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Abstract: In this paper, we propose a new asymmetric and heavy-tail model that generalizes both the
skew-t and power-t models. Properties of the model are studied in detail. The score functions and
the elements of the observed information matrix are given. The process to estimate the parameters
in model is discussed by using the maximum likelihood approach. Also, the observed information
matrix is shown to be non-singular at the whole parametric space. Two applications to real data sets
are reported to demonstrate the usefulness of this new model.

Keywords: alpha-power skew-t distribution; skew-t distribution; power-t distribution; asymmetry;
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1. Introduction

In recent years, there has been considerable interest in the statistical literature related to flexible
families of distributions able of modeling data that present high degree of asymmetry, with kurtosis
index greater or smaller than the captured by normal model. In this context, two proposals that
have shown a promising behavior in this type of situations are the skew-normal (SN) distribution
of Azzalini [1] and the power-normal (PN) distribution of Durrans [2]. The SN distribution has
been widely studied by many authors, and its main drawback is that it presents singular Fisher
information matrix, implying the inference is useless from the theory of large samples using the
maximum likelihood (ML) approach. Although the PN model has a shorter asymmetry range than
SN distribution, it presents non-singular information matrix and can easily be extended to censored
scenarios, as it has a simple distribution function, see, for example, in Martínez-Flórez et al. [3].

The PN model is part of a wide family of distributions known as alpha-power, which has been
widely studied by many authors. In addition to the normal distribution, the Birnbaum–Saunders (BS)
distribution [4] has also been considered, see, for example, in Martínez-Flórez et al. [5], who propose
an extension of the BS distribution based on the asymmetric alpha-power family of distributions to
illustrate the applicability of the new proposal with a data set is related to the lifetimes in cycles ×10−3

n = 101 aluminum 6061− T6 pieces cut in parallel angle to the rotation direction of rolling at the rate
of 18 cycles per second and maximum stress of 21.000 psi. More details of the PN distribution can be
found in Gupta and Gupta [6] and Pewsey et al. [7].

An alternative propose for modeling asymmetric data that unifies the two previous approaches
was introduced by Martínez-Flórez et al. [8]. The proposed model, which is called alpha-power
skew-normal (APSN), has non-singular Fisher information matrix, and it can fit data with much more
asymmetry than PN models it can handle. In addition, symmetry can be tested by using the likelihood
ratio statistic, as the properties of large samples are satisfied for the ML estimator.

Another set of distributions with non-singular information matrices, useful for modeling
asymmetric and heavy-tailed data, are based on generalizations of the Student-t distribution, see,
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for example, in [9–13]. Azzalini and Capitanio [9] for example, introduced a skew-t (ST) distribution as
an extension of the SN model for modeling asymmetric and heavy-tailed data as follows; The random
variable X is said to have the ST distribution with parameter λ and degrees of freedom ν, if X has the
probability density function (PDF) given by

fST(x; λ, ν) = 2 fT (x; ν)FT

(
λ

√
ν + 1
x2 + ν

x; ν + 1

)
, x ∈ R (1)

where λ ∈ R is a parameter that controls the skewness of the distribution, and fT (·; ν) and FT (·; ν)

denote the PDF and the cumulative distribution function (CDF) of a standard Student-t distribution with
ν degree of freedom, respectively. The ST distribution, like an extension of the SN model, inherits the
problem of the singularity of the information matrix and before this inconvenience Zhao and Kim [14]
proposed the power Student-t (PT) distribution, whose information matrix is non-singular and for a
given degree of freedom, the kurtosis range surpasses the kurtosis range of the skew-t model at all times.
The PT distribution is defined as follows. The random variable X is said to have the PT distribution
with parameter α, and degrees of freedom ν, if X has PDF given by

fPT(x; α, ν) = α fT (x; ν) [FT (x; ν)]α−1 , x ∈ R (2)

where α > 0 is a parameter that controls the form of the distribution, and, again, fT (·; ν) and FT (·; ν)

denote the PDF and the CDF of a standard Student-t distribution, respectively.
Based on the properties of the ST model, to fit data with high degree of asymmetry and the

characteristic of the PN model to capture kurtosis larger than the normal model, in this paper,
we introduce a new distribution for modeling asymmetric and heavy-tailed data. The proposed
model possess non-singular information matrix, and it is able to fit data with far more asymmetry
than ST and PT models can handle and with large sample properties satisfied for the ML estimator.
The model introduced in this paper is named as alpha-power skew-t (APST) model and it extends
both, ST and PT models. The APSN model by Martínez-Flórez et al. [8] is also a particular case when
ν tends to infinite. Note that symmetry can be tested using the likelihood ratio statistics with its large
sample chi-square distribution.

The rest of this paper is organized as follows. Section 2 introduces the APST model and some of
its properties like moments are studied. In particular, skewness and kurtosis indices are computed
showing that their ranges surpass those of the ST and PT models. Section 3 deals with the ML
estimation for the location-scale situation and its observed information matrix is derived. The extension
to censored data is also presented. Finally, two applications are shown in Section 4, revealing that the
model proposed can present much improvement over competitors.

2. The Alpha-Power Skew-t Distribution

Definition 1. The random variable X is said to have an alpha-power skew-t (APST) distribution, if X has PDF
given by

fAPST(x; λ, α, ν) = α fST(x; λ, ν)
[
FST(x; λ, ν)

]α−1, (3)

for x ∈ R, λ ∈ R, and α, ν ∈ R+. Functions fST(·) andFST(·) denote the PDF and the CDF of the standard ST
distribution. A random variable having fAPST(x; λ, α, ν) distribution is denoted shortly by X ∼ APST(λ, α, ν).

