentangles the hierarchical causal structure of object image formation, but the
computational complexity (CC) of the method is not evaluated. In [10], Zniyed et al. offered the
TT-based hierarchical decomposition of high-order tensors, for the calculation of which is used the
Tensor-Train Hierarchical SVD (TT-HSVD). This approach permits parallel processing, which accelerates
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the calculations. Unlike the TT-SVD algorithm, the TT-HSVD is based on applying SVDs to matrices of
smaller dimensions. As a result, the CC of TT-SVD is O(R2N3) operations higher than that of TT-HSVD
(here, R is the rank of the hypercubical tensor of size N).

As an alternative, in this work are presented new hierarchical 3D tensor decompositions, based
on the famous statistical orthogonal transforms Principal Component Analysis (PCA) and the
Karhunen–Loeve Transform (KLT) [11,12]. The offered decompositions are close to the optimal
(which ensure full decorrelation of their components), but do not need iterations and have low
computational complexity.

In Section 2, we present the methods for one-dimensional hierarchical adaptive transform based
on the PCA (1D-HAPCA) and the Hierarchical Adaptive Karhunen–Loeve Transform (1D-HAKLT).
In Section 3, on the basis of these 1D transforms we give the details of the cubical tensor decomposition
through separable 3D Frequency-Ordered Hierarchical KLT (3D-FOHKLT), and Section 4 contains the
related algorithm. Section 5 presents the comparative analysis of the computational complexity of the
new approaches with respect to the well-known hierarchical Tucker decomposition (H-Tucker) and the
TT decomposition. Section 6 is the Conclusion.

2. One-Dimensional Hierarchical Adaptive PCA/KLT Transform for a Sequence of Matrices

The detailed description of the algorithm for the one-dimensional adaptive PCA/KLT transform
(1D-APCA/AKLT) for a couple of matrices is given below. This is the basis of the hierarchical algorithm
for processing the sequence of matrices which represent the corresponding tensor.

Throughout this paper, scalars are represented as x, vectors and matrices as x and X correspondingly,
and tensors as X. It is also assumed here that all tensor elements (entries) are nonnegative real
numbers x(i,j,k).

2.1. One-Dimensional Adaptive PCA/KLT Transform for a Sequence of Matrices

The transform is executed in the following way.
First, on the elements x1s and x2s, which have the same spatial position in the couple of

matrices X1 and X2 of size N × N, are applied one-dimensional direct and inverse adaptive PCA, i.e.,
the 1D-APCA [12] is:

y1s = (x 1s −m1)cos θ1,2 + (x 2s −m2)sin θ1,2; x1s = y1scos θ1,2 + y2ssin θ1,2 + m1;
y2s = (x 1s −m1)sin θ1,2 − (x2s −m2)cos θ1,2; x2s = y1ssin θ1,2 − y2scos θ1,2 + m2,

fors = 1, 2, . . . , N2
(1)

Here, y1s and y2s are the corresponding elements in the couple of transformed matrices Y1 and Y2,
each of size N × N,

θ1,2 = arctg{2k 3/(k1 − k2 +

√
(k 1 − k2)

2 + 4k2
3

)
}; (2)

k1 = E(x2
1s) −m2

1,k2 = E(x2
2s) −m2

2,k3 = E(x1sx2s) −m1m2; (3)

m1 = E(x1s),m2 = E(x2s), (4)

where m = E(xs) = (1/N2)
N2∑
s=1

xs is the averaging operator.



Symmetry 2020, 12, 1605 3 of 16

To calculate the angle θ1,2 it is necessary to define the extended arctg function. If β2 = 2k3 and

β1 = k1 − k2 +
√
(k 1 − k2)

2 + 4k2
3 are two real numbers, the extended arctg function εarctg(β1, β2) is

mapped to (−π, π] by adding π [13]:

εarctg(β 1,β2) =



arctg(β 2/β1), if β1 > 0;
arctg(β 2/β1

)
+ π, if β1 < 0, β2 ≥ 0;

arctg(β 2/β1

)
− π, if β1 < 0,β2 < 0;

π/2, if β1 = 0, β2 > 0;
−π/2, if β1 = 0,β2 < 0;
0, if β2 = β1 = 0.

(5)

In particular, for m1 = m2 = 0 (valid for 1D-AKLT) and θ1,2 = π/4, the relations (1) become
as follows:

y1s = (1/
√

2)(x1s + x2s);
y2s = (1/

√
2
)
(x1s − x2s);

x1s = (1/
√

2)(y1s + y2s);
x2s = (1/

√
2)(y1s − y2s).

(6)

Hence, in this case the 1D-KLT coincides with the 1D Walsh–Hadamard Transform (1D-WHT).

2.2. One-Dimensional Hierarchical Adaptive KLT for a Sequence of Matrices

The relations above, used for the calculation of 1D-APCA [12], are the kernel for the processing
of a sequence of matrices (for example, a sequence of moving images), and do not need iterative
calculations. The procedure is executed in the following way. First, the sequence of matrices Xk,
each of size N × N for k = 1, 2, . . . , N is divided into N/2 couples (N = 2n). For each couple of
matrices with elements x1s(p,q) and x2s(p,q), when q = 1, 2, . . . , N/2, in the level p = 1, 2, . . . , n,
is executed the one-dimensional adaptive PCA (1D-APCA), in accordance with Equations (1)–(5).
For m1(p, q) = m2(p, q) = 0 (valid for the KLT), the direct 1D-AKLT for the couple of matrices q in the
level p of the 1D-HAKLT is defined by the relations

y1s(p, q) = x1s(p, q) cos θp,q + x2s(p, q) sin θp,q

y2s(p, q) = x1s(p, q) sin θp,q − x2s(p, q) cos θp,q
for s = 1, 2, . . . , N2, (7)

where s is the sequential number of two elements of the same position in the couple of matrices, q,

