
symmetryS S

Article

CQ-Type Algorithm for Reckoning Best Proximity
Points of EP-Operators

Hassan Houmani 1,2,* and Teodor Turcanu 1

1 Department of Mathematics and Informatics, University Politehnica of Bucharest,
060042 Bucharest, Romania; deimosted@yahoo.com

2 Lebanese International University—LIU, 146404 Beirut, Lebanon
* Correspondence: hassanhoumani@yahoo.com

Received: 27 November 2019; Accepted: 15 December 2019; Published: 18 December 2019 ����������
�������

Abstract: We introduce a new class of non-self mappings by means of a condition which is called the
(EP)-condition. This class includes proximal generalized nonexpansive mappings. It is shown that the
existence of best proximity points for (EP)-mappings is equivalent to the existence of an approximate
best proximity point sequence generated by a three-step iterative process. We also construct a CQ-type
algorithm which generates a strongly convergent sequence to the best proximity point for a given
(EP)-mapping.
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1. Introduction

The Banach contraction principle, which is the central result of the metric fixed point theory, has
for decades been a source of inspiration for many authors. It states that any contraction mapping
acting on a complete metric space has a unique fixed point, which is the limit of a sequence obtained
by successive iterations of the given mapping. The attempts to extend this fundamental result have
generated an impressive amount of scientific papers, as well as new areas of research. For instance,
the theory of nonexpansive mappings, which naturally generalizes contraction mappings, has been
a central topic during the last five decades. Fundamental existence results for nonexpansive mappings
have been obtained by Kirk [1], Browder [2], and Göhde [3]. Later on, even wider classes of mappings
were proposed and studied (see for instance Suzuki [4], García-Falset et al. [5]). At the same time,
besides Picard’s iteration used for contractions, some authors have introduced other iteration schemes
(such as Mann [6] and Ishikawa [7]). This was in part due to the fact that Picard’s iterative sequence
for nonexpansive mappings does not necessarily converge. For more recently introduced iterative
schemes, one can see Noor [8], Agrawal et al. [9], Abbas and Nazir, [10], Sintunavarat and Pitea [11],
Thakur et al. [12–14], etc.

Another natural extension is to consider non-self mappings between two disjoint sets instead
of mappings of a set into itself. In this setting, however, there is no point asking for fixed points,
but instead one looks for best proximity points. More precisely, let T : X → Y be a mapping between
two subsets X and Y of a metric space E. A best proximity point x ∈ X is a point such that d (x, Tx)
is minimal. The interest for this type of problem was ignited by Fan [15]. Later on, authors such as
Reich [16], Seghal and Singh [17], Naraghirad [18], and others have picked up on this subject and
extended Fan’s result in multiple ways.

The results presented in this paper relate to the above mentioned context as follows. Firstly,
we consider the iterative process introduced by Thakur et al. [12] (which we shall call henceforth
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TTP16), but for mappings satisfying the condition (E), introduced by García-Falset et al. [5], extending
Lemma 3.1 and, respectively, Theorem 3.2 from [12].

Secondly, we adapt the iterative process TTP16 to the setting of non-self mappings and define
a new class of operators which are required to have the (EP)-property (see below). This class includes
proximal generalized nonexpansive mappings, introduced by Gabeleh [19]. It is shown that the
(EP)-mappings have best proximity points if and only if the iterative sequence generated by the
adapted TTP16 process is an approximate best proximity point sequence.

In the last section, we construct an algorithm which is a hybrid between the CQ algorithm of
Nakajo and Takahashi [20] (see also Takahashi [21] and Jakob [22]) and the adapted TTP16 iterative
process. The motivation in this case being the strong convergence of the sequences generated by the
algorithm to best proximity points for (EP)-mappings.

2. Preliminaries

Let X and Y be two nonempty subsets of a Banach space (E, ‖ · ‖). Throughout this paper the
following notations will be used:

d (X, Y) = inf {‖x− y‖ : x ∈ X, y ∈ Y} ;
d (x, Y) = inf {‖x− y‖ : y ∈ Y} ;

PX(y) = {x ∈ X : ‖x− y‖ = d (y, Y)} ;
X0 = {x ∈ X : ‖x− y′‖ = d (X, Y) , for some y′ ∈ Y} ;
Y0 = {y ∈ Y : ‖x′ − y‖ = d (X, Y) , for some x′ ∈ X} .