Figure 1 displays the form of the APST distribution for some selected values of the parameters λ

and α for ν = 6. Note from the figure that the asymmetry and kurtosis of the APST distribution are
affected by the parameters α and λ; therefore, the APST model is more flexible to model data that can
be highly skewed, as well as heavier tails than ST and PT models.

The following result provides some special cases of the model (3), which occur for different values
of λ, α, and ν.
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Figure 1. Probability density function of APST(λ, α, 10) for some values of λ and α.

Proposition 1. Let X ∼ APST(λ, α, ν),

(i) if λ = 0, then X ∼ PT(α, ν),
(ii) if α = 1, then X ∼ ST(λ, ν),
(iii) if λ = 0 and α = 1, then X ∼ T(ν), where T(ν) denotes the Student-t disribution with ν degree

of freedom.
(iv) if ν→ +∞, then X ∼ APSN(λ, α),
(v) if λ = 0 and ν→ +∞, then X ∼ PN(α),
(vi) if α = 1 and ν→ +∞, then X ∼ SN(λ),
(vii) if λ = 0, α = 1 and ν→ +∞, then X ∼ N(0, 1),

Proof. The proof of (i)–(vii) is immediate from the definition of APST distribution.

2.1. Moments

The following proposition presents an expression to compute the k-th moment of a random
variable APST(λ, α, ν).

Proposition 2. Let X ∼ APST(λ, α, ν), then

E
[
Xk] = E

[(
F−1

ST (Y; λ, ν)
)k
]

(4)

where Y follows a Beta(α, 1) distribution and F−1
ST (·; λ, ν) is the inverse of the function FST(·; λ, ν).

Proof. We have by definition that

E
[
Xk] = ∫

R
xkα fST(x)

(
FST(x; λ, ν)

)α−1dx

thus, letting y = FST(x; λ, ν), then x = F−1
ST (y; λ, ν), it follows that

E
[
Xk] = ∫ 1

0
α
(
F−1

ST (y; λ, ν)
)k

yα−1dy

which is the expected value of the function
(
F−1

ST (Y; λ, ν)
)k

, where Y follows a beta distribution with
parameters α and 1.

The indices of skewness (
√

β1) and kurtosis (β2) of APST distribution can be calculated by using
the moments (4) as follows,
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√
β1 =

µ3 − 3µ1µ2 + 2µ3
1

(µ2 − µ2
1)

3/2
and β2 =

µ4 − 4µ1µ3 + 6µ2µ2
1 − 3µ4

1
(µ2 − µ2

1)
2

where µk = E[Xk] for k = 1, . . . , 4. Table 1 presents the ranges of possible values for the indices of
asymmetry and kurtosis for ST(λ, ν), PT(α, ν), and APST(λ, α, ν) distributions, for values of λ between
−40 and 40, values of α between 0.5 and 50, and for values of ν = 2, 3, 4, 5, 6, 7. It can seen from Table 1
that the length of the admissible intervals for the skewness and the kurtosis parameters of the APST
distribution are larger than the corresponding intervals of the ST and PT distributions. This is an indicator
that the APST model is more flexible in terms of asymmetry and kurtosis than the ST and PT models.

Table 1. Skewness and kurtosis for the models ST(λ, ν), PT(α, ν), and APST(λ, α, ν), for λ ∈ (−40, 40),
α ∈ (0.5, 50) and ν = 2, . . . 7.

Skew−t Power−t Alpha−Power Skew−t

ν Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

2 (−0.963, 0.963) (3.170, 3.489) (−0.119, 3.040) (1.552, 10.436) (−2.452, 14.314) (1.395, 864.385)

3 (−0.950, 0.950) (3.146, 3.357) (−0.086, 1.362) (1.325, 3.223) (−2.130, 4.902) (1.628, 114.098)

4 (−1.853, 1.853) (5.099, 7.824) (−0.530, 1.178) (3.461, 5.299) (−1.898, 3.215) (3.153, 29.874)

5 (−0.947, 0.947) (3.051, 3.327) (−0.475, 0.271) (1.176, 3.130) (−1.968, 3.046) (3.862, 19.925)

6 (−1.681, 1.681) (4.554, 7.279) (−0.533, 1.118) (3.974, 5.173) (−1.681, 2.145) (3.892, 11.893)

7 (−0.944, 0.944) (3.007, 3.367) (−0.710, 0.243) (1.264, 3.082) (−1.535, 2.536) (3.136, 15.924)

2.2. Distribution Function

Proposition 3. Let X ∼ APST(λ, α, ν), then the CDF of X, namely, FAPST(x; λ, α, ν) is

FAPST(x; λ, α, ν) =
[
FST(x; λ, ν)

]α, x ∈ R. (5)

Proof. The proof is immediate and it follows from results of Durrans [2].

The inversion method can be used to generate a random variable with APST distribution.
Thus, taking λ ∈ R, α, ν ∈ R+ and a random variable with uniform distribution, namely, U ∼ U(0, 1),
random variable X with APST(λ, α, ν) distribution is generated by taking

X = F−1
ST

(
U1/α; λ, ν

)
.

Remark 1. We consider a truncated APST(λ, α) distribution to obtain a new and useful lifetime distribution.
A random variable T has a truncated alpha-power skew-t distribution (at zero), denoted by TAPST(λ, α, ν), if
its PDF is given by

f (t) =
α fST(t, λ, ν)

[
FST(t, λ, ν)

]α−1

1−
[
FST(0, λ, ν)

]α ; t > 0 (6)

The survival and hazard rate functions of a random variable T following a TAPST(λ, α, ν) distribution are
given by

ST(t) = P(T > t) =
1−

[
FST(0, λ, ν)

]α −
[
FST(t, λ, ν)

]α

1−
[
FST(0, λ, ν)

]α ; t > 0 (7)

and

hT(t) =
α fST(t, λ, ν)

[
fST(t, λ, ν)

]α−1

1−
[
FST(0, λ, ν)

]α −
[
FST(t, λ, ν)

]α ; t > 0 (8)

respectively.
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2.3. Location and Scale Extension

We can also consider a generalization of a APST distribution by adding location and scale
parameters. The following definition gives a generalization of the APST model.