θp,q = arctg
{

2k3(p, q)/[k1(p, q) − k2(p, q) +
√
(k1(p, q) − k2(p, q))2 + 4k2

3(p, q)]
}

,

k1(p, q) = E(x2
1s(p, q));k2(p, q) = E(x2

2s(p, q));k3(p, q) = E(x1s(p, q)x2s(p, q)).
(8)

In the equations, figures and text below are introduced the following symbols: cos θp,q = cp,q and
sin θp,q = sp,q for p = 1, 2, 3 and q = 1, 2, 3, 4. The execution graph for 1D-HAKLT of three hierarchical
levels (N = 8) is shown on Figure 1a. In every level p = 1, 2, 3, and for each couple of neighbor matrices
q (fenced in red ellipses) 1D-APCA is executed. In result, the first transformed matrix calculated
for each couple q has higher energy than the second matrix, and they are mutually decorrelated.
To continue with the operations in the next level of 1D-HAKLT, these matrices are reordered, following
the decrease of their energy, i.e.,

PYp,0 ≥ PYp,1 ≥ PYp,2 ≥ . . .PYp,k ≥ . . . ≥ PYp,7 , (9)

where PYp,k =
8∑

i=1

8∑
j=1

[y p,k(i, j)]2 is the energy of matrices Yp,k with elements yp.k(i, j), obtained in

result of the execution of 1D-HAKLT in levels p = 1, 2, 3, before the reordering. In result, the reordered
matrices Er in the last level are decorrelated to the highest degree [12].
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Figure 1. Execution graphs of the direct 3-level transforms 1D-HAKLT and 1D-FOHKLT.

The reordering in each level p in accordance with Equation (9) needs significant computational
resources. For the case when the connections between the outputs Yp,k for k = 1, 2, . . . , 8 in the level p
and the inputs in the next level p + 1 are fixed, reordering is not performed, and the 1D-HAKLT turns
into the one-dimensional Frequency-Ordered Hierarchical KLT (1D-FOHKLT), whose execution graph
is shown in Figure 1b. In this case, only the output matrices in the last (third) level are reordered,
which does not require mathematical operations. Besides, the energy distribution of matrices Yp,k is
close to that defined by Equation (9). In particular, in accordance with Appendix A, if θp,q = π/4 for
p = 1, 2, 3 and q = 1, 2, 3, 4, then 1D-HAKLT coincides with the one-dimensional frequency-ordered
Fast Walsh–Hadamard Transform (1D-FWHT) for N = 8 [14].
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Both algorithms are generalized below for N = 2n. The algorithm for fast hierarchical 1D-HAKLT
is represented through the sequential transformation of the vectors’ elements s in each decomposition
level p, in accordance with the relations

y1,s = P1(2n)G1(2n)xsfor p = 1 and s = 1, 2, . . . , N2; (10)

yp,s = Pp(2n)Gp(2n)yp−1,sfor p = 2, 3, . . . , n− 1 and s = 1, 2, . . . , N2; (11)

es = Pn(2n)Gn(2n)yn−1,s.forp = n and s = 1, 2, . . . , N2. (12)

Here, xs and es are respectively the input and the output column-vector of N components
correspondingly, and the column-vectors yp,s for p = 2, 3, . . . , n − 1 are the intermediate results.
The relation between vectors es and xs, defined on the basis of Equations (10)–(12), is given below:

es = [
n∏

p=1

Pp(2
n)Gp(2

n)]xs = THAKLT(2
n)xs for s = 1, 2, . . . , N2, (13)

where

THAKLT(2n) =
n∏

p=1

Pp(2
n
)
Gp(2

n
)

(14)

is the matrix for the fast n-level 1D-HAKLT. The sparse transform matrices Gp(2n) of size 2n
× 2n have

a symmetrical block-diagonal structure towards the main diagonal, and are defined by the relations

Gp(2n) =
2n−1

⊕
q=1

Tp,q(2) = diag{Tp,1(2), Tp,2(2), . . . , Tp,2n−1(2)} for p = 1, 2, . . . , n, (15)

where Tp,q(2) =
[

cp,q sp,q

sp,q −cp,q

]
, and ⊕ denotes the direct sum of matrices. The permutation matrices

Pp(2n) of size 2n
× 2n for level p = 1, 2, . . . , n of 1D-HAKLT are defined on the basis of Equation (9) for

k = 0, 1, 2, . . . , 2n−1.
The algorithm 1D-FOHKLT is depicted by a relation similar to Equation (13), but the reordering is

executed only in the last level, n;

es = Pn(2
n)[

n∏
p=1

Gp(2
n)]xs = TFOHKLT(2

n)xs for s = 1, 2, . . . , N2, (16)

where TFOHKLT(2
n) = Pn(2

n)[
n∏

p=1
Gp(2

n)] is the matrix for 1D-FOHKLT, Pn(2n) is the permutation

matrix Pn(2n) for the last level n, and
n∏

p=1
Gp(2

n
)

is the product of n sparse transform matrices Gp(2n)

for p = 1, 2, 3, . . . , n.
Each matrix Gp(2n) is defined as follows:

Gp(2n) =
2n−p

⊕
i=1


2p−1

⊕
j=1

cp,2p−1(i−1)+j
2p−1

⊕
j=1

sp,2p−1(i−1)+j

2p−1

⊕
j=1

sp,2p−1(i−1)+j
2p−1

⊕
j=1
− cp,2p−1(i−1)+j

 for p = 1, 2, 3, . . . , n, (17)
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where

