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Abstract: An insurance premium principle is a way of assigning to every risk a real number,
interpreted as a premium for insuring risk. There are several methods of defining the principle.
In this paper, we deal with the principle of equivalent utility under the rank-dependent utility model.
The principle, generated by utility function and probability distortion function, is based on the
assumption of the symmetry between the decisions of accepting and rejecting risk. It is known that
the principle of equivalent utility can be uniquely extended from the family of ternary risks. However,
the extension from the family of binary risks need not be unique. Therefore, the following problem
arises: characterizing those principles that coincide on the family of all binary risks. We reduce the
problem thus to the multiplicative Pexider functional equation on a region. Applying the form of
continuous solutions of the equation, we solve the problem completely.
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1. Introduction

Assume that (Ω,F , P) is a nonatomic probability space and that X is a family of all bounded
random variables on (Ω,F , P). Furthermore, let

X+ := {X ∈ X : X ≥ 0 P− a.e.}.

Elements of X+ represent the risk to be insured by an insurance company. An insurance contract
pricing consists of assigning to any X ∈ X+ a nonnegative real number, interpreted as a premium
for insuring X. One of the methods of insurance contract pricing is the principle of equivalent utility
introduced by Bühlmann [1]. To define the principle, assume that the insurance company possesses a
preference relation � over the elements of X+. Such a relation induces the indifference relation ∼ on
X+ in the following natural way: for every X, Y ∈ X+

X ∼ Y if and only if X � Y and Y � X. (1)

Suppose that the company, having an initial wealth level w ∈ [0, ∞), is going to decide whether to
accept or reject the application for a risk X ∈ X+. If the application is accepted, the initial wealth level
will increase by the insurance premium, say H(X), but the company will bear the risk X. Therefore,
this decision is represented by the random variable w + H(X)− X. If, however, the application is
rejected, the company will remain at the initial wealth level. The principle of equivalent utility is based
on the assumption of the symmetry between these decisions. More precisely, it postulates that the
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premium H(X) should be determined in such a way that the company remains indifferent between
accepting the risk and rejecting it, that is

w + H(X)− X ∼ w. (2)

Obviously, in general, one cannot expect the existence of H(X) or its uniqueness. However, it is
known that, if the preference relation � satisfies the axioms of expected utility, then for every X ∈ X
the number H(X) is uniquely determined by Equation (2). Some results concerning the properties of
the principle under expected utility can be found, e.g., in References [1–4].

In this paper, we deal with the principle of equivalent utility under the rank-dependent utility
model. This behaviorally motivated model, proposed by Quiggin [5], is based on the observation that,
making decisions under risks, people usually set a reference point and they perceive the results of
risky decisions above this point as profits and the results below it as losses. Furthermore, decision
makers distort probabilities. Thus, the rank-dependent utility model combines a value function with a
probability distortion function, that is a nondecreasing function g : [0, 1]→ [0, 1] such that g(0) = 0
and g(1) = 1. More precisely, a preference relation under this model is represented by the Choquet
integral. Recall that the Choquet integral with respect to the probability distortion function g is defined
as follows:

Eg[X] =
∫ 0

−∞
(g(P(X > t))− 1) dt +

∫ ∞

0
g(P(X > t)) dt for X ∈ X . (3)

More details concerning rank-dependent utility can be found, e.g., in Reference [6].
The principle of equivalent utility under the rank-dependent utility model has been introduced

by Heilpern [7]. It has been shown in Reference [7] that, in this setting, Equation (2) becomes

Eg[u(w + H(w,u,g)(X)− X)] = u(w) (4)

where u : R → R is a strictly increasing continuous function with u(0) = 0. It turns out
(cf. Reference [8], Remark 4) that, if g is continuous, then, for every X ∈ X+, Equation (4) determines
the number H(w,u,g)(X) uniquely. Several properties of the premium defined by Equation (4) have
been studied in Reference [7] under the assumption that u is concave and g is convex. Tsanakas and
Desli [9] investigated the properties of this premium regarding sensitivity to portfolio size and to risk
aggregation. For more details concerning broad classes of risk measures generated by the principle of
equivalent utility, we refer to Reference [10].