Definition 2. Let X ∼ APST(λ, α, ν). The APST density of location and scale is defined as the distribution of
Y = µ + σX, for µ ∈ R and σ > 0. The corresponding PDF is given by

fAPST(y; µ, σ, λ, α, ν) =
α

σ
fST

(
y− µ

σ
; λ, ν

)[
FST

(
y− µ

σ
; λ, ν

)]α−1

, x ∈ R, (9)

for λ ∈ R and α, ν ∈ R+. A random variable following a APST distribution of location and scale is denoted by
Y ∼ APST(µ, σ, λ, α, ν).

The k-th moment of a random variable Y ∼ APST(µ, σ, λ, α, ν) can be obtained from the formula

E
[
Yk] = k

∑
i=0

(
k
i

)
µiσk−iE

[
Xk−i],

where X ∼ APST(λ, α, ν).

3. Statistical Inference for APST Distribution

This section concerns likelihood inference about the parameter vector θ = (µ, σ, λ, α, ν)> of the
location-scale family defined in Equation (9). Let Y = (Y1, . . . , Yn)> be a random sample of the distribution
APST(µ, σ, λ, α, ν). The log-likelihood function for θ = (µ, σ, λ, α, ν)> can be written as follows,

`(θ; Y) ∝ n log α− n log σ− n
2

log ν

+ n log Γ
(

ν + 1
2

)
− n log Γ

(ν

2

)
− ν + 1

2

n

∑
i=1

log

(
1 +

z2
i

ν

)

+
n

∑
i=1

logFT

(
λzi

√
ν + 1
z2

i + ν
; ν + 1

)
+ (α− 1)

n

∑
i=1

logFST
(
zi; λ, ν

)
(10)

where zi = (yi − µ)/σ. Thus, by differentiating the log-likelihood function, we obtain the following
score equations,

∂`(θ; Y)
∂µ

=
ν + 1

σν

n

∑
i=1

zi

(
1 +

z2
i

ν

)−1

− λ

σ

n

∑
i=1

wi

(
1 +

z2
i

ν

)−1
fT
(
λziwi; ν + 1

)
FT
(
λziwi; ν + 1

) − α− 1
σ

n

∑
i=1

fST(zi; λ, ν)

FST(zi; λ, ν)
= 0 (11)

∂`(θ; Y)
∂σ

= −n
σ
+

ν + 1
σν

n

∑
i=1

z2
i

(
1 +

z2
i

ν

)−1

− λ

σ

n

∑
i=1

ziwi

(
1 +

z2
i

ν

)−1
fT
(
λziwi; ν + 1

)
FT
(
λziwi; ν + 1

)
− α− 1

σ

n

∑
i=1

zi
fST(zi; λ, ν)

FST(zi; λ, ν)
= 0

(12)
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∂`(θ; Y)
∂λ

=
n

∑
i=1

ziwi
fT
(
λziwi; ν + 1

)
FT
(
λziwi; ν + 1

) − α− 1
π(1 + λ2)

n

∑
i=1

(
1 + (1 + λ2)z2

i /ν
)− ν

2

FST(zi; λ, ν)
= 0, (13)

∂`(θ; Y)
∂α

=
n
α
+

n

∑
i=1

logFST(zi; λ, ν) = 0, (14)

∂`(θ; Y)
∂ν

=
nα

2

(
ψ

(
ν + 1

2

)
− ψ

(ν

2

)
− 1

ν

)
− 1

2

n

∑
i=1

log

(
1 +

z2
i

ν

)

+
ν + 1
2ν2

n

∑
i=1

z2
i

(
1 +

z2
i

ν

)−1

+
λ

2ν(ν + 1)

n

∑
i=1

z3
i wi

(
1 +

z2
i

ν

)−1
fT
(
λziwi; ν + 1

)
FT
(
λziwi; ν + 1

)
− λ

2ν(ν + 1)

n

∑
i=1

ziwi

(
1 +

z2
i

ν

)−1
fT
(
λziwi; ν + 1

)
FT
(
λziwi; ν + 1

)
− (α− 1)

2π(ν + 1)
λ

(1 + λ2)

n

∑
i=1

(
1 + (1 + λ2)z2

i /ν
)− ν

2

FST(zi; λ, ν)
+

α− 1
2

n

∑
i=1

g(zi; ν)

FST
(
zi; λ, ν

) = 0 (15)

where ψ(·) is the digamma function, wi =
√

ν+1
x2

i +ν
for i = 1, . . . , n, and g(x; ν) is the function defined by

g(x; ν) =
∫ x

−∞

{
(ν + 1)

ν2 s2
(

1 +
s2

ν

)−1

− log
(

1 +
s2

ν

)}
fST(s; λ, ν)ds

− λ

πν

∫ x

−∞
s
(

1 +
s2

ν

)−1 {
1 + (1 + λ2)

s2

ν

}− ν+2
2

ds (16)