2n−p

⊕
i=1


2p−1

⊕
j=1

cp,2p−1(i−1)+j
2p−1

⊕
j=1

sp,2p−1(i−1)+j

2p−1

⊕
j=1

sp,2p−1(i−1)+j
2p−1

⊕
j=1
− cp,2p−1(i−1)+j

 =


2p−1

⊕
j=1

cp,j
2p−1

⊕
j=1

sp,j

2p−1

⊕
j=1

sp,j
2p−1

⊕
j=1
− cp,j

⊕

⊕


2p−1

⊕
j=1

cp,2p−1+j
2p−1

⊕
j=1

sp,2p−1+j

2p−1

⊕
j=1

sp,2p−1+j
2p−1

⊕
j=1
− cp,2p−1+j

⊕ . . .⊕


2p−1

⊕
j=1

cp,2p−1(n−p−1)+j
2p−1

⊕
j=1

sp,2p−1(n−p−1)+j

2p−1

⊕
j=1

sp,2p−1(n−p−1)+j
2p−1

⊕
j=1
− cp,2p−1(n−p−1)+j


. (18)

In the level n are rearranged the components of the column-vectors yn,s = Gn(2n)yn−1,s,
and, respectively, the components of matrices Yn,k for k = 0, 1, . . . , N − 1. For this is used the
permutation matrix Pn(2n). From the components of the column-vectors es = Pn(2n)yn,s are obtained
the matrices E0, E1, . . . , EN−1. The frequency-ordered matrices Er are calculated in accordance with
the relation between their sequential number r and the corresponding sequential number k, for the
matrices Yn,k. The relation which defines the matrix Pn(2n) is as follows [14]:

• the binary code kn−1, kn−2, . . . , k0 of the sequential decimal number k = 0, 1, . . . , 2n−1 of the
component Yn,k is arranged inversely (i.e., k0, k1, . . . , kn−1), as follows:

gi = kn−i−1 for 0 ≤ i ≤ n− 1; (19)

• the so-obtained code gn−1, gn−2, . . . , g0 is transformed from Gray code into binary code
rn−1, rn−2, . . . , r0, in accordance with the operations

rn−1 = gn−1, ri = ri−1 ⊕ gi for 0 ≤ i ≤ n−2. (20)

Here, ⊕ is the symbol for the operation “exclusive OR”. The decimal number r =
n−1∑
i=0

ri2i defines

the sequential number of the component Er for r = 0, 1, . . . ,2n−1, which before the rearrangement

corresponded to the component Yn,k, with sequential number k =
n−1∑
i=0

ki2i.

An example for the direct 1D-FOHKLT of three hierarchical levels is given in Appendix A.

3. Decomposition of Cubical Tensor of Size N × N × N through 3D-FOHKLT

The decomposition 3D-FOHKLT for a cubical tensor X of size 8 × 8 × 8, executed in three
consecutive stages, is shown on Figure 2.
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Figure 2. Stages of 3D-FOHKLT for the tensor X of size 8 × 8 × 8, based on the 1D-FOKLT.

In the first stage, the tensor X is divided into eight horizontal slices (mode-1). Then, in accordance
with Figure 1, on each couple of matrices is applied 1D-FOHKLT. In result, the sequence of eight
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transformed matrices is united into one new tensor, E. In the second stage, the input tensor E is divided
into eight lateral slices (mode-2), then the couples of matrices are transformed, and after that united
into the tensor F . In the third stage, the input tensor F is divided into eight frontal slices (mode-3).
After applying the 1D-AKLT on each couple of matrices which build the tensor F , the final result is
obtained—the general spectral tensor S, with elements s(u, v, l). The initial tensor X is restored from
the tensor S through summation of all “weighted” basic tensorsKu,v,l of size 8 × 8 × 8, in accordance
with the relation

X = (1/512)[s(0, 0, 0)K0,0,0 + s(1, 0, 0)K1,0,0 + . . .+ s(7, 7, 7)K7,7,7] = (1/83)
7∑

u=0

7∑
v=0

7∑
l=0

s(u, v, l)Ku,v,l. (21)

Here, s(u, v, l) are the weight coefficients of the basic tensor,Ku,v,l. Each basic tensor is represented
as the outer product of three vectors:

Ku,v,l = ku(1) ◦ kv(2) ◦ kl(3), (22)

where o is the symbol for the outer product of the two column-vectors (x ◦ y = x.yT) and
ku(1), kv(2), kl(3) are the basic vectors for the first, second and third stages of 3D-FOHKLT, respectively.
These vectors are defined by using the matrix TFOHKLT(8) for 1D-FOHKLT, in accordance with Equation
(A6) from Appendix A. The vector ku(1) for u = 0, 1, . . . , 7 comprises the elements of the u-th row
of the matrix T1

FOHKLT(8) for the first stage (t = 1) of 3D-FOHKLT. The vectors kv(2) and kl(3) for v,
l = 0, 1, . . . , 7 comprise the elements of rows v and l in the matrices T2

FOHKLT(8) and T3
FOHKLT(8) for

the second (t = 2) and third (t = 3) stages of 3D-FOHKLT, respectively. The basic vectors are defined
below for t = 1, 2, 3 and u, v, l = 0, 1, . . . , 7:

ku(t) = [kt
u,1, kt

u,2, kt
u,3, kt

u,4, kt
u,5, kt

u,6, kt
u,7, kt

u,8]
T

; (23)

kv(t) = [kt
v,1, kt

v,2, kt
v,3, kt

v,4, kt
v,5, kt

v,6, kt
v,7, kt

v,8]
T; (24)

kl(t) = [kt
l,1, kt

l,2, kt
l,3, kt

l,4, kt
l,5, kt

l,6, kt
l,7, kt

l,8]
T. (25)