Note that, in general, Equation (4) has no explicit solution. However, in some exceptional cases,
H(w,u,g)(X) can be expressed in an explicit way for every X ∈ X+. In particular, if u is linear, then

H(w,u,g)(X) = Eḡ[X] for X ∈ X+,

where ḡ : [0, 1]→ [0, 1], given by

ḡ = 1− g(1− p) for p ∈ [0, 1], (5)

is the probability distortion function conjugated to g. Furthermore, if u(x) = a(1− e−cx) for x ∈ R
(with some a, c > 0), then

H(w,u,g)(X) =
1
c

ln Eḡ[ecX ] for X ∈ X+.

2. Problem Formulation

It follows from Equation (4) that the premium for a risk depends only on its probability
distribution. Therefore, in the sequel, we identify the risks with their probability distributions. For every
x1, x2 ∈ R with x1 < x2 and p ∈ (0, 1), by 〈x1, x2; 1− p, p〉, we denote any random variable X ∈ X
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such that P(X = x1) = 1− p and P(X = x2) = p. Moreover, for every x1, x2, x3 ∈ R with x1 < x2 < x3

and every p, q ∈ (0, 1) with p + q < 1, 〈x1, x2, x3; 1− p− q, p, q〉 denotes any random variable X ∈ X
such that P(X = x1) = 1− p − q, P(X = x2) = p, and P(X = x3) = q. Note that, as the space
(Ω,F , P) is nonatomic, such random variables exist. Let

X (2) := {〈x1, x2; 1− p, p〉 : x1, x2 ∈ R, x1 < x2, p ∈ (0, 1)}

and

X (3) := {〈x1, x2, x3; 1− p− q, p, q〉 : x1, x2, x3 ∈ R, x1 < x2 < x3, p, q ∈ (0, 1), p + q < 1}.

Furthermore, we set
X (2)
+ := {〈x1, x2; 1− p, p〉 ∈ X (2) : x1 ≥ 0}

and
X (3)

0 := {〈x1, x2, x3; 1− p− q, p, q〉 ∈ X (3) : x1 = 0}.

Recently, Chudziak [11] has considered the extension problem for the principle of equivalent
utility under Cumulative Prospect Theory. In this setting, the premium H(w,u,g,h)(X) for a risk X ∈ X+

is defined as a unique solution of the following equation:

Egh[u(w + H(w,u,g,h)(X)− X)] = u(w) (6)

where
Egh[X] = Eg[max{X, 0}]− Eh[max{−X, 0}] for X ∈ X

is the generalized Choquet integral related to the probability distortion functions g (for gains)
and h (for losses). The principle of equivalent utility under Cumulative Prospect Theory has been
introduced by Kałuszka and Krzeszowiec [12]. The existence and uniqueness of the principle defined
by Equation (6) have been characterized in Reference [8]. Several properties of the premium have been
considered in References [12,13].

It has been proved in Reference [11] that the principle determined by Equation (6) can be uniquely
extended from the family X (3)

0 onto X+. More precisely, if

H(w,u1,g1,h1)
(X) = H(w,u2,g2,h2)

(X) for X ∈ X (3)
0 ,

where w ∈ [0, ∞) and, for i ∈ {1, 2}, gi and hi are continuous probability distortion functions and
ui : R→ R is a strictly increasing continuous function with ui(0) = 0, then

H(w,u1,g1,h1)
(X) = H(w,u2,g2,h2)

(X) for X ∈ X+.

Since Egḡ[X] = Eg[X] for X ∈ X (cf. Reference [12]), Equation (4) is a particular case of Reference (6).
Thus, this result applies also to the principle of equivalent utility under rank-dependent utility. That is,
if w ∈ [0, ∞) and, for i ∈ {1, 2}, gi is a continuous probability distortion function and ui : R→ R is a
strictly increasing continuous function with ui(0) = 0, then

H(w,u1,g1)
(X) = H(w,u2,g2)

(X) for X ∈ X (3)
0

implies
H(w,u1,g1)

(X) = H(w,u2,g2)
(X) for X ∈ X+.



