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1. Introduction

Throughout this paper, let X be a real Banach space and E C X be a nonempty subset. Let T :
E — E be a mapping, the set of fixed points of T is denoted by F(T). If there exists a sequence
{kn} C [1,00) with lim;,_,e k;; = 1 such that

IT"E =Tyl < kallG = 7ll,VE, 7 € E,

then T is said to be asymptotically nonexpansive. T is uniformly asymptotically regular,
if limy oo || T"F1¢ — T"E|| = 0,¥¢ € E. If ky, = 1, then T is said to be nonexpansive. Recall
that T is known as a contractive mapping on E if there exists a constant p € (0,1) such that

IT¢ = Tyll < pllg — 7l V¢, 7 € E.
An operator A : E — X is called accretive if there exists j(¢ —#7) € J(¢ — 1) such that

(A —An,j(§—n)) >0,Y¢,n €E,

where J : X — 2% is the normalized duality mapping on X. An operator A : E — X is called a-inverse
strongly accretive if for « > 0 and j(¢ — ) € J({ — 1), we have

(AE— An,j(E—n)) > a||AZ — Ay||*, V&, 1 € E.

For any € € (0,2], we denote the the modulus of convexity dx(e) > 0 of X as follows:

, 1
ox(e) = inf{l—=Sllg+yl Il Inl =L lI¢ —nll = e}.
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X is said to be uniformly convex if 6x(0) = 0. Let px be the modulus of smoothness of X defined by:

ox(s) = sup{ LXM=L gy g g =1y,

A Banach space X is said to be uniformly smooth if lim, . px(s) /s = 0. Moreover, X is uniformly
smooth if and only if the norm of X is uniformly Fréchet differentiable.
A mapping Q : X — E is called sunny if Q has the following property:

Q(s¢+ (1 —5)Q5) = Q¢ 5 € X,5 >0,

whenever s¢ + (1 —s)Q¢ € X. A mapping Q : X — E is said to be a retraction if Q¢ = ¢ forall ¢ € E.
It is well known that a sunny nonexpansive retraction is also sunny and nonexpansive.

Variational inequality theory has played a significant role in nonlinear analysis and the
optimization problem. Many iterative methods have been used to solve variational inequality problems
due to the applications in some branches of applied science, convex optimization, mathematical physics,
and operator studies, see [1-9] and the references therein. In fact, the classical variational inequality
problem in Banach spaces is to find g € E such that

(Aqg,j(x —q)) >0,Vx € E.

In 2010, Yao et al. [10] proposed a system to find (1, v) € E X E such that:

(Av+u—uv,j(x—u)) >0,Vx € E,
(Bu+v—u,j(x—2v)) >0,Vx € E,

which is called the general variational inequality system in Banach spaces. They proved a strong
convergence result of the following sequence to a solution of the variational inequality system:

{ Yn = QE(xn - an)/
Xp41 = &pl + BuXp +'YnQE(]/n - A}/n),

where Qf is the sunny nonexpansive retract from X onto E.

Recently, many authors have focused their efforts on studying generalized variational inequality
systems with variational inequality constraints, see [11-17] and the references therein. Especially,
in 2019, Ceng et al. [11] studied a general system of variational inequalities in Banach spaces:

(Mo +u—ov,j(x —u)) > 0,Vx € E, 1)
(uBu+v—u,j(x —v)) >0,Vx € E,

and they considered an implicit composite extra-gradient-like iterative algorithm for countable family
Lipschitzian pseudo-contractive mappings and proved strong convergence results in Banach spaces.
Cai et al. [14] showed the following viscosity iteration method for the strict pseudo-contraction and
non-expansive mapping:

Yn = anf(xn) + (1 — ay)xy,

tn = QE(Yn — HBYn),

zn = Qp(un — AAuy),

Xp41 = BuXn + (1 — Bu) Tazn,

where T,x = ax + (1 — a)Tx. They proved that x, converges strongly to a common element of the
fixed point set and the set of solutions of the problem (1).
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Inspired and motivated by the work of researchers, we consider the following problem about the
general variational inequality system in Banach spaces:

{ (I=AA)(txt+ (1= t)yh) —f, j(x — 1)) <0,Vx € E, 2

((I—uB)x" —y',j(x—y")) <0, Vx € E.

When t = 0, this is the general system of variational inequalities (1). We present a viscosity
iterative algorithm for the general variational inequality system (2) and an asymptotically nonexpansive
mapping. Let {x, } be a sequence generated by xo € E and:

wy = Qp(I — uB)xy,

zn = Qp(I — AA)(tx, + (1 — Hwy),
Up = OuXy + (1= 8n)zn,

Xp1 = @nf (Xn) + BuXn + YnT "ty

®)

Then, the strong convergence theorem of this iterative scheme in Banach spaces is proven. Finally,
we give the numerical experiments to show the implementation and efficiency of our main theorem.
We study this viscosity approximation method to find a common element of the fixed point set of an
asymptotically nonexpansive mapping and the set of solutions of the general variational inequality
system in Banach spaces. Our results presented in this paper generalize and complement many recent
ones [3,5,6,9,10,12-14,17].

2. Preliminaries

In this section, we recall some lemmas which are needed in the proof of our main results.

Lemma 1 ([18]). Let X be a smooth Banach space. Assume that Q : X — E is a retract and | is the normalized
duality mapping on X. Then the following statements are equivalent:

(a) Q is sunny and nonexpansive;

® 1Q5 — Qnl* < (¢ —n,](QF = Qn), V¢, € X;

(© {—Q%J(n—Q¢)) <0,v¢ € X, € E.