The general number of the basic tensors in this case is 83. For example, if u = 3, v = 2 and l = 6,
the components of these vectors for each stage are defined by the relations below:

k3(1) = [k1
3,0, k1

3,1, k1
3,2, k1

3,3, k1
3,4, k1

3,5, k1
3,6, k1

3,7]
T
=

= [c1
3,3s1

2,1c1
1,1, c1

3,3s1
2,1s1

1,1,−c1
3,3c1

2,1c1
1,2,−c1

3,3c1
2,1s1

1,2, s1
3,3s1

2,3c1
1,3, s1

3,3s1
2,3s1

1,3,−s1
3,3c1

2,3c1
1,4,−s1

3,3c1
2,3s1

1,4]
T;

(26)

k2(2) = [k2
2,1, k2

2,2, k2
2,3, k2

2,4, k2
2,5, k2

2,6, k2
2,7, k2

2,8]
T
=

= [s2
3,3s2

2,1c2
1,1, s2

3,3s2
2,1s2

1,1,−s2
3,3c2

2,1c2
1,2,−s2

3,3c2
2,1s2

1,2,−c2
3,3s2

2,3c2
1,3,−c2

3,3s2
2,3s2

1,3, c2
3,3c2

2,3c2
1,4, c2

3,3c2
2,3s2

1,4]
T;

(27)

k6(3) = [k3
6,1, k3

6,2, k3
6,3, k3

6,4, k3
6,5, k3

6,6, k3
6,7, k3

6,8]
T
=

= [s3
3,2c3

2,2s3
1,1, −s3

3,2c3
2,2c3

1,1, s3
3,2s3

2,2s3
1,2,−s3

3,2s3
2,2c3

1,2,−c3
3,2c3

2,4s3
1,3, c3

3,2c3
2,4c3

1,3,−c3
3,2s3

2,4s3
1,4, c3

3,2s3
2,4c3

1,4]
T.

(28)

The vectors ku(t),kv(t), kl(t) are orthonormalized, i.e., for their components are valid the relations:

8∑
m=1

kt1
u1,m.kt2

u2,m =

{
0 for t1 , t2;
1 for t1 = t2,

where u1, u2 = 0, 1, . . . , 7 and t1, t2 = 1, 2, 3. (29)

The decomposition 3D-HAKLT, shown in Figure 2, could be easily generalized for the cases
when N = 16, 32, . . . , 2n through uniting the computational principles from Figures 1 and 2 for
decompositions of high numbers of levels (n = 4, 5, . . . ). From Equation (29), it follows that the rows of
the matrices Tt1

FOHKLT(8) and Tt2
FOHKLT(8) for t1 , t2 are not correlated. This conclusion could also be
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generalized for the rows of the matrices Tt1
FOHKLT(2

n ) and Tt2
FOHKLT(2

n ). Hence, after the execution
of each stage of 3D-FOHKLT, the so-calculated N slices in the corresponding direction are highly
decorrelated [12,15].

In the general case, the spectral coefficients s(u,v,l) are calculated through direct 3D-KLT,
in accordance with the relation

s(u, v, l) =
N−1∑
i=0

N−1∑
j=0

N−1∑
k=0

x(i, j, k)kar(i, u, N)kar(j, v, N)kar(k, l, N) for u, v, l = 0, 1, . . . , N− 1. (30)

The three-dimensional inverse KLT is defined by the relation

x(i, j, k) =
1

N3

N−1∑
u=0

N−1∑
v=0

N−1∑
l=0

s(u, v, l)kar(i, u, N)kar(j, v, N)kar(k, l, N) for i, j, k = 0, 1, . . . , N− 1. (31)

Here the 1D-Karhunen–Loeve (KL) functions of the Nth order are kar(i,u,N), kar(j,v,N),
and kar(k,l,N).

Each third-order tensor X of size N × N × N is represented as the weighted sum of N3 3D-KL
functions obtained by using the tensorsKu,v,l, each of size N × N × N:

X = (1/N3)[s(0, 0, 0)K0,0,0 + s(1, 0, 0)K1,0,0 + . . .+ s(N− 1, N− 1, N− 1)KN−1,N−1,N−1] = (1/N3)
N−1∑
u=0

N−1∑
v=0

N−1∑
l=0

s(u, v, l)Ku,v,l. (32)

Then, the tensor decomposition based on the 3D-FOHKLT is defined by the relation

X = (1/N3)
N−1∑
u=0

N−1∑
v=0

N−1∑
l=0

s(u, v, l)[ku(1) ◦ kv(2) ◦ kl(3)]. (33)

Hence, in this case the tensor X of size N ×N ×N is decomposed in a way similar to that of the
Tucker decomposition [2];

X =
R∑

r1=1

R∑
r2=1

R∑
r3=1

dr1,r2,r3(ar1 ◦ br2 ◦ cr3). (34)

Here, dr1,r2,r3 are the eigen values of the tensor X, ar1 , br2 , cr3 are the corresponding eigen vectors,
and R is the tensor rank. The rank of the three-way tensor X of size I × J × K is bounded from
above in accordance with the inequality, as follows: max{I, J, K} ≤ R ≤ min{I × J, I ×K, J ×K} [3].
If I = J = K = N, then N ≤ R ≤ N2. The difference between the decompositions from Equations (33)
and (34) is the number of their components, which can reach up to N3 and N2, respectively (for the
maximum value of the rank, R). In the case that the decomposition components number as defined by
Equation (33) is not reduced, the 3D-HAKLT is reversible, i.e., the coefficients s(u,v,l) of the tensor S
and its basic tensorsKu,v,l are sufficient to restore the tensor X.