Symmetry 2020, 12, 42 4 of 12

However, the above result fails to hold with X (3)
0 replaced by X (2)

+ (cf. Example 1). Thus, the following
problem arises naturally: for a given w ∈ [0, ∞), characterizing those pairs (u1, g1) and (u2, g2)

for which
H(w,u1,g1)

(X) = H(w,u2,g2)
(X) for X ∈ X (2)

+ . (7)

The aim of this paper is to present a complete solution to this problem. A crucial role in our
considerations is played by the continuous solutions of the multiplicative Pexider equation on a region.

3. Preliminary Results

We begin this section with three remarks which will be useful in our further considerations.

Remark 1. Let g be a probability distortion function. It follows from Equation (3) that, if X = 〈x1, x2; 1−
p, p〉 ∈ X (2), then

Eg[X] = (1− g(p))x1 + g(p)x2. (8)

Furthermore, if X = 〈x1, x2, x3; 1− p− q, p, q〉 ∈ X (3), then

Eg[X] = (1− g(p + q))x1 + (g(p + q)− g(q))x2 + g(q)x3. (9)

Remark 2. Assume that w ∈ [0, ∞), g is a probability distortion function and u : R → R is a strictly
increasing continuous function with u(0) = 0. Then, for every X = 〈x1, x2; 1− p, p〉 ∈ X (2)

+ , we have

u(w + H(w,u,g)(X)− X) = 〈u(w + H(w,u,g)(X)− x2), u(w + H(w,u,g)(X)− x1); p, 1− p〉.

Therefore, in view of Equation (8), Equation (4) becomes

(1− g(1− p))u(w + H(w,u,g)(X)− x2) + g(1− p)u(w + H(w,u,g)(X)− x1) = u(w). (10)

Similarly, taking into account Equation (9), we conclude that, for every X = 〈x1, x2, x3; 1− p− q, p, q〉 ∈ X (3)
+ ,

Equation (4) takes the following form:

(1− g(1− q))u(w + H(w,u,g)(X)− x3) + (g(1− q)− g(1− p− q))u(w + H(w,u,g)(X)− x2)

+g(1− p− q)u(w + H(w,u,g)(X)− x1) = u(w).
(11)

Remark 3. Assume that w ∈ [0, ∞), g is a probability distortion function, and u : R → R is a strictly
increasing continuous function such that u(0) = 0. Let X = 〈x1, x2; 1 − p, p〉 ∈ X (2)

+ . Note that,
if H(w,u,g)(X) were not greater than x1, then the left-hand side of Equation (10) would be smaller than u(w).
On the other hand, if H(w,u,g)(X) were not smaller that x2, then the left-hand side of Equation (10) would be
greater than u(w). Therefore, we have

x1 < H(w,u,g)(〈x1, x2; 1− p, p〉) < x2 for 〈x1, x2; 1− p, p〉 ∈ X (2)
+ . (12)

The following example shows that, under the rank-dependent utility model, the extension of the
principle of equivalent utility from the family of binary risks need not be unique.

Example 1. Let u1, u2 : R→ R be given by

u1(x) = x for x ∈ R

and

u2(x) =

{
2x for x ∈ (−∞, w),

x + w for x ∈ [w, ∞),
(13)
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respectively. Then, obviously, u1 and u2 are strictly increasing and continuous and u1(0) = u2(0) = 0.
Furthermore, let g1, g2 : [0, 1]→ [0, 1] be of the following form:

g1(p) = p for p ∈ [0, 1]

and
g2(p) =

2p
p + 1

for p ∈ [0, 1], (14)

respectively. Then, g1 and g2 are continuous probability distortion functions. Since Eg1 [X] = E[X] for X ∈ X+

(cf. Reference [12]), in view of Equation (4), for every w ∈ [0, ∞) and X ∈ X+, H(w,u1,g1)
(X) is a solution of

the following equation:
E[w + H(w,u1,g1)

(X)− X] = w.