Definition 1 ([23]). A pair (X, Y) of nonempty subsets of a normed vector space with X0 6= ∅ is said to have
the P-property if and and only if for any x1, x2 ∈ X0 and y1, y2 ∈ Y0,{

‖x1 − y1‖ = d (X, Y)
‖x2 − y2‖ = d (X, Y)

=⇒ ‖x1 − x2‖ = ‖y1 − y2‖.

Lemma 1. Let X and Y be two nonempty closed bounded and convex subsets of a Banach space. If the pair
(X, Y) has the P-property, then both X0 and Y0 are closed bounded and convex sets.

Proof. To prove that X0 is a closed set, take a sequence {xn} ⊂ X0, converging in the norm to some
point p ∈ X. As {xn} ⊂ X0, one can associate a sequence {yn} ⊂ Y0, such that ‖xn − yn‖ = d (X, Y)
for all n. On the other hand, the P-property implies that ‖xn − xm‖ = ‖yn − ym‖, for all n and m. Thus,
{yn} ⊂ Y0 is a Cauchy sequence, which converges to some q ∈ Y, since Y is a closed set. Using now
the inequality

‖p− q‖ ≤ ‖p− xn‖+ ‖xn − yn‖+ ‖yn − q‖,

we conclude that ‖p− q‖ = d (X, Y), meaning that p ∈ X0. Thus X0 is a closed set.
The set X0 is bounded since X is bounded.
To prove the convexity of the set X0, take x1, x2 ∈ X0 and α ∈ [0, 1]. There exist y1, y2 ∈ Y0

such that
‖x1 − y1‖ = d (X, Y) = ‖x2 − y2‖.

From the convexity of the set Y we get

‖αx1 + (1− α) x2 − (αy1 + (1− α) y2) ‖ ≤ α‖x1 − y1‖+ (1− α) ‖x2 − y2‖
= d (X, Y) .

Thus X0 is convex. The proof for Y0 is similar.
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A Banach space E is called uniformly convex (see for instance [24]) if, for each ε ∈ (0, 2], there exists
δ > 0 such that for x, y ∈ E,

‖x‖ ≤ 1,
‖y‖ ≤ 1,
‖x− y‖ > ε

 =⇒
∥∥∥∥ x + y

2

∥∥∥∥ ≤ δ.

Let C be a nonempty closed convex subset of a Banach space E. Given a bounded sequence
{xn} ⊂ E, setting, for a given x ∈ E,

r (x, {xn}) = lim sup
n→∞

‖x− xn‖,

one defines the asymptotic radius

r (C, {xn}) = inf {r (x, {xn}) : x ∈ C} ,

and, respectively, the asymptotic center

A (C, {xn}) = {x ∈ C : r (x, {xn}) = r (C, {xn})} ,

of the sequence {xn} with respect to C.
In a uniformly convex Banach space the asymptotic center of a bounded sequence consists of

a single element [25]. In a paper published in 2011, García-Falset et al. introduced a new class of
mappings satisfying the so-called condition (E) defined as follows.

Definition 2 ([5]). Let C be a nonempty subset of a Banach space (E, ‖ · ‖). We say that a mapping T : C → E
satisfies the condition (Eµ) if there exists µ ≥ 1 such that for all x, y ∈ C,

‖x− Ty‖ ≤ µ‖x− Tx‖+ ‖x− y‖.

A mapping T is said to satisfy the condition (E) whenever it satisfies (Eµ) for some µ ≥ 1.

This condition is weaker than Suzuki’s condition (C) for generalized nonexpansive mappings,
a fact which follows from [4] Lemma 7. Recently Thakur et al. [12] have introduced a new iterative
process, whose convergence to best proximity points of maps which satisfy the condition (E) we shall
study. The iterative process, for a mapping satisfying the condition (E), is as follows.

x1 ∈ C
xn+1 = Tyn

yn = T ((1− αn) xn + αnzn)

zn = (1− βn) xn + βnTxn

 (1)

for all n ≥ 1, where {αn} and {βn} are sequences in (0, 1).
The following lemma is the counterpart of Lemma 3.1 from [12], but for mappings satisfying the

condition (E). We shall denote the set of fixed points of a mapping T by F(T).