4. Algorithm 3D-FOHKLT for Cubical Tensor Representation

The representation of the tensor X of size N × N × N, through 3D-FOHKLT based on the spectral
tensor S, is executed in correspondence with Figure 2. Each stage of the 3D transform is calculated for
N = 8 through 1D-FOHKLT, as shown in Figure 1b.

In result is obtained the spectral tensor S, which comprises n layers of coefficients. These coefficients
participate as component weights in the decomposition represented by Equation (33).
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The tensor X is restored from the tensor S through inverse 3D-FOHKLT. This transform is based on
the algorithm for direct 3D-FOHKLT, wherein is repeatedly performed the inverse 1D-AKLT (with basic
operation “butterfly“), defined by the relations:

x1s(p, q) = (1 / 2)[y1s(p, q) cos θp,q + y2s(p, q) sin θp,q];
x2s(p, q) = (1 / 2)[y1s(p, q) sin θp,q − y2s(p, q) cos θp,q]

for s = 1, 2, . . . , N2. (35)

Algorithm 1: Tensor representation based on the 3D-FOHKLT

Input: Third-order tensor X of size N × N × N (N = 2n) and with elements x(i,j,k)
Output: Spectral tensor S of n layers, whose elements s(u,v,l) are the coefficients of the 3D-FOНKLT.
1 begin
2 Divide the tensor X into horisontal slices and compose N/2 couples of matrices X1

p,q and X2
p,q of size

N × N, for q = 1, 2, . . . , N/2;
3 for each couple of matrices X1

p,q and X2
p,q when q = 1, 2, . . . , N/2 and p = 1, 2, . . . , n, do

4 Calculate the couple of matrices Y1
p,q and Y2

p,q obtained through 1D-FOНKLT in
accordance with Equations (7) and (8);
5 Calculate the matrices Pn(2n) and Yn,k for k = 0, 1, . . . , N−1 and p = n in accordance with
Equations (18)–(20);
6 Define the matrices Er for r = 0, 1, . . . , N−1 in the level p = n by rearranging the matrices Yn,k for
k = 0, 1, . . . , N−1 on the basis of the vector transform es = Pn(2n)yn,s, for s = 1, 2, . . . , N2;
7 Reshape all rearranged matrices Er into the corresponding tensor E of size N × N × N.
8 end
9 Divide the tensor E into lateral slices and compose N/2 couples of intermediate matrices E1

p,q and E2
p,q

of size N × N, for q = 1, 2, . . . , N/2;
10 for each couple of matrices E1

p,q and E2
p,q when q = 1, 2, . . . , N/2 and p = 1, 2, . . . , n, do

11 Calculate the couple of matrices F1
p,q and F2

p,q transformed through 1D-FOНKLT in
accordance with Equations (7) and (8);
12 Calculate the matrices Pn(2n) and Fn,k for k = 1, 2, . . . , N and p = n in accordance with
Equations (18)–(20);
13 Define the matrices Fr for r = 0, 1, . . . , N−1 in the level p = n by rearranging the matrices Fn,k for
k = 0, 1, . . . , N−1 on the basis of the vector transform Fs = Pn(2n)fn,s, for s = 1, 2, . . . , N2;
14 Reshape all rearranged matrices Fr in level p = n into the corresponding tensor F of size N × N × N
15 end
16 Divide the tensor F into frontal slices and compose N/2 couples of matrices F1

p,q and F2
p,q of size

N × N, for q = 1, 2, . . . , N/2;
17 for each couple of matrices F1

p,q and F2
p,q when q = 1, 2, . . . , N/2 and p = 1, 2, . . . , n, do

18 Calculate the couple of matrices S1
p,q and S2

p,q transformed through 1D-FOНKLT in
accordance with Equations (7) and (8);
19 Calculate the matrices Pn(2n) and Sn,k for k = 1, 2, . . . , N and p = n in accordance with
Equations (18)–(20);
20 Define the matrices Sr for r = 0, 1, . . . , N−1 in the level p = n by rearranging the matrices Sn,k for
k = 0, 1, . . . , N−1 on the basis of the vector transform Ss = Pn(2n)sn,s, for s = 1, 2, . . . , N2;
21 Reshape all rearranged matrices Sr in the level p = n into the spectral tensor S of size N × N × N
22 end
23 Arrange the coefficients s(u,v,l) of the spectral cubical tensor S layer by layer in accordance with their
spatial frequencies (u,v,l) - from the lowest (0,0,0), to the highest (N−1, N−1, N−1), for u + v + l = const.
24 end

Here, the angle θp,q is defined by Equation (2), on the basis of the covariance matrix elements

K(p, q) =

[
k1(p, q) k3(p, q)
k3(p, q) k2(p, q)

]
for the couple of matrices X1

p,q and X2
p,q (in levels p = 1, 2, 3 for

q = 1, 2, 3, 4).
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Unlike 1D-FOHKLT, the decorrelation of the cubical tensor elements through 3D-FOHKLT is
executed in three mutually orthogonal directions, which is its main advantage compared to 1D-FOHKLT.

The algorithm for 3D-HAHKLT is similar to Algorithm 1, given above. The only difference is that
the reordering of the matrices in each consecutive level is executed in accordance with Equation (9).

5. Comparative Evaluation of the Computational Complexity of 3D-HAKLT and 3D-FOHKLT

The computational complexity is evaluated on the basis of the needed operations “addition”
and “multiplication”.