Hence,
H(w,u1,g1)

(X) = E[X] for X ∈ X+. (15)

Note that we have also
H(w,u2,g2)

(X) = E[X] for X ∈ X (2)
+ . (16)

In fact, if X = 〈x1, x2; 1− p, p〉 ∈ X (2)
+ , then E[X] = (1− p)x1 + px2, and so, in view of Equations (13) and

(14), we get
(1− g(1− p))u2(w + E[X]− x2) + g(1− p)u2(w + E[X]− x1)

=

(
1− 2− 2p

2− p

)
u2(w− (1− p)(x2 − x1)) +

2− 2p
2− p

u2(w + p(x2 − x1))

=
2p

2− p
(w− (1− p)(x2 − x1)) +

2− 2p
2− p

(2w + p(x2 − x1)) = 2w = u2(w).

Thus, taking into account Equation (10), we obtain Equation (16). From Equations (15) and (16), we derive
Equation (7).

On the other hand, taking X = 〈0, 1, 2; 1/3, 1/3, 1/3〉 ∈ X (3)
0 , we get E[X] = 1 and so(

1− g2

(
2
3

))
u2(w + E[X]− 2) +

(
g2

(
2
3

)
− g2

(
1
3

))
u2(w + E[X]− 1) + g2

(
1
3

)
u2(w + E[X])

=
2
5
(w− 1) +

3
5

w +
1
2
(2w + 1) = 2w +

1
10

> 2w = u2(w).

Hence, in view of Equation (11), we obtain H(w,u2,g2)
(X) 6= E[X] which, together with Equation (15),

gives H(w,u1,g1)
(X) 6= H(w,u2,g2)

(X).

The following result concerning continuous solutions of the multiplicative Pexider equation on a
region will play an important role in our considerations.

Lemma 1. Let D ⊆ (0, ∞)2 be a non-empty, open, and connected set such that

D1 := {t ∈ (0, ∞) : (t, y) ∈ D for some y ∈ (0, ∞)} = (0, ∞).

Furthermore, let
D2 := {y ∈ (0, ∞) : (t, y) ∈ D for some t ∈ (0, ∞)}

and
D+ := {ty : (t, y) ∈ D}.
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Assume that K : D+ → R, L : D2 → (0, ∞) and φ : (0, ∞)→ (0, ∞). If φ is a strictly increasing continuous
function and the triple (K, L, φ) satisfies following equation

K(ty) = φ(t)L(y) for (t, y) ∈ D (17)

then there exist a, b, r ∈ (0, ∞) such that

K(x) = abxr for x ∈ D+, (18)

φ(t) = atr for t ∈ (0, ∞) (19)

and
L(y) = byr for y ∈ D2. (20)

Proof. Assume that φ is a strictly increasing continuous function and that the triple (K, L, φ) satisfies
Equation (17). It follows from Equation (17) that K(x) > 0 for x ∈ D+. Thus, applying Reference [14],
Corollary 3, we obtain that there exist a, b ∈ R \ {0} and a function m : (0, ∞)→ (0, ∞) such that

K(x) = abm(x) for x ∈ D+, (21)

φ(t) = am(t) for t ∈ (0, ∞), (22)

L(y) = bm(y) for y ∈ D2 (23)

and
m(xy) = m(x)m(y) for x, y ∈ (0, ∞).

Since φ is continuous, in view of Equation (22), so is m. Thus, applying Reference [15], Theorem 13.1.6,
we conclude that there exists r ∈ R \ {0} such that

m(x) = xr for x ∈ (0, ∞).

Hence, from Equations (21)–(23) we derive Equations (18)–(20), respectively. Furthermore, since φ is
strictly increasing, φ(t) > 0 for t ∈ (0, ∞), and L(y) > 0 for y ∈ D2, in view of Equations (19) and (20),
we get a, b, r ∈ (0, ∞).

In the proof of our main result, we will also need the following lemma.