Lemma 2. Let C be a nonempty closed convex subset of a Banach space (E, ‖ · ‖), and let T : C → C be
a mapping satisfying the condition (E) such that F(T) 6= ∅. For arbitrary chosen x1 ∈ C, let the sequence {xn}
be generated by the iterative process Equation (1). Then lim

n→∞
‖xn − p‖ exists for any p ∈ F(T).

Proof. Let p ∈ F(T). As the mapping T satisfies condition (E), we have

‖Tx− p‖ = ‖p− Tx‖ ≤ µ‖p− Tp‖+ ‖x− p‖ = ‖x− p‖, (2)
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for any x ∈ C.
Applying Equation (2) and using the triangle axiom, one has

‖zn − p‖ = ‖ (1− βn) xn + βnTxn − p‖
≤ (1− βn) ‖xn − p‖+ βn‖Txn − p‖
≤ (1− βn) ‖xn − p‖+ βn‖xn − p‖
= ‖xn − p‖.

(3)

Similarly, using Equation (3), we get

‖yn − p‖ = ‖T ((1− αn) xn + αnzn)− p‖
≤ ‖ (1− αn) xn + αnzn − p‖
≤ (1− αn) ‖xn − p‖+ αn‖zn − p‖
≤ (1− αn) ‖xn − p‖+ αn‖xn − p‖
= ‖xn − p‖.

(4)

Now Equations (2) and (4) yield

‖xn+1 − p‖ = ‖Tyn − p‖
≤ ‖yn − p‖
≤ ‖xn − p‖,

(5)

which means that the sequence {‖xn − p‖} is bounded and nonincreasing for any p ∈ F(T).
Thus, the limit lim

n→∞
‖xn − p‖ exists.

The following theorem is an extension of Theorem 3.2 from [12] to the class of mappings satisfying
condition (E). It is worth to compare it with Theorems 2 and 3 from [5]. We shall need the following
technical lemma.

Lemma 3 ([26]). Suppose (E, ‖ · ‖) is a uniformly convex Banach space and {tn} is a sequence bounded
away from 0 and 1, i.e., 0 < b ≤ tn ≤ c < 1 for all n ≥ 1. Let {xn} and {yn} be two sequences in E
such that lim sup

n→∞
‖xn‖ ≤ a, lim sup

n→∞
‖yn‖ ≤ a and lim sup

n→∞
‖tnxn + (1− tn) yn‖ = a hold for some a ≥ 0.

Then lim
n→∞

‖xn − yn‖ = 0.

Theorem 1. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and let T : C → C
be a mapping satisfying condition (E). Given a point x1 ∈ C, let the sequence {xn}, n ≥ 1, be generated by the
iterative process Equation (1) with {αn} and {βn} bounded away from 0 and 1. Then F (T) 6= ∅ if and only if
the sequence {xn} is bounded and lim

n→∞
‖xn − Txn‖ = 0 (i.e., {xn} is an approximate fixed point sequence).

Proof. Let p ∈ F (T) 6= ∅. According to Lemma 2 the limit

a := lim
n→∞

‖xn − p‖

exists and {xn} is a bounded sequence. Using Equations (2) and (3) respectively, we have

lim
n→∞

‖zn − p‖ ≤ lim
n→∞

‖xn − p‖ = a, (6)

lim
n→∞

‖Txn − p‖ ≤ lim
n→∞

‖xn − p‖ = a. (7)
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On the other hand, using Equations (2) and (5), together with the properties of the norm, we get

‖xn+1 − p‖ ≤ ‖yn − p‖
= ‖T ((1− αn) xn + αnzn)− p‖
≤ ‖ (1− αn) xn + αnzn − p‖
≤ (1− αn) ‖xn − p‖+ αn‖zn − p‖
= ‖xn − p‖ − αn‖xn − p‖+ αn‖zn − p‖,

or, equivalently,
‖xn+1 − p‖ − ‖xn − p‖

αn
≤ ‖zn − p‖ − ‖xn − p‖.

Thus,
‖xn+1 − p‖ − ‖xn − p‖ ≤ ‖zn − p‖ − ‖xn − p‖

implying
‖xn+1 − p‖ ≤ ‖zn − p‖.