5.1. Computational Complexity of 3D-HAKLT for a Cubical Tensor of Size N × N × N (N = 2n)

• The number of additions AH(n) and multiplications MH(n) needed to execute the 1D-HAKLT for
a couple of matrices of size N × N in one decomposition level is

AH(n) = 3(N2
− 1) + 2N2 + 4 = 5× 22n + 1; (36)

MH(n) = 3N2 + 4N2 + 5 = 7× 22n + 5. (37)

• For N/2 couples of matrices in one stage of the n-level 3D-HAKLT, these numbers are

A1H(n) = [2n−1(5× 22n + 1) + (22n
− 1)(2n

− 1)]n; (38)

M1H(n) = [2n−1(7× 22n + 5) + 22n(2n
− 1)]n. (39)

• Then, for the three-level 3D-HAKLT is obtained

A3H(n) = 3× [2n−1(5× 22n + 1) + (22n
− 1)(2n

− 1)]n; (40)

M3H(n) = 3× [2n−1(7× 22n + 5) + 22n(2n
− 1)]n. (41)

Hence,
A3H(n) ≈ 3× [2.5× 23n + 23n]n = 10.5× 23nn; (42)

M3H(n) ≈ 3× [3.5× 23n + 23n]n = 13.5× 23nn. (43)

The computational complexity of 3D-HAKLT, evaluated on the basis of the needed number of
operations O3H(n), is defined by the relation

O3H(n) = A3H(n) + M3H(n) ≈ 24× 23nn. (44)

The normalized value of O3H(n) for one tensor element (voxel) is defined by the relation

O0
3H(n)≈ (1/2 3n

)
24× 23nn = 24n. (45)

For 1D-FOHKLT AFO
1H(n) = 2n−1(5 × 22n + 1)n ≈ 2.5 × 23nn and MFO

1H(n) =

2n−1
(
7× 22n + 5)n ≈ 3.5× 23nn. Then

OFO
3H(n) = AFO

3H(n) + MFO
3H(n) ≈ 18× 23nn. (46)

The comparison of Equations (44) and (46) shows that the CC of 3D-FOHKLT is reduced
approximately (4/3) times, compared to that of 3D-HAKLT.
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5.2. Comparison of the Computational Complexity of 3D-HAKLT and 3D-FOHKLT to H-Tucker and TT

The CC of 3D-HAKLT for the transformation of the cubical tensor X of size 2n, evaluated through
the needed number of operations, is O3H(24× 23nn). In accordance with [5], the CC of the H-Tucker
decomposition is OHT((d − 1)R3 + d × 2n

× R), where R is the rank, 2n is the size, and d = 3 is the
order of the tensor X. For R = 2n (the minimum value in the range 2n

≤ R ≤ 22n), the number of the
operations is OHT(24n+1 + 3× 23n) = OHT(23n(2n+1 + 3)). In this case, the relative CCs of 3D-HAKLT
and 3D-FOHKLT compared to that of the H-Tucker is defined by the relations:

ψ1(n) = OHT(n)/O3H(n) = 23n(2 n+1 + 3)/(24 × 23n n) = (2 n + 1.5
)
/12n; (47)

ψ2(n) = OHT(n)/OFO
3H(n) = 23n(2n+1 + 3)/(18× 23nn) = (2n + 1.5)/9n. (48)

The CC of the TT decomposition [4] for the cubical tensor X of size 2n is OTT(2ndR3), i.e.,
OTT(3 × 24n). Correspondingly, the relative CC of 3D-HAKLT and 3D-FOHKLT towards the TT
decomposition is defined by the relations:

ψ3(n) = OTT(n)/O3H(n) = (3× 24n)/(24× 23nn) = 2n/8n; (49)

ψ4(n) = OTT(n)/OFO
3H(n) = (3× 24n)/(18× 23nn) = 2n/6n. (50)

The values of functions ψi(n) for i = 1, 2, 3, 4 and n = 2, 3, . . . , 8 are given in Table 1, and their
graphics are shown in Figure 3a,b. From Equations (47)–(50), it follows that the functions ψi(n) for
i = 1, 2, 3, 4 grow proportionally to 2n/n.

Table 1. Relative CC of 3D-HAKLT and 3D-FOHKLT compared to H-Tucker and TT.

n 2 3 4 5 6 7 8

ψ1(n) 0.23 0.26 0.36 0.57 0.91 1.54 2.68
ψ2(n) 0.30 0.35 0.48 0.74 1.21 2.05 3.57
ψ3(n) 0.25 0.33 0.50 0.80 1.33 2.28 4.00
ψ4(n) 0.33 0.44 0.66 1.06 1.77 3.04 5.33

The obtained results show that for small values of n (in the range from 2 to 5), the decompositions
3D-HAKLT and 3D-FOHKLT have low efficiencies because their CCs are equal or higher than those of
H-Tucker and TT.

However, for practical applications (image processing), these values are quite different (for example,
n = 8 corresponds to tensor image of size 256 × 256 × 256, which is very small), and in this case the
relative CC of the offered decompositions is much lower than those of H-Tucker and TT. An additional
advantage is that unlike H-Tucker and TT, the proposed algorithms do not need iterative calculations.
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6. Conclusions

In this work are presented new cubical tensor decompositions based on the 3D orthogonal
hierarchical transforms HAKLT and FOHKLT. The comparative analysis for the relative CC of the new
decompositions compared to those of H-Tucker and TT shows their advantages for tensors of size
256 and more. From these results it follows that 3D-FOHKLT has minimum CC, and is suitable for
real-time applications. One more advantage of the offered algorithms is that they do not need iterative
calculations, and instead use hierarchical calculations in the three mutually orthogonal directions of
the tensor. Unlike the well-known 3D decompositions based on the N-dimensional eigen vectors of
the tensor, the kernel of the offered hierarchical transforms is the AKLT of size 2 × 2, used repeatedly
in each level. The presented algorithms 3D-HAKLT and 3D-FOHKLT could also be generalized for
tensors with three different dimensions 2n1 × 2n2 × 2n3 for n1 , n2 , n3. The choice of the offered
hierarchical 3D decompositions is made depending on the requirements and limitations of their CC
imposed by the corresponding application area.