Equations (11)–(15) include nonlinear functions; therefore, it is not possible to obtain explicit forms of
the maximum likelihood estimators (MLEs), and they must be calculated by using numerical methods.
In this work, we used the maxLik function of R Development Core Team [15] which uses the
Newton–Raphson optimization method. The elements of the observed information matrix are easily
obtained after calculating the second derivative of the log-likelihood function and multiplying by −1,
that is,

jθiθk = −
∂`(θ; Y)
∂θi∂θk

, i, k = 1, 2, . . . , 5 (17)

where θ = (µ, σ, λ, α, ν)>. This elements are given in the Appendix A. To find the standard errors (EE)
of the MLEs and calculate confidence intervals, the information matrix I (or Fisher information) must
be calculated, which is defined as the expected value of the second derived from the log-likelihood
function or less the expected value of the Hessian matrix; from this matrix, we calculate the EE as the
diagonal elements of the inverse of this matrix. The elements of the I matrix are obtained as

I(i, k) = −E
(

∂`(θ; Y)
∂θi∂θk

)
, i, k = 1, 2, . . . , 5 (18)

The role of the Fisher information in the asymptotic theory of maximum-likelihood estimation was
emphasized by Ronald Fisher following some initial results by Francis Edgeworth, see Lehman and
Casella [16] and Frieden [17] for more details. The Fisher-information matrix is used to calculate the
covariance matrices associated with maximum-likelihood estimates, and it can also be used in the
formulation of test statistics, such as the Wald test.

As the expected value under the APST distribution and the second-order derivatives are not
direct, numerical methods must be used to obtain the explicit form of the information matrix I.
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Therefore, we use the observed information matrix to calculate the standard errors in the rest of the
document.

When ν tends to infinite the ST distribution converges to the SN distribution and we recall that
the information matrix of a random variable X ∼ SN(µ, σ, λ) which is denoted by Iλ(ϕ), where ϕ =

(µ, σ, λ)>, is singular for λ = 0. Therefore, it is convenient to use a centered parameterization of the ST
distribution proposed by Arellano-Valle and Azzalini [18].

The centered parameterization of the SN distribution was proposed as an alternative to the problem
of singularity of the information matrix of the SN when λ = 0. Arellano-Valle and Azzalini [19] proposed
a second representation of the SN by defining a new random variable X as

X = µ + σ

(
Z−E[Z]√

Var[Z]

)
,

where µ ∈ R and σ > 0 are parameters of the random variable X and Z ∼ SN(λ). This representation
is called centered parameterization, as E[X] = µ and Var[X] = σ2 and it is denoted by CSN(µ, σ, γ1),
where −0.9953 < γ1 < 0.9953. Under the centered parameterization model, µ, σ, and γ1 =

√
β1

represent the mean, the standard deviation and the skewness index of X, respectively. If Z ∼ SN(λ)

then E[Z] = bδ and Var[Z] = 1− (bδ)2, where b =
√

2/π and δ = λ/
√

1 + λ2; it has that the random
variable X can be written as X = µ + σZ which has SN(λ1, λ2, λ) distribution, where

λ1 = µ− cσγ1/3
1 , λ2 = σ

√
1 + c2γ2/3

1 , λ =
cγ1/3

1√
b2 + c2(b2 − 1)γ2/3

1

(19)

with c = {2/(4 − π)}1/3. Under this denomination, the information matrix can be written as
Iγ1 = D>IλD, where D is a matrix that represents the derivative of the parameters of the standard
representation (λ1, λ2 and λ) regarding to the new parameters (µ, σ and γ1). It also follows that
the information matrix converges to a diagonal matrix Σ−1

c = diag(σ2, σ2/2, 6) when λ → 0.
This guarantees the existence and uniqueness of the MLEs of λ1 and λ2 for each fixed value of λ.

Following this same line of thought, we suppose that Y follows the model (1) with location
parameter µ ∈ R and scale parameter σ > 0, that is,

fST(y; µ, σ, λ, ν) =
2
σ

fT

(
y− µ

σ
; ν

)
FT

(
λ

√
ν + 1

Qy + ν

(
y− µ

σ

)
; ν + 1

)
, y ∈ R (20)

where λ ∈ R and Qy = ((y− µ)/σ)2. This representation relates to the direct parameterization of the
ST distribution with parameter vector ρ = (µ, σ, λ, ν)>. It follows that ZT = (Y − µ)/σ ∼ ST(λ, ν),
and by the stochastic representation of the ST distribution is given by ZT = Z/

√
V, where Z ∼ SN(λ)

and V ∼ χ2
ν/ν. This entails to compute the first four cumulants of ZT denoted by µ1(δ, ν), µ2(δ, ν),

µ3(δ, ν) and µ4(δ, ν), see [18]. The centered parameterization of the ST distribution of a random
variable Y comes by defining

µt = E[Y] = µ + σµ1(δ, ν) = µ + σbνδ

σ2
t = Var[Y] = σ2µ2(δ, ν) = η2

{
ν

ν− 2
− b2

νδ2
}

,
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γ1t =
µ3(δ, ν)

µ2(δ, ν)3/2 =
bνδ

µ2(δ, ν)3/2

{
ν(3− δ2)

ν− 3
− 3ν

ν− 2
+ 2b2

νδ2
}

γ2t =
µ4(δ, ν)

µ2(δ, ν)2 =
1

µ2(δ, ν)2

 3ν2

(ν− 2)(ν− 4)
−

4b2
νδ2ν(3− δ2) + 6b2

νδ2ν
ν−2 − 4b4

νδ4

ν− 3

− 3.