Whereas from Equation (2) we have that ‖zn − p‖ ≤ ‖xn − p‖ and thus

a = lim
n→∞

‖zn − p‖. (8)

It follows
lim

n→∞
‖βn (Txn − p) + (1− βn) (xn − p) ‖ = lim

n→∞
‖zn − p‖ = a. (9)

Thus, the conditions of Lemma 3 are satisfied yielding lim
n→∞

‖Txn − xn‖ = 0.

Conversely, assume that {xn} is bounded and lim
n→∞

‖Txn − xn‖ = 0. Take a point p ∈ A (C, {Xn}).
Using the fact that the mapping T satisfies the condition (E), we have

r (Tp, {xn}) = lim sup
n→∞

‖xn − Tp‖

≤ lim sup
n→∞

(µ‖Txn − xn‖+ ‖xn − p‖)

= lim sup
n→∞

‖xn − p‖

= r (p, {xn}) ,

which means that Tp lies in A (C, {Xn}). On the other hand, since E is uniformly convex, A (C, {Xn})
is a singleton and hence Tp = p.

Corollary 1. Let C be a nonempty compact convex subset of a uniformly convex Banach space and let {xn}
and T be as in Theorem 1. If F (T) 6= ∅, then the sequence {xn} converges strongly to a fixed point of T.

Proof. If F (T) 6= ∅, then, according to Theorem 1 lim
n→∞

‖xn − Txn‖ = 0. As C is assumed to be

compact, the sequence {xn} has a convergent subsequence
{

xnk

}
to some point p ∈ C. Since the

mapping T satisfies the condition (E), for all n ≥ 1 and some µ ≥ 1, we have

‖xnk − Tp‖ ≤ µ‖xnk − Txnk‖+ ‖xnk − p‖.

The uniqueness of the limit implies that
{

xnk

}
converges strongly to Tp, meaning that Tp ∈ F (T).

On the other hand, according to Lemma 2, the limit lim
n→∞

‖xn− p‖ exists which completes the proof.
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3. Best Proximity Point Problem for (EP)-Mappings

Let X and Y be two convex subsets in a Banach space. A non-self mapping T : X → Y is called
nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, for all x, y ∈ X.

Gabeleh [19] introduced a condition on mappings which is weaker than nonexpansiveness and
which resembles Suzuki’s condition (C), but in the context of non-self mappings.

Definition 3 ([19]). Let (X, Y) be a pair of of nonempty subsets of a Banach space. A mapping T : X → Y
is said to be proximal generalized nonexpansive if and only if for all x, y, u, v ∈ X such that ‖u − Tx‖ =

d (X, Y) = ‖v− Ty‖,

1
2
(‖x− Tx‖ − d (X, Y)) ≤ ‖x− y‖ =⇒ ‖u− v‖ ≤ ‖x− y‖.

The above definition can be widened by taking some λ ∈ (0, 1) instead of 1/2.
Next we introduce a new condition on non-self mappings which can be seen as the analogue of

the condition (E) introduced by García-Falset et al. [5] and which involves the metric projection.

Definition 4. Let (X, Y) be a pair of of nonempty subsets of a Banach space (E, ‖ · ‖) such that X0 6= ∅ and
denote by PX0 : E → X0 the metric projection operator onto X0. A mapping T : X → Y is said to satisfy the
condition (EP) if and only if

‖x− PX0 Ty‖ ≤ µ‖x− PX0 Tx‖+ ‖x− y‖, for all x, y ∈ X. (10)

Proposition 1. Any proximal generalized nonexpansive mapping satisfies the condition (EP).

Proof. From Definition 3 it is clear that u, v ∈ X0 (and hence X0 6= ∅) and that Tx ∈ Y0. Also,
from the definition of the metric projection we have u = PX0 Tx and v = PX0 Ty. For any λ ∈ (0, 1)
we have

λ (‖x− Tx‖ − d (X, Y)) = λ
(
‖x− Tx‖ − ‖PX0 Tx− Tx‖

)
≤ λ‖x− PX0 Tx‖
≤ ‖x− PX0 Tx‖.