The future investigations of the 3D-HAKLT and 3D-FOHKLT will be aimed at the evaluation of
their characteristics compared to the famous tensor decompositions, in order to define the best settings
and to outline the most efficient applications in the 3D compression, filtration, analysis, search and
recognition of multidimensional visual information, deep learning, etc.
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Appendix A. One-Dimensional Frequency-Ordered Hierarchical KLT for N = 8

The description of 1D-FOHKLT given below, is for the case, when N = 8 (n = 3) in correspondence
with Equation (16) and Figure 1b. The transform matrix TFOHKLT(8) of size 8 × 8 is decomposed in
accordance with the relation:

TFOHKLT(8) = P3(8)G3(8)G2(8)G1(8) (A1)

In this case, the transform matrices G1(8), G2(8), G3(8) are defined by Equations (17) and (18):

G1(8) =
4
⊕

i=1

[
c1,(i−1)+1 s1,(i−1)+1
s1,(i−1)+1 −c1,(i−1)+1

]
=



c1,1 s1,1 0 0 0 0 0 0
s1,1 −c1,1 0 0 0 0 0 0
0 0 c1,2 s1,2 0 0 0 0
0 0 s1,2 −c1,2 0 0 0 0
0 0 0 0 c1,3 s1,3 0 0
0 0 0 0 s1,3 −c1,3 0 0
0 0 0 0 0 0 c1,4 s1,4

0 0 0 0 0 0 s1,4 −c1,4


(A2)

G2(8) =
2
⊕

i=1


2
⊕

j=1
c2,2(i−1)+j

2
⊕

j=1
s2,2(i−1)+j

2
⊕

j=1
s2,2(i−1)+j

2
⊕

j=1
− c2,2(i−1)+j

 =



c2,1 0 s2,1 0 0 0 0 0
0 c2,2 0 s2,2 0 0 0 0

s2,1 0 −c2,1 0 0 0 0 0
0 s2,2 0 −c2,2 0 0 0 0
0 0 0 0 c2,3 0 s2,3 0
0 0 0 0 0 c2,4 0 s2,4

0 0 0 0 s2,3 0 −c2,3 0
0 0 0 0 0 s2,4 0 −c2,4


(A3)

G3(8) =


4
⊕

j=1
c3,j

4
⊕

j=1
s3,j

4
⊕

j=1
s3,j

4
⊕

j=1
− c3,j

 =



c3,1 0 0 0 s3,1 0 0 0
0 c3,2 0 0 0 s3,2 0 0
0 0 c3,3 0 0 0 s3,3 0
0 0 0 c3,4 0 0 0 s3,4

s3,1 0 0 0 −c3,1 0 0 0
0 s3,2 0 0 0 −c3,2 0 0
0 0 s3,3 0 0 0 −c3,3 0
0 0 0 s3,4 0 0 0 −c3,4


. (A4)

Here the angles θp,q for p = 1, 2, 3, . . . , n and q = 1, 2, . . . 2n−1 are calculated by using the
coefficients k1(p, q), k2(p, q), k3(p, q) of the covariance matrices K(p, q) for the couples of matrices
X1

p,q and X2
p,q in correspondence with Equation (8).
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The permutation matrix P3(8) in the level p = 3 is calculated on the basis of Equations (19) and (20).
In this case, the values of r = 0, 1, 2, 3, 4, 5, 6, 7 are transformed into k = 0, 7, 3, 4, 1, 6, 2, 5 and the
matrix P3(8) is defined as follows:

P3(8) =



1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0


. (A5)

Then, 1D-FOHKLT for N = 8 is executed in 3 consecutive stages, each of 3 levels. The matrix
representation of the 1D-FOHKLT corresponds to the first stage of the 3D transform, shown on
Figure 2. The structure of matrices (A2)–(A4) is close to diagonal and for this reason, in the general
case 1D-FOHKLT does not ensure full decorrelation of the decomposition components. The matrices
(A2)–(A5) are multiplied in correspondence with (A1), and in result is obtained:

TFOHKLT(8) =

c3,1c2,1c1,1 c3,1c2,1s1,1 c3,1s2,1c1,2 c3,1s2,1s1,2 s3,1c2,3c1,3 s3,1c2,3s1,3 s3,1s2,3c1,4 s3,1s2,3s1,4

s3,1c2,1c1,1 s3,1c2,1s1,1 s3,1s2,1c1,2 s3,1s2,1s1,2 −c3,1c2,3c1,3 −c3,1c2,3s1,3 −c3,1s2,3c1,4 −c3,1s2,3s1,4

s3,3s2,1c1,1 s3,3s2,1s1,1 −s3,3c2,1c1,2 −s3,3c2,1s1,2 −c3,3s2,3c1,3 −c3,3s2,3s1,3 c3,3c2,3c1,4 c3,3c2,3s1,4

c3,3s2,1c1,1 c3,3s2,1s1,1 −c3,3c2,1c1,2 −c3,3c2,1s1,2 s3,3s2,3c1,3 s3,3s2,3s1,3 −s3,3c2,3c1,4 −s3,3c2,3s1,4