Lemma 2. Assume that w ∈ [0, ∞), g is a continuous probability distortion functions and u : R → R is a
continuous strictly increasing function with u(0) = 0. Let f : (0, ∞)× (0, 1)→ R be given by

f (x, p) = H(w,u,g)(〈0, x; 1− p, p〉) for x ∈ (0, ∞), p ∈ (0, 1). (24)

Then, we obtain the following:

(i)

(1− g(1− p))u(w + f (x, p)− x) + g(1− p)u(w + f (x, p)) = u(w) for x ∈ (0, ∞), p ∈ (0, 1); (25)

(ii)
f (x, p) ∈ (0, x) for x ∈ (0, ∞), p ∈ (0, 1); (26)

(iii) For every x ∈ (0, ∞), the function f (x, ·) is continuous, where

lim
p→0+

f (x, p) = 0 and lim
p→1−

f (x, p) = x;
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(iv) For every p ∈ (0, 1), the function f (·, p) is continuous and limx→0+ f (x, p) = 0.

Proof. Note that Equation (25) follows directly from Equations (10) and (24). Furthermore,
Equations (12) and (24) imply Equation (26).

In order to prove (iii), fix x ∈ (0, ∞). Suppose that f (x, ·) is not continuous at the point p0 ∈ (0, 1).
Then, there exists a sequence (pn : n ∈ N) of elements of (0, 1) such that limn→∞ pn = p0 but ( f (x, pn) :
n ∈ N) does not tend to f (x, p0). It follows from Equation (26) that the sequence ( f (x, pn) : n ∈ N)
is bounded. Thus, there exists a subsequence (pnk : k ∈ N) of the sequence (pn : n ∈ N) such that
limk→∞ f (x, pnk ) =: y 6= f (x, p0). Furthermore, in view of Equation (25), we get

(1− g(1− p0))u(w + f (x, p0)− x) + g(1− p0)u(w + f (x, p0)) = u(w) (27)

and

(1− g(1− pnk ))u(w + f (x, pnk )− x) + g(1− pnk )u(w + f (x, pnk )) = u(w) for k ∈ N. (28)

Since u and g are continuous, letting in Equation (28) k→ ∞ and subtracting from Equation (27) the
equality obtained in this way, we obtain

(1− g(1− p0))(u(w + f (x, p0)− x)− u(w + y− x)) + g(1− p0)(u(w + f (x, p0))− u(w + y)) = 0.

This yields a contradiction, as u is strictly increasing and y 6= f (x, p0). Thus, we have proved that
f (x, ·) is continuous.

Now, we show that limp→0+ f (x, p) = 0. Suppose that this is not true. Then, arguing as previously,
we conclude that there exists a sequence (pn : n ∈ N) of elements of (0, 1) such that limn→∞ pn = 0
but limn→∞ f (x, pn) =: y 6= 0. Moreover, by Equation (25), we get

(1− g(1− pn))u(w + f (x, pn)− x) + g(1− pn)u(w + f (x, pn)) = u(w) for n ∈ N.

Hence, as g is a continuous probability distortion function and u is continuous, letting n → ∞,
we obtain u(w + y) = u(w). Since u is strictly increasing, this gives a contradiction and proves that
limp→0+ f (x, p) = 0. Using the same arguments, one can show that limp→1− f (x, p) = x. Therefore,
(iii) is proved.

The proof of (iv) is similar.

4. Main Result

Now, we are going to formulate and prove the main result of the paper.

Theorem 3. Let w ∈ [0, ∞). Assume that, for i ∈ {1, 2}, gi is a continuous probability distortion function
and ui : R→ R is a strictly increasing continuous function with ui(0) = 0. Then, Equation (7) holds if and
only if there exist a, b, r ∈ (0, ∞) such that

u2(x) =

{
bu1(w)r − b(u1(w)− u1(x))r for x ∈ (−∞, w),
bu1(w)r + ab(u1(x)− u1(w))r for x ∈ [w, ∞)

(29)

and

g2(p) =
g1(p)r

g1(p)r + a(1− g1(p)r)
for p ∈ [0, 1]. (30)