The new representation is defined as the centered skew-t distribution with parameter vector
ρ̃ = (µ, σ2, γ1, γ2)

>. According to Arellano-Valle and Azzalini [18], the information matrix of this
representation can be written as

I(ρ̃) = B>I(ρ)B,

where B is a matrix representing the derivative of the parameter vector ρ with respect to the new
vector ρ̃. It can shown that bν → b when ν→ ∞, see [18]. Therefore, the parameters of the centered ST
model converge to µt → µ, σ2

t → σ2, and γ1t → γ1 when ν→ ∞, that is, the parameters of the CSN.
As ZT → SN(λ) when ν→ ∞, it follows that the random variable Y converges to a distribution with
information matrix

I(µ, σ2, γ1, α) =

(
Iθ1θ1 Iθ1,α
I>θ1,α Iα,α

)
, (21)

where the elements of the diagonal correspond to the information of the parameter vector θ1 =

(µ, σ2, γ1) and α, and Iθ1,α is the joint information of θ1 = (µ, σ2, γ1)
> and α. Now, when λ → 0

and α = 1, it can be shown that Iθ1θ1 → diag(σ2, σ2/2, 6), with determinant equal to 0.3333/σ4,
and Iθ1,α = (0.9031/σ,−0.5956/σ, 0.7206)>; therefore, the determinant |I(µ, σ2, γ1, α)| 6= 0, and it
concludes that the random variable Y converges to a distribution with information matrix non-singular
when ν tends to infinite.

3.1. Extension to Censored Data

Based on the goodness of the APST distribution to fit asymmetric and heavy-tailed data, in this
section we introduce the censored APST model which we will be denote by CAPST.

Definition 3. Suppose that the random variable Y follows APST distribution, and consider a random sample
Y = (Y1, Y2, . . . , Yn) where only the Yi values greater than a constant k are recorded. In addition, for values
Yi ≤ k only the value of k is recorded. Therefore, for i = 1, 2, . . . , n, the observed values Yo

i can be written as

Yo
i =

{
k, if Yi ≤ k,

Yi, if Yi > k.

The resulting sample is said to be a censored APST, and we say that Y is a censored random variable APST.
We will use the notation Y ∼ CAPST(θ), where θ = (µ, σ, λ, α, ν)>.

From Definition 3 it follows that P(Yo
i = k) = P(Yi ≤ k) = {FST ((k− µ)/σ)}α and for the

observations Yo
i = Yi, the distribution of Yo

i is the same of Yi, i.e., Yo
i ∼ APST(θ). For convenience,

we choose to work with the case of left-censored data; however, the followings results can be extended
to other types of censorship.

3.2. Properties of the CAPST Model

Let Y ∼ CAPST(µ, σ, λ, α, ν),

1. If α = 1, then Y ∼ CST(µ, σ, λ, ν), where CST indicates the censored skew-t model.
2. If λ = 0, then Y ∼ CPT(µ, σ, α, ν), where CPT indicates the censored power-t model.
3. If α = 1 and λ = 0, then Y ∼ CT(µ, σ, ν), that is, the censored Student-t model follows.
4. If ν → +∞, then Y ∼ CAPSN(µ, σ, λ, α), where CAPSN indicates the censored alpha-power

skew-normal model.
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5. If α = 1 and ν→ +∞, then Y ∼ CSN(µ, σ, λ), that is, the censored skew-normal model follows.
6. If λ = 0 and ν→ +∞, then Y ∼ CPN(µ, σ, α), that is, the censored power-normal model follows.
7. If α = 1, λ = 0 and ν→ +∞, then Y ∼ CN(µ, σ2), that is, the censored normal model follows.

The estimates of the parameters of the model can be obtained via maximum likelihood method,
where the log-likelihood function is given by

`(θ; Y) ∝ α ∑
0

logFST

(
k− µ

σ
; λ, ν

)
+ n1 log α− n1 log σ− n1

2
log ν

+ n1 log Γ
(

ν + 1
2

)
− n1 log Γ

(ν

2

)
− ν + 1

2 ∑
1

log

(
1 +

x2
i

ν

)

+ ∑
1

logFT

(
λxi

√
ν + 1
x2

i + ν
; ν + 1

)
+ (α− 1)∑

1
logFST

(
xi; λ, ν

)
where xi = (yi − µ)/σ; ∑1 and ∑0 are the sum over censored individuals and uncensored individuals,
respectively; and n1 is the number of uncensored individuals.

4. Real Data Applications

In this section, we illustrate the applicability of the proposed model in Section 2 by analyzing
two data sets. We use the statistical software R [15], version 3.5.3 with the package maxLike for
maximizing the corresponding likelihood functions. For comparing purposes of various models,
the AIC Akaike [20], BIC Schwarz [21], and corrected AIC (CAIC) Bozdogan [22] information criteria
were used.

4.1. Application 1: Volcano Heights Data

Consider the data set related to heights of 1520 volcanoes in the world which is available in
website dx.doi.org/10.5479/si.GVP.VOTW4-2013 [23]. Table 2 presents the summary statistics for the
data set. It can be noted that the asymmetry and kurtosis indices seem to indicate that the use of an
asymmetric and heavy-tailed model is appropriate to analyze this data set. We analyzed these data by
fitting the Student-t, ST, PT, and APST distributions.

Table 2. Volcano heights data: Statistical summary.

n Mean Variance
√

b1 b2

1520 16.7760 15.6682 0.6461 4.3809

Table 3 shows the parameter estimates, together with their corresponding standard errors (SE).
Note that the values of the standard errors of the µ and σ estimates for the APST model are smaller than
the corresponding standard errors of the respective parameters for the Student-t, ST, and PT models.
Table 3 also presents some model selection criteria, together with the values of the log-likelihood.
The AIC, BIC, and CAIC criteria indicate that the APST model seems to provide better fit to the
volcanoes heights data than the T, ST, and PT models, supporting the asymmetry assertion of the
volcano’s heights variable. Figure 2 shows the graphs QQplot of the fitted models. It can be clearly
seen from the figure that the APST model fits the data better than the Student-t, ST, and PT models. In
addition, we can use the likelihood ratio (LR) test statistic to conform our claim. To do this, we consider
the following hypotheses,