c3,4s2,2s1,1 −c3,4s2,2c1,1 −c3,4c2,2s1,2 c3,4c2,2c1,2 s3,4s2,4s1,3 −s3,4s2,4c1,3 −s3,4c2,4s1,4 s3,4c2,4c1,4

s3,4s2,2s1,1 −s3,4s2,2c1,1 −s3,4c2,2s1,2 s3,4c2,2c1,2 −c3,4s2,4s1,3 c3,4s2,4c1,3 c3,4c2,4s1,4 −c3,4c2,4c1,4

s3,2c2,2s1,1 −s3,2c2,2c1,1 s3,2s2,2s1,2 −s3,2s2,2c1,2 −c3,2c2,4s1,3 c3,2c2,4c1,3 −c3,2s2,4s1,4 c3,2s2,4c1,4

c3,2c2,2s1,1 −c3,2c2,2c1,1 c3,2s2,2s1,2 −c3,2s2,2c1,2 s3,2c2,4s1,3 −s3,2c2,4c1,3 s3,2s2,4s1,4 −s3,2s2,4c1,4


. (A6)

From (A6) it follows that the modules of the vectors ki for I = 0, 1, 2, . . . , 7, which represent the
rows of the matrix TFOHKLT(8), are defined by the relation:

‖ki‖ =
√

k2
i,0 + k2

i,1 + k2
i,2 + k2

i,3 + k2
i,4 + k2

i,5 + k2
i,6 + k2

i,7 = 1 (A7)

i.e., these vectors are normalized. For example, the module of the vector k0 (row i = 0 of the matrix
TFOHKLT(8)), is:

‖k0‖
2 = (c 3,1c2,1c1,1)

2 + (c 3,1c2,1s1,1)
2 + (c 3,1s2,1c1,2)

2 + (c 3,1s2,1s1,2)
2 + (s 3,1c2,3c1,3)

2+

(s 3,1c2,3s1,3)
2 + (s 3,1s2,3c1,4)

2 + (s 3,1s2,3s1,4)
2 = (c 3,1c2,1)

2 + (c 3,1s2,1)
2 + (s 3,1c2,3)

2 + (s 3,1s2,3)
2 = (c 3,1)

2 + (s 3,1)
2 = 1.

(A8)

The couples of vectors ki and kj (for i , j and i, j = 0,1, . . . ,7) which represent different rows of
the matrix TFOHKLT(8), are mutually orthogonal (non-correlated) only in some particular cases. For
example, the scalar product of the vectors k1 and k2 is defined by the relation:

k1.k2 = s3,1c2,1c1,1s3,3s2,1c1,1 + s3,1c2,1s1,1s3,3s2,1s1,1 − s3,1s2,1c1,2s3,3c2,1c1,2 − s3,1s2,1s1,2s3,3c2,1s1,2+

+c3,1c2,3c1,3c3,3s2,3c1,3 + c3,1c2,3s1,3c3,3s2,3s1,3 − c3,1s2,3c1,4c3,3c2,3c1,4 − c3,1s2,3s1,4c3,3c2,3s1,4 =

= s3,1c2,1s3,3s2,1 − s3,1s2,1s3,3c2,1 + c3,1c2,3c3,3s2,3 − c3,1s2,3c3,3c2,3 = s3,1c2,1s3,3(s2,1 − c2,1) + c3,1c2,3c3,3(s2,3 − c2,3).
(A9)

From this, it follows that k1.k2 = 0 only if the conditions s2,1 = c2,1 and s2,3 = c2,3 are satisfied.
In particular, if for a given input tensor X in the three stages of 3D-FOHKLT the angles θp.q

for p = 1, 2, 3 and q = 1, 2, 3, 4 are equal or close to π/4, then in correspondence with (A6) the
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matrix Tπ/4
FOHKLT(8) coincides with the frequency-ordered matrix of the Wash-Hadamard Transform

TWHT(8) [14,16], i.e.,:

Tπ/4
FOHKLT(8) = TWHT(8) = 1

2
√

2



+1 +1 +1 +1
+1 +1 +1 +1
+1 +1 −1 −1
+1 +1 −1 −1

+1 +1 +1 +1
−1 −1 −1 −1
−1 −1 +1 +1
+1 +1 −1 −1

+1 −1 −1 +1
+1 −1 −1 +1
+1 −1 +1 −1
+1 −1 +1 −1

+1 −1 −1 +1
−1 +1 +1 −1
−1 +1 −1 +1
+1 −1 +1 −1



0
1
2
3
4
5
6
7

. (A10)

This property of the matrix TWHT(8) shows that when it is used, is got a frequency-ordered
spectrum which corresponds to that obtained with the Fast Fourier Transform (FFT). Hence, the FOHKLT
spectrum is frequency-ordered. In the cases when the angles θp,q are equal or close to 0 orπ/2, the matrix
TFOHKLT(8) is transformed into the following two matrices:

T0
FOHKLT(8) =

1

2
√

2



1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 1 0
0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0


; (A11)

Tπ/2
FOHKLT(8) =

1

2
√

2



0 0 0 0
0 0 0 1
0 1 0 0
0 0 0 0

0 0 0 1
0 0 0 0
0 0 0 0
0 1 0 0

0 0 0 0
1 0 0 0
0 0 1 0
0 0 0 0

1 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0


. (A12)

These matrices are not transform matrices: T0
FOHKLT(8) is used to rearrange the components of

the input vector and to change the signs in half of them, and the matrix Tπ/2
FOHKLT(8) only rearranges

the input vector components.
The description given above, could be easily extended for N = 2n on the basis of Equations (10)–(20).
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