Proof. Assume that Equation (7) is valid. Let f : (0, ∞)× (0, 1)→ R be given by

f (x, p) = H(w,u1,g1)
(〈0, x; 1− p, p〉) for x ∈ (0, ∞), p ∈ (0, 1).
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Then, taking into account Equation (7) and applying Lemma 8(i), for every x ∈ (0, ∞), p ∈ (0, 1),
and i ∈ {1, 2}, we obtain

(1− gi(1− p))ui(w + f (x, p)− x) + gi(1− p)ui(w + f (x, p)) = ui(w). (31)

Hence,

(1− gi(1− p))vi(x− f (x, p)) + gi(1− p)vi(− f (x, p)) = 0 for x ∈ (0, ∞), p ∈ (0, 1), i ∈ {1, 2} (32)

where vi : R→ R for i ∈ {1, 2} is given by

vi(x) = ui(w)− ui(w− x) for x ∈ R. (33)

Obviously, for i ∈ {1, 2}, vi is strictly increasing and continuous with vi(0) = 0. Moreover, it follows
from Equation (32) that

vi(− f (x, p)) = −φi(p)vi(x− f (x, p)) for x ∈ (0, ∞), p ∈ (0, 1), i ∈ {1, 2} (34)

where φi : (0, 1)→ (0, ∞) for i ∈ {1, 2} is given by

φi(p) =
1− gi(1− p)

gi(1− p)
for p ∈ (0, 1). (35)

Note that, for i ∈ {1, 2}, φi is a continuous strictly increasing function with

lim
p→0+

φi(p) = 0, lim
p→1−

φi(p) = ∞. (36)

Hence, for i ∈ {1, 2}, φi is an increasing homeomorphism of (0, 1) onto (0, ∞). Furthermore, in view of
Equation (34), we get

−φi(p)vi(x− f (x, p)) ∈ vi(R) for x ∈ (0, ∞), p ∈ (0, 1), i ∈ {1, 2}

and

v−1
1 (−φi(p)v1(x− f (x, p))) = v−1

2 (−φ2(p)v2(x− f (x, p))) for x ∈ (0, ∞), p ∈ (0, 1).

Since φ1 is a homeomorphism of (0, 1) onto (0, ∞), replacing in the last equality p by φ−1
1 (t), we obtain

v−1
1 (−tv1(x− f (x, φ−1

1 (t)))) = v−1
2 (−φ(t)v2(x− f (x, φ−1

1 (t)))) for x, t ∈ (0, ∞) (37)

where
φ := φ2 ◦ φ−1

1 . (38)

Note that φ is an increasing homeomorphism on (0, ∞). Moreover, taking

S(t) := {x− f (x, φ−1
1 (t)) : x ∈ (0, ∞)} for t ∈ (0, ∞),

in view of Equation (37), we get

v−1
1 (−tv1(z)) = v−1

2 (−φ(t)v2(z)) for t ∈ (0, ∞), z ∈ S(t).

Therefore,
v−1

1 (−ty) = v−1
2 (−φ(t)v2(v−1

1 (y))) for t ∈ (0, ∞), y ∈ v1(S(t)). (39)
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Since v1 and φ1 are continuous, applying Lemma 2(iii), we obtain that, for every x ∈ (0, ∞),
the function

(0, ∞) 3 t→ v1(x− f (x, φ−1
1 (t))) (40)

is continuous. Moreover, as v1 is strictly increasing with v1(0) = 0, taking into account Lemma 2(ii),
we get

v1(x− f (x, φ−1
1 (t))) > 0 for x, t ∈ (0, ∞).

Thus, for every x ∈ (0, ∞), the set

D(x) := {(t, y) ∈ (0, ∞)2 : y < v1(x− f (x, φ−1
1 (t)))}

is non-empty and open. Furthermore, we have

D(x) = T(x)((0, ∞)× (0, v1(x))) for x ∈ (0, ∞)

where T(x) : (0, ∞)2 → R2 is of the following form:

T(x)(x1, x2) =

(
x1, v1(x− f (x, φ−1

1 (x1)))
x2

v1(x)

)
for (x1, x2) ∈ (0, ∞)× (0, v1(x)).