Since the mapping T is proximal generalized nonexpansive, it follows that

‖PX0 Tx− PX0 Ty‖ ≤ ‖x− PX0 Tx‖. (11)

On the other hand, the triangle inequality together the inequality Equation (11), yield

‖x− PX0 Ty‖ ≤ ‖x− PX0 Tx‖+ ‖PX0 Tx− PX0 Ty‖
≤ 2‖x− PX0 Tx‖+ ‖x− y‖,

which means that the condition (EP) is satisfied for µ = 2.

Next, we adapt the iterative process Equation (1) for the case of non-self mappings using the
metric projection as follows.

x1 ∈ X0

xn+1 = PX0 Tyn

yn = PX0 T ((1− αn) xn + αnzn)

zn = (1− βn) xn + βnPX0 Txn

 (12)

for all n ≥ 1, where {αn} and {βn} are sequences bounded away from 0 and 1.
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It is clear from Lemma 1 that the set X0 is convex. Also, since the iterative process Equation (12)
involves the metric projection onto X0 and convex combinations of elements from X0, it is clear that
{xn} ⊂ X0.

The notion of approximate fixed point sequence has a natural extension in the context of best
proximity point problem.

Definition 5 ([19]). Let (X, Y) be a pair of nonempty sets of a Banach space and T : X → Y be a non-self
mapping. A sequence {xn} ⊂ X is said to be an approximate best proximity point sequence for T if and only if

lim
n→∞

‖xn − Txn‖ = d (X, Y) .

Theorem 2. Let (X, Y) be a pair of nonempty subsets of a Banach space E, where the pair has the P-property,
X is convex, Y is closed and convex, and X0 6= ∅. Suppose the mapping T : X → Y satisfies the condition (EP)
with T (X0) ⊆ Y0 and let {xn} be the sequence generated by the iterative process (12). Then, the mapping T has
a best proximity point if and only if {xn} is bounded and lim

n→∞
‖xn − Txn‖ = d (X, Y).

Proof. According to Lemma 1 the set X0 is closed and convex. If p is a best proximity point for
the mapping T, then p is a fixed point for the mapping PX0 T : X0 → X0, i.e., F

(
PX0 T

)
6= ∅. Thus,

according to Theorem 1, the sequence {xn} is bounded and lim
n→∞

‖xn − PX0 Txn‖ = 0. Also, since

T (X0) ⊆ Y0, we have that ‖PX0 Txn − Txn‖ = d(X, Y). Taking n→ ∞ in the inequality

‖xn − Txn‖ ≤ ‖xn − PX0 Txn‖+ ‖PX0 Txn − Txn‖, n ≥ 1, (13)

yields lim
n→∞

‖xn − Txn‖ = d (X, Y).

Conversely, suppose that lim
n→∞

‖xn − Txn‖ = d (X, Y). Using this fact while passing to the

limit in Equation (13) gives lim
n→∞

‖xn − PX0 Txn‖ = 0. Since by assumption the sequence {xn} is

bounded, according to Theorem 1, there exists p ∈ X0 such that PX0 Tp = p, which means that
‖p− Tp‖ = d (X, Y).

Corollary 2. Let (X, Y), T, and {xn} be as in Theorem 2 and suppose additionally that X is compact.
If F(PX0 T) 6= ∅ , then the sequence {xn} generated by the iterative process (12) converges strongly to
a best proximity point of T.

Proof. Since X is compact, the sequence {xn} has a subsequence
{

xnk

}
converging strongly to some

point z ∈ X. Also, since F(PX0 T) 6= ∅, we have that lim
n→∞

‖xn − PX0 Txn‖ = 0. Letting k → ∞ in

the relation
‖xnk − PX0 Tz‖ ≤ µ‖xnk − PX0 Txnk‖+ ‖xnk − z‖,

we obtain that xnk converges strongly to PX0 Tz and by the uniqueness of the limit we have z = PX0 Tz,
i.e., z ∈ F(PX0 T). Applying now Lemma 2 yields the conclusion.

4. Strong Convergence via a CQ-Type Algorithm

In this section we introduce an algorithm which is a hybrid between the iterative process (12)
and the CQ algorithm introduced by Nakajo and Takahashi [20]. The main outcome is the strong
convergence of the resulting sequence. Before dealing with the main result, let us establish the
following preliminaries.