H0 : (λ, α) = (0, 1) (T(µ, σ, ν)) v.s H1 : (λ, α) 6= (0, 1) (APST(µ, σ, λ, α, ν)),

dx.doi.org/10.5479/si.GVP.VOTW4-2013
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The value of the LR test statistic is −2 log(Λ) = −2
(
`T(θ̂)− `APST(θ̂)

)
=134.823 and comparing

this quantity with χ2
2 =5.9914, the null hypotheses is rejected. The APST model is also compared with

the ST and PT models by considering the hypotheses

H01 : α = 1 (ST(µ, σ, λ, ν)) v.s H11 : α 6= 1 (APST(µ, σ, λ, α, ν)),

and
H02 : λ = 0 (PT(µ, σ, α, ν)) v.s H12 : λ 6= 0 (APST(µ, σ, λ, α, ν)),

respectively. The respective values of the LR test statistic are given by −2 log(Λ1) = −2
(
`ST(θ̂)−

`APST(θ̂)
)
=26.620 and−2 log(Λ2) = −2

(
`PT(θ̂)− `APST(θ̂)

)
=45.660 and comparing these quantities

with χ2
1 =3.8414, both null hypotheses are rejected. Finally, Figure 3left shows the histogram of the

volcano heights variable, whereas Figure 3right presents the empirical CDF (solid line) together with
the CDF of the fitted APST model (dotted line).
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Figure 2. Volcano height data: QQplot for Student-t, ST, PT, and APST models.
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Figure 3. (Left) Graph of fitted densities to volcano height data. (Right) Empirical CDF and CDF of
fitted APST model.

Table 3. Parameter estimates (SE) for the fitted models to the volcano height data.

Distribution

Estimates Student-t ST PT APST

µ̂ 14.7835(0.3615 ) 4.7469(0.6892) 8.4027(0.7923) 11.5509(0.1337)
σ̂ 11.0045(0.3975) 14.1532(0.7237) 11.8146(0.4707) 22.6885(0.0792)
λ̂ – 1.5673(0.1838) – 5.2347(0.2870)
α̂ – – 1.7912(0.1147) 0.3205(0.0347)
ν̂ 3.4156(0.3601) 3.4075(0.3454) 2.7473(0.2566) 12.8734(2.9729)
ˆ̀ −6273.35 −6219.25 −6228.77 −6205.94
AIC 12,552.70 12,446.49 12,465.53 12,421.87
BIC 12,568.68 12,467.79 12,486.53 12,448.50
CAIC 12,571.68 12,471.79 12,490.83 12,453.50

4.2. Application 2: Stellar Abundances Data

The second data set is related to measurements for 68 solar-type stars, which are available
in the package astrodatR of the software R [24] under the name Stellar abundances. These data were
previously analyzed Mattos et al. [25] by using the Scale Mixture of Skew Normal Censored Regression
(SMSNCR) models. We take only the response variable: log N(Be), which represents the log of the
abundance of beryllium scaled to Sun’s abundance (i.e., the Sun has log N(Be) = 0.0)

In astronomical research, a previously identified sample of objects (stars, galaxies, quasars, X-ray
sources, etc.) is observed at some new wavebands. According to Feigelson [24], due to limited
sensitivities, some objects may be undetected, leading to upper limits in their derived luminosities.
For this dataset we have 12 left-censored data points, i.e., 12 undetected beryllium measurement,
that represents 19.35% of observations. Table 4 presents the ML estimates for the parameters of the
censored Studen-t (CT), censored skew-t (CST), censored power-t (CPT), and censored alpha-power
skew-t (CAPST) models, together with their corresponding standard errors. Table 4 also compares
the fit of the four models using the model selection criteria (AIC, CAIC and BIC). Note that, again,
the CAPST model with heavy tails have better fit than the CT, CST, and CPT models.

To identify atypical observations and/or model mispecification, we analyzed the transformation
of the martingale residual, rMTi , proposed in Barros et al. [26]. These residuals are defined by

rMTi = sign(rMi)
√
−2[rMi + δi log(δi − rMi )], i = 1, . . . , n

where rMi = δi + log S(yi; θ̂) is the martingal residual proposed by Ortega et al. [27], where δi = 0, 1
indicates whether the i-th observation is censored or not, respectively; sign(rMi) denotes the sign of
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rMi; and S(yi; θ̂) = Pθ̂(Yi > yi) represents the survival function evaluated at yi, where θ̂ are the MLE
for θ. The plots of rMTi with generated confidence envelopes are presented in Figure 4. From this
figure, we can see clearly that the CST, CPT, and CAPST models fit better the data than the CT model,
since, in that cases, there are not observations which lie outside the envelopes. The Figure 5 shows the
graph of the densities of the different models fitted to the stellar abundances data. From the figure, the
CAPST model seems to fit better the stellar abundances data than CT, CST and CPT models.

Table 4. Parameter estimates (SE) for the fitted models to the stellar abundances data.

Distribution

Estimates CT CST CPT CAPST

µ̂ 1.0314(0.0010) 1.2306(0.0018) 1.2098(0.0052) 1.1761(0.0054)
σ̂ 0.1596(0.0012) 0.2712(0.0058) 0.0818(0.0008) 0.0905(0.0020)
λ̂ – −3.5655(3.7748) – 0.6580(0.5031)
α̂ – – 0.1705(0.0208) 0.1518(0.0251)
ν̂ 0.9974(0.0884) 1.2501(0.1774) 6.0927(0.7501) 6.0999(0.7326)
ˆ̀ −29.50743 −18.87016 −17.67113 −14.80241
AIC 65.01487 45.74033 43.34227 39.60482
BIC 71.67339 54.61836 52.22030 50.70236
CAIC 59.38987 38.37525 35.97719 30.57256
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Figure 4. Stellar abundances data. Envelopes of transformed martingale residuals for CT, CST, CPT,
and CAPST models.
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Figure 5. Graph of fitted densities to stellar abundances data.