Since, for every x ∈ (0, ∞), the function given by Equation (40) is continuous, so is T(x). Hence, D(x) is
connected for x ∈ (0, ∞). Note also that, for every x1, x2 ∈ (0, ∞), we have(

1,
1
2

min{v1(xi − f (xi, φ−1
1 (1))) : i ∈ {1, 2}}

)
∈ D(x1) ∩ D(x2) 6= ∅.

Therefore, the set
D :=

⋃
x∈(0,∞)

D(x)

is non-empty, open, and connected.
Let (t, y) ∈ D. Then, (t, y) ∈ D(x) for some x ∈ (0, ∞), that is 0 < y < v1(x − f (x, φ−1

1 (t))).
Moreover, according to Lemma 2(iv), the function

(0, ∞) 3 x → v1(x− f (x, φ−1
1 (t)))

is continuous and, as v1 is continuous with v1(0) = 0, we get

lim
x→0

v1(x− f (x, φ−1
1 (t))) = 0.

Hence, y = v1(x0 − f (x0, φ−1
1 (t))) for some x0 ∈ (0, ∞) and so y ∈ v1(S(t)). Therefore, taking into

account Equation (39), we conclude that

(v2 ◦ v−1
1 )(−ty) = −φ(t)(v2 ◦ v−1

1 )(y) for (t, y) ∈ D. (41)

Obviously, we have
D1 = (0, ∞). (42)

Moreover,
D2 = v1((0, ∞)). (43)

In fact, if y ∈ D2, then (t, y) ∈ D for some t ∈ (0, ∞). Thus, there exists x ∈ (0, ∞) such that
(t, y) ∈ D(x) and so

v1(0) = 0 < y < v1(x− f (x, φ−1
1 (t))).
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Since v1 is strictly increasing and continuous, this implies that y ∈ v1((0, ∞)). Conversely, if y ∈
v1((0, ∞)), then y = v1(z) for some z ∈ (0, ∞). Moreover, as φ is an increasing homeomorphism on
(0, ∞), we have limt→0+ φ−1

1 (t) = 0. Thus, taking x ∈ (z, ∞), applying Lemma 2(iii), and using the
continuity of v1, we obtain limt→0+ v1(x − f (x, φ−1

1 (t))) = v1(x). Therefore, as y = v1(z) < v1(x),
for sufficiently small t ∈ (0, ∞), we have y < v1(x− f (x, φ−1

1 (t))) and so (t, y) ∈ D(x) ⊂ D. Hence,
y ∈ D2. In this way, we have proved Equation (43).

Let
L := (v2 ◦ v−1

1 )|v1((0,∞)). (44)

Since, for i ∈ {1, 2}, vi is strictly increasing with vi(0) = 0, in view of Equation (43), we get L : D2 →
(0, ∞). Moreover, defining K : D+ → R by

K(z) = −(v2 ◦ v−1
1 )(−z) for z ∈ D+,

from Equation (41) we derive that the triple (K, L, φ) satisfies Equation (17). Thus, using again the fact
that φ is an increasing homeomorphism on (0, ∞) and applying Lemma 1, we obtain that there exist
a, b, r ∈ (0, ∞) such that φ and L are of the forms in Equations (19) and (20), respectively. It follows
from Equations (19) and (38) that

φ2(p) = aφ1(p)r for p ∈ (0, 1).

Hence, as g1(0) = g2(0) = 0 and g1(1) = g2(1) = 1, taking into account Equation (35), we obtain
Equation (30).

From Equations (20), (33), and (44), we deduce that

u2(x) = bu1(w)r − b(u1(w)− u1(x))r for x ∈ (−∞, w). (45)

We are going to show that

u2(x) = bu1(w)r + ab(u1(x)− u1(w))r for x ∈ [w, ∞). (46)

Since ui is continuous for i ∈ {1, 2}, it follows from Equation (45) that

u2(w) = bu1(w)r. (47)