Let H be a real Hilbert and denote the inner product by 〈·, ·〉 and, respectively, the norm by ‖ · ‖.
Let X and Y be nonempty closed and convex subsets of H. Given a mapping T : X → Y, we denote the
set of its best proximity points by XT , i.e.,

XT = {x ∈ X : d (x, Tx) = d (X, Y)} .
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Clearly XT ⊆ X0 (for details, one can see [27]).
For a sequence {xn} ⊂ X let

wω ({xn}) =
{

x : ∃
{

xnk

}
⊂ {xn} , xnk ⇀ x

}
,

where ⇀ denotes the weak convergence, be the weak ω-limit set.

Lemma 4 ([28]). Let K be a closed and convex subset of a real Hilbert space H and let PK be the metric projection
from H onto K. Then, given x ∈ H and z ∈ K,

z = PKx if and only if 〈x− z, y− z〉 ≤ 0,

for all y ∈ K.

Lemma 5 ([28]). Let K be a closed and convex subset of a real Hilbert space H. Let {xn} be a sequence in H
and let x ∈ H. Let q = PKx. If {xn} is such that wω ({xn}) ⊂ K and satisfies the condition

‖xn − x‖ ≤ ‖x− q‖, for all n ∈ N,

then xn → q.

A Banach space (E, ‖ · ‖) is said to have the Opial property if, for every sequence {xn} ⊂ E such
that xn ⇀ z, the inequality

lim inf
n→∞

‖xn − z‖ < lim inf
n→∞

‖xn − y‖

holds whenever y 6= z. It is worth mentioning that any Hilbert space has the Opial property (for a
proof, please see [29]).

Lemma 6 (Theorem 1, [5]). Let C be a nonempty subset of a Banach space E and let T : C → E be a given
mapping. If

a) there exists a sequence {xn} ⊂ C such that ‖xn − Txn‖ → 0 and zn ⇀ z,
b) T satisfies the condition (E) on C,
c) (E, ‖ · ‖) has the Opial property,

then Tz = z.

Consider now the following algorithm:

x0 ∈ X0 arbitrary,
zn = (1− βn) xn + βnPX0 Txn,
yn = PX0 T ((1− αn) xn + αnzn) ,
wn = PX0 Tyn,
Qn = {u ∈ X0 : 〈xn − u, xn − x0〉 ≤ 0} ;
Cn = {u ∈ X0 : max {‖wn − u‖ , ‖yn − u‖ , ‖zn − u‖} ≤ ‖xn − u‖} ,
xn+1 = P(Cn∩Qn)x0,

(14)

where {αn} and {βn} are real sequences bounded away from 0 and 1.
Clearly the projection is well defined since the set X0 is closed and convex, according to Lemma 1.

Theorem 3. Let (X, Y) be a pair of nonempty closed and convex subsets of a real Hilbert space, and suppose
the pair has the P-property. Let T : X → Y be a mapping which satisfies the condition (EP) such that XT is
a nonempty convex subset of X0. Then, the sequence {xn}, generated by the algorithm (12), converges to a best
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proximity point. In particular, it converges to p, where p = PXT (x0). Moreover, the same holds true for the
sequences {wn}, {yn} and {zn}.

Proof. Let x0 ∈ X0. Clearly the sets Qn and Cn respectively, are closed and convex subsets of X. Let us
prove that XT ⊂ Cn ∩Qn.

Let z ∈ XT . Clearly, d (z, Tz) = d (X, Y), i.e., d
(
z, PX0 Tz

)
= 0. Keeping in mind that the mapping

T satisfies the condition (EP), we have

‖zn − z‖ = ‖ (1− βn) xn + βnPX0 Txn − z‖
≤ (1− βn) ‖xn − z‖+ βn‖PX0 Txn − z‖
≤ (1− βn) ‖xn − z‖+ βn

(
µ‖PX0 Tz− z‖+ ‖xn − z‖

)
≤ ‖xn − z‖.

(15)

Similarly, we get the inequality

‖yn − z‖ = ‖PX0 T ((1− αn) xn + αnzn)− z‖
≤ µ‖PX0 Tz− z‖+ ‖ (1− αn) xn + αnzn − z‖
≤ (1− αn) ‖zn − z‖+ αn‖zn − z‖
= ‖zn − z‖,

(16)

and, respectively,

‖wn − z‖ = ‖PX0 T
(

PX0 T ((1− αn) xn + αnzn)
)
− z‖

≤ µ‖PX0 Tz− z‖+ ‖PX0 T ((1− αn) xn + αnzn)− z‖
≤ µ‖PX0 Tz− z‖+ ‖ (1− αn) xn + αnzn − z‖
≤ (1− αn) ‖zn − z‖+ αn‖zn − z‖
= ‖zn − z‖.