5. Conclusions

In this work, a new asymmetric model has been introduced. It is based on the combination of
skew-t [1] and power-t [2] models. The new model presents greater ranges of asymmetry and kurtosis,
which is very useful for modeling skewed and heavy-tailed data. The problem of estimating the
parameters in the model is dealt by using the maximum likelihood approach which is also used for
developing large sample properties for the estimators. The elements of the observed information
matrix are analytically obtained. The likelihood ratio statistics can be used for testing the APST null
hypothesis since the Student-t, ST, and PT models are special cases of the model entertained. Two
applications to volcano heights data and stellar abundances data indicate that the proposed model can
be a useful alternative to the ST and PT models.
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Appendix A

In this section, expressions for the elements of the observed information matrix of the alpha-power
skew-t model are provided. Initially we suppose that Y ∼ APST(µ, σ, λ, α, ν), and for i = 1, . . . , n

we define zi = (yi − µ)/σ, wi =
√
(ν + 1)/(z2

i + ν), r1(z; ν) = fT(z; ν)/FT(z; ν), r2(z; λ, ν) =

fST(z; λ, ν)/FST(z; λ, ν), and r3(z; λ, ν) =
(
1 + (1 + λ2) z2

ν

)− ν
2 /FST(z; λ, ν). Denoting the elements

of the observed information matrix of the APST model by jµµ, jµσ, . . . , jαα, and after some algebraic
manipulations, we obtain
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jµµ =− 1
σ2

ν + 1
ν2

n

∑
i=1

z2
i

(
1 +
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+

1
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)−2[
r1(λziwi; ν + 1)

]2
− α− 1

πσ

n

∑
i=1

z2
i

(
1 +

z2
i

ν

)−1
r3(zi; λ, ν)

+
α− 1
πσ

1
1 + λ2

n

∑
i=1

r2(zi; λ, ν)r3(zi; λ, ν)

jσα =
1
σ

n

∑
i=1

zir2(zi; λ, ν)
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jσν =− 1
σν

n

∑
i=1

z2
i

(
1 +

z2
i

ν

)−1
+

1
σ

ν + 1
ν2

n

∑
i=1

z2
i

(
1 +

z2
i

ν

)−2

+
λ

σν2

n

∑
i=1

z3
i wi

(
1 +

z2
i

ν

)−2
r1(λziwi; ν + 1)

+
λ

2σ

1
ν(ν + 1)

n

∑
i=1

zi(z2
i − 1)wi

(
1 +

z2
i

ν

)−2
r1(λziwi; ν + 1)

− λ3

2σ

ν + 2
ν2(ν + 1)

n

∑
i=1

z3
i (z

2
i − 1)wi

(
1 +

z2
i

ν

)−2(
1 +

(
1 + λ2) z2

i
ν

)−1
r1(λziwi; ν + 1)

− λ2

2σν2

n

∑
i=1

z2
i (z

2
i − 1)

(
1 +

z2
i

ν

)−3[
r1(λziwi; ν + 1)

]2
+

λ

2πσ

α− 1
ν(ν + 1)

n

∑
i=1

z2
i (z

2
i − 1)

(
1 +

z2
i

ν

)−1(
1 +

(
1 + λ2) z2

i
ν

)−1
r3(zi; λ, ν)

+
α− 1

2πσ(ν + 1)
λ

1 + λ2

n

∑
i=1

zir2(zi; λ, ν)r3(zi; λ, ν)

+
α− 1

2σ

ν + 1
ν2

n

∑
i=1

z3
i

(
1 +

z2
i

ν

)−1
r1(λziwi; ν + 1)

− α− 1
2σ

n

∑
i=1

zi log
(

1 +
z2

i
ν

)
r1(λziwi; ν + 1)

− α− 1
2σ

n

∑
i=1

zi
g(zi, ν)

FST(zi, λ, ν)
r2(zi; λ, ν)

jλλ =
λ(ν + 2)

ν

n

∑
i=1

z3
i wi

(
1 +

(
1 + λ2) z2

i
ν

)−1
r1(λziwi; ν + 1)

+
ν + 1

ν

n

∑
i=1

zi

(
1 +

z2
i

ν

)−1[
r1(λziwi; ν + 1)

]2
− 2(α− 1)

π

λ

(1 + λ2)2

n

∑
i=1

(
1 +

(
1 + λ2) z2

i
ν

)−1
r3(zi; λ, ν)

− α− 1
π

λ

1 + λ2
ν + 2

ν

n

∑
i=1

z2
i

(
1 +

(
1 + λ2) z2

i
ν

)−1
r3(zi; λ, ν)

+
α− 1

π2(1 + λ2)2

n

∑
i=1

[
r3(zi; λ, ν)

]2
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jλα =
1

π(1 + λ2)

n

∑
i=1

r3(zi; λ, ν)

jλν =− 1
2ν(ν + 1)

n

∑
i=1

zi(z2
i − 1)wi

(
1 +

z2
i

ν

)−1
r1(λziwi; ν + 1)

+
λ2

2ν2
ν + 2

(ν + 1)2

n

∑
i=1

z3
i (z

2
i − 1)wi

(
1 +

z2
i

ν

)−1(
1 +

(
1 + λ2) z2

i
ν

)−1
r1(λziwi; ν + 1)

+
λ

2ν2

n

∑
i=1

z2
i (z

2
i − 1)

(
1 +

z2
i

ν

)−2[
r1(λziwi; ν + 1)

]2
+

α− 1
2π(ν + 1)

1− λ2

(1 + λ2)2

n

∑
i=1

r3(zi; λ, ν) +
α− 1

2π(ν + 1)
λ

(1 + λ2)2

n

∑
i=1

[
r3(zi; λ, ν)