Thus, Equation (46) holds for x = w. Fix x ∈ (w, ∞). First, consider the case where w > 0. Then,
0 < x− w < x, and so applying Lemma 2(iii), we get that f (x, p) = x− w for some p ∈ (0, 1). Hence,
in view of Equation (31), we obtain gi(1− p)ui(x) = ui(w) for i ∈ {1, 2}. Therefore, taking into
account Equations (30) and (47), we obtain

u2(x) =
u2(w)

g2(1− p)
= bu1(w)r g1(1− p)r + a(1− g1(1− p))r

g1(1− p)r = bu1(w)r
(

1 + a
(1− g1(1− p))r

g1(1− p)r

)

= bu1(w)r + abu1(w)r
(

1− u1(w)

u1(x)

)r ( u1(x)
u1(w)

)r
= bu1(w)r + ab(u1(x)− u1(w))r.

If w = 0 then, in view of Equation (45), we get u2(x) = −b(−u1(x))r. Thus, taking into account
Equations (30) and (31) (with w = 0) and in view of Lemma 2(ii), for every p ∈ (0, 1), we obtain

u2( f (x, p)) = −1− g2(1− p)
g2(1− p)

u2( f (x, p)− x) = − a(1− g1(1− p))r

g1(1− p)r (−b(−u1( f (x, p)− x))r)

= ab
(
− (1− g1(1− p))u1( f (x, p)− x)

g1(1− p)

)r
= abu1( f (x, p))r.
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Hence,
u2( f (x, p)) = abu1( f (x, p))r for p ∈ (0, 1).

Since ui is continuous for i ∈ {1, 2}, letting in this equality p→ 1− and applying Lemma 2(iii), we get
u2(x) = abu1(x)r. This proves Equation (46) in the case w = 0. Obviously, Equations (45) and (46)
imply Equation (29).

In order to prove the converse statement, assume that there exist a, b, r ∈ (0, ∞) such that
Equations (29) and (30) hold. Let X = 〈x1, x2; 1 − p, p〉 ∈ X (2)

+ . Then, in view of Equation (10),
we obtain

(1− g1(1− p))u1(w + H(w,u1,g1)
(X)− x2) + g1(1− p)u1(w + H(w,u1,g1)

(X)− x1) = u1(w).

Hence,

(1− g1(1− p))(u1(w)− u1(w+ H(w,u1,g1)
(X)− x2)) = g1(1− p)(u1(w+ H(w,u1,g1)

(X)− x1)− u1(w)).

Moreover, it follows from Equation (12) that

w + H(w,u1,g1)
(X)− x2 < w < w + H(w,u1,g1)

(X)− x1.

Therefore, taking into account Equations (29) and (30) and applying Equation (10) again, we get

(1− g2(1− p))u2(w + H(w,u1,g1)
(X)− x2) + g2(1− p)u2(w + H(w,u1,g1)

(X)− x1)

=
a(1− g1(1− p))r

g1(1− p)r + a(1− g1(1− p)r)
(bu1(w)r − b(u1(w)− u1(w + H(w,u1,g1)

(X)− x2))
r)

+
g1(1− p)r

g1(1− p)r + a(1− g1(1− p)r)
(bu1(w)r + ab(u1(w + H(w,u1,g1)

(X)− x1)− u1(w))r)

= bu1(w)r = u2(w).

Hence, H(w,u1,g1)
(X) = H(w,u2,g2)

(X).

5. Conclusions

The principle of equivalent utility is a method of insurance contract pricing. It is based on the
assumption of symmetry between the decisions of accepting and rejecting risk. It is known that
under the rank-dependent utility model, the principle possesses a unique extension from the family of
ternary risks. However, the extension from the family of binary risk need not be unique. In this paper,
we establish a characterization of the principles that coincides on the family of binary risks. It is given
in terms of the relations between the pairs of utility and probability distortion functions generating
the principles. This result can play important roles in the study of the principle of equivalent utility.
In fact, having a premium with known generators and applying our results, one can describe a family
of all premiums which coincides with a given premium on the family of binary risks.

Recently, the principle of equivalent utility under Cumulative Prospect Theory has been
intensively investigated. It seems to be interesting to establish an analogous characterization in
this setting. Some partial results in this direction can be found in Reference [16].
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