(17)

Hence, z ∈ Cn, i.e., XT ⊂ Cn.
The inclusion XT ⊂ Qn follows by induction. Indeed, it is clear from the definition that Q0 = X0

and that XT ⊂ X0, respectively. Assume XT ⊂ Qn. As Cn and Qn are closed and convex sets, for
xn+1 = PCn∩Qn(x0), according to Lemma 4, one has 〈xn+1 − z, xn+1 − x0〉 ≤ 0 for all z ∈ Cn ∩ Qn.
Using again the definition of the set Qn and noticing that XT ⊂ Cn ∩ Qn yields XT ⊂ Qn+1, which
completes the induction.

Let p = PXT (x0). Since XT ⊂ Cn ∩Qn and xn+1 = PCn∩Qn(x0), we have

‖xn+1 − x0‖ ≤ ‖p− x0‖, (18)

which also means that the sequence {xn} is bounded.
Since xn+1 ∈ Qn, we obtain

‖xn+1 − xn‖2 = 〈xn+1 − xn, xn+1 − xn〉
= 〈xn+1 − x0 + x0 − xn, xn+1 − x0 + x0 − xn〉
= ‖xn+1 − x0‖2 − ‖xn − x0‖2 − 2 〈xn+1 − xn, xn − x0〉
≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2,

implying ‖xn+1 − xn‖ → 0 for n→ ∞.
On the other hand, the triangle axiom and the definition of Cn yield

‖zn − xn‖ ≤ ‖zn − xn+1‖+ ‖xn+1 − xn‖
≤ ‖xn − xn+1‖+ ‖xn+1 − xn‖

and thus ‖zn − xn‖ → 0 for n→ ∞.
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Noticing that ‖zn − xn‖ = βn‖PX0 Txn − xn‖, it follows that ‖PX0 Txn − xn‖ → 0 as n→ ∞, since
the sequence {βn} is bounded away from 0 and 1.

Consider now the mapping PX0 T : X0 → X0, which clearly satisfies the condition (E). The set of
its fixed points is the set XT . Recalling that any Hilbert space has the Opial property, while Applying
Lemma 6, yields the inclusion wω ({xn}) ⊂ XT . This fact, together with inequality Equation (18),
according to Lemma 5, provides the strong convergence of the sequence {xn} to the point p = PXT (x0).

Turning now to the strong convergence of the other sequences, we have

‖wn − xn‖ ≤ ‖wn − xn+1‖+ ‖xn+1 − xn‖
≤ ‖xn − xn+1‖+ ‖xn+1 − xn‖

and thus ‖wn − xn‖ → 0. Similarly, one obtains ‖yn − xn‖ → 0.
Lastly, the strong convergence of the sequences {wn}, {yn}, and {zn} follow by taking n→ ∞ in

the inequalities
‖wn − p‖ ≤ ‖wn − xn‖+ ‖xn − p‖,
‖yn − p‖ ≤ ‖yn − xn‖+ ‖xn − p‖,
‖zn − p‖ ≤ ‖zn − xn‖+ ‖xn − p‖.

5. Conclusions

The starting point of our study in this paper has two main ingredients. One of them is the
iterative process introduced by Thakur et al. [12], for Suzuki generalized nonexpansive mappings.
The other is a class of mappings satisfying the condition (E), introduced by García-Falset et al. and
which is even larger. We firstly extended the main results from [12] to the case of mappings satisfying
condition (E). Afterwards, we have progressed to the setting of best proximity point problem, which is
a generalization of the fixed point problem, by introducing a new class of non-self mappings. These
generalize the class of proximal generalized nonexpansive mappings introduced by Gabeleh [19].
We have also adapted the iterative process from [12] to the setting of non-self mappings, using the
metric projection, and have studied the convergence of the resulting iterative sequence. In the last
part, we have constructed a CQ-type algorithm [20] for the iterative process under consideration and
have proved the strong convergence of the resulting sequence to a best proximity point for mappings
satisfying the condition (EP).
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