]2
− α− 1

2π(ν + 1)
λ2

1 + λ2

n

∑
i=1

z2
i

(
1 +

(
1 + λ2) z2

i
ν

)−1
r3(zi; λ, ν)

− α− 1
2π(1 + λ2)

n

∑
i=1

g(zi, ν)

FST(zi, λ, ν)
r3(zi; λ, ν)

− α− 1
2π

n

∑
i=1

g1(zi, ν)

FST(zi, λ, ν)

jαα =
n
α2

jαν =− n
2

ψ

(
ν + 1

2

)
+

n
2

ψ
(ν

2

)
+

n
2ν

+
1

2π(ν + 1)
λ

1 + λ2

n

∑
i=1

r3(zi; λ, ν)− 1
2 ∑

i=1

g(zi, ν)

FST(zi, λ, ν)
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jνν =− nα

2ν2 −
nα

4
ψ1

(ν + 1
2

)
+

nα

4
ψ1

(ν

2

)
− ν− 1

2ν3

n

∑
i=1

z2
i

(
1 +

z2
i

ν

)−1

+
ν + 1
2ν3

n

∑
i=1

z2
i

(
1 +

z2
i

ν

)−2

+
λ

4(ν + 1)2
1
ν2

n

∑
i=1

zi(z2
i − 1)(z2

i + 4ν + 3)wi

(
1 +

z2
i

ν

)−2
r1(λziwi; ν + 1)

− λ

4ν(ν + 1)

(
ψ
(ν + 2

2

)
− ψ

(ν + 1
2

)
− 1

ν + 1

)
n

∑
i=1

zi(z2
i − 1)wi

(
1 +

z2
i

ν

)−1
r1(λziwi; ν + 1)

− λ3

4(ν + 1)
ν + 2

ν3

n

∑
i=1

z3
i (z

2
i − 1)

(
1 +

z2
i

ν

)−2(
1 +

(
1 + λ2) z2

i
ν

)−1
r1(λziwi; ν + 1)

+
λ

4ν(ν + 1)

n

∑
i=1

zi(z2
i − 1) log

(
1 +

λ2z2
i

ν + z2
i

)
r1(λziwi; ν + 1)

+
λ2

4ν3(ν + 1)

n

∑
i=1

z2
i (z

2
i − 1)2

(
1 +

z2
i

ν

)−3[
r1(λziwi; ν + 1)

]2
− α− 1

2π(ν + 1)2
λ

1 + λ2

n

∑
i=1

r3(zi; λ, ν)

+
α− 1

4π(ν + 1)
λ

ν

n

∑
i=1

z2
i

(
1 +

(
1 + λ2) z2

i
ν

)−1
r3(zi; λ, ν)

− α− 1
4π(ν + 1)

λ

1 + λ2

n

∑
i=1

log
(

1 +
(
1 + λ2) z2

i
ν

)
r3(zi; λ, ν)

+
α− 1

4π(ν + 1)
λ

1 + λ2

(
ψ
(ν + 1

2

)
− ψ

(ν

2

)
− 1

ν

) n

∑
i=1

r3(zi; λ, ν)

− α− 1
2π(ν + 1)

λ

1 + λ2

n

∑
i=1

g(zi, ν)

FST(zi, λ, ν)
r3(zi; λ, ν)

+
α− 1

4π2(ν + 1)2
λ2

(1 + λ2)2

n

∑
i=1

[
r3(zi; λ, ν)

]2
+

α− 1
4

n

∑
i=1

( g(zi, ν)

FST(zi, λ, ν)

)2
− α− 1

2

n

∑
i=1

g2(zi, ν)

FST(zi, λ, ν)

where g(z; ν) is given in Equation (16), and g1(z; ν) and g2(z; ν) are given in Equations (A1) and (A3),
respectively.
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g1(x; ν) =
∫ x

−∞

{
(ν + 1)s2

ν(s2 + ν)
− log

(
1 +

s2

ν

)}{
1 +

(1 + λ2)s2

ν

}− ν+2
2

sds

−
∫ x

−∞

s
s2 + ν

{
1 +

(1 + λ2)s2

ν

}− ν+2
2

ds

+
∫ x

−∞

λ2(ν + 2)s3

(s2 + ν)(ν + (1 + λ2)s2)

{
1 +

(1 + λ2)s2

ν

}− ν+2
2

ds (A1)

g2(x; ν) =
∫ x

−∞

{
s2(s2ν− 2ν− s2)

ν2(s2 + ν)2 +
1
2

[
(ν + 1)s2

ν(s2 + ν)
− log

(
1 +

s2

ν

)]2}
fST(s; λ, ν)ds

+
λ

2π(ν + 1)

∫ x

−∞

s(s2 − 1)
(s2 + ν)

{
(ν + 1)s2

ν(s2 + ν)
− log

(
1 +

s2

ν

)}

×
{

1 +
(1 + λ2)s2

ν

}− ν+2
2

ds

+
λ

π

∫ x

−∞

s
(s + ν)2

{
1 +

(1 + λ2)s2

ν

}− ν+2
2

ds (A2)

+
λ

2π

(
ψ

(
ν + 1

2

)
− ψ

(ν

2

)
− 1

ν

) ∫ x

−∞

s
s2 + ν

{
1 +

(1 + λ2)s2

ν

}− ν+2
2

ds

− λ

2π

∫ x

−∞

s
s2 + ν

{
(ν + 2)(1 + λ2)s2

ν(ν + (1 + λ2)s2)
− log

(
1 +

(1 + λ2)s2

ν

)}

×
{

1 +
(1 + λ2)s2

ν

}− ν+2
2

ds (A3)
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