Lemma 2 ([19]). Suppose that {v,} is a sequence of nonnegative real numbers satisfying:
Vi1 < (1= bp)vy + byoy, Vn > 0,

where {b,} C (0,1) and 0, C R satisfying the following conditions:
(i) limy, oo by = 0and Y, by = +00;

(ii) either limsup, , 0, < 0o0r Y57 o |[bpoy| < H-co.

Then limy, 00 v, = 0.

Lemma 3 ([14]). Let X be a real Banach space. Let @ # E C X be a closed convex subset. If the operator
A : E — X is a-inverse strongly accretive, then we have:

11— AA)E = (1= AA)IP < [} — 52 = A2x — cA) | AZ — Ap]?,
where A > 0. If 0 < A < 27"‘, then I — A A is nonexpansive.
Lemma 4 ([20]). Let X be a real Banach space and {x,, }, {yn } be two bounded sequences of X. Let {B,} be

a sequence in [0,1] with 0 < liminf, ;e B < limsup, ., Bn < 1.If X1 = (1 — Bu)xn + Bupn for
alln > 0and limsup,,_, . (|Pns1 — pull — |¥ns1 — xal]) <0, then limy o ||pn — x4 || = 0.
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Lemma 5 ([21]). Let X be a real Banach space. Let @ # E C X be a closed convex subset. Andlet T : E — E
be an asymptotically nonexpansive mapping with a fixed point. Suppose that X admits a weakly sequentially
continuous duality mapping. Then the mapping I — T is demiclosed at zero, i.e., where I is the identity mapping,
ie., if xy — xand |x, — Tx,| — 0, then x = Tx.

Lemma 6 ([22]). Let X be a real Banach space. Let @ # E C X be a closed convex subset and T : E — E be a
nonexpansive mapping with F(T) # @. Let f : E — E be a contractive mapping. Then the sequence xs defined
by xs = sf(xs) + (1 —5)Txs,s € (0,1) converges strongly to a point in F(T). Suppose Q : I, — F(T) by
Q(f) = limg_0 x5, f € I, then Q(f) solves the variational inequality

(L= RN, J(Q(f) —p)) <0,Vp € F(T).

Lemma 7 ([23]). Let r > 0. If X is a real smooth and uniformly convex Banach space, then there exists
a continuous, strictly increasing and convex function g : [0,2r] — R, g(0) = 0 such that g(||x —y||) <
111 = 2(x, j(y)) + llyll? for all x,y € Br.

Lemma 8. Let X be a real Banach space. Let @ # E C X be a closed convex subset and A,B : E — X be
two nonlinear mappings. Suppose that Qg is a sunny nonexpansive retraction. For YA,y > 0and t € [0,1],
then the following assertions are equivalent:

(a) (x*,y*) € E x E is a solution of problem (2);

(b) Let ¥ : E — E be a mapping defined by

Y(x) = Qe(I — AA)[tx + (1 — t)Qe(I — uB)x],

then let x* be the fixed point of ¥, that is x* = ¥t

where x* = Qp(I — M) [tx™ + (1 — t)y'], y* = Qe(I — uB)x'. Assume that A,B : E — X are a-inverse
strongly accretive operator and B-inverse strongly operator, respectively. If0 < A < 2£,0 < p < ZTﬁ, then ¥ is
nonexpansive.

Proof. From Lemma 1 and the definition of the sunny nonexpansive retraction, we have that (2) is
equivalent to

{ xt = Qe(I—AA)[txt + (1 - H)y');
y" = Qe(I — uB)x",

which is a solution of problem (2). Hence x" = Qp(I — AA)[tx" + (1 — t)Qp (I — uB)x'] = ¥(x™).
From Lemma 3, for any x,y € E, we find

¥ (x) =¥ W)l = [|Qe(I — AA)[tx + (1 — t)Q(I — uB)x] — Qe(I — AA)[ty + (1 — t)Qr(I — uB)yl||
< I =AA)[tx + (1= £)Qp(I — uB)x] — (I — AA) [ty + (1 — ) Qe (I — uB)y]||
< |ltx+ (1= #)Qe(I — uB)x —ty — (1 = £)Qe(I — uB)y||
<tlx =yl + @ =t)fx -yl
= [|x —yl|-

Thus, ¥ is nonexpansive. [

3. Main Results

Theorem 1. Let X be a uniformly convex and uniformly smooth Banach space. Let @ # E C X bea
closed convex subset. Suppose that Qr : X — E is a sunny nonexpansive retraction and T : E — E is an
asymptotically nonexpansive mapping satisfying the uniformly asymptotically reqular condition. And A, B :
E — X are an a-inverse strongly accretive operator and B-inverse strongly accretive operator, respectively.
Let f : E — E be a contraction with coefficient p € (0,1) and ¥ be defined by Lemma 8. Assume that
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Q = F(T)NF(Y) # @. Suppose that {a,},{Bn}, {¥n}, {6n} C (0,1), the sequence {x,} defined by (3)
satisfies the following conditions:
(i) an+ Bu+n = 1,}1121;1004,1 =0,Z oan =0,k —1=¢€n,,0<e<1—p;
(ii) 0 < liigi;lfﬁn < h?—?oljp Bn < 1,11115210 6,11 — 0n| =0;
(iii)0§t<1,0<)t<27“,0<y<2'8

7}
(iv) Bn + 'ynk% <1

Then {x, } converges strongly to an element x* € Q which solves the variational inequality:
(1= f)x',j(x" = p)) <0,¥p € Q.

Proof. Let x' € ), from Lemma 8, we have x' = Qp(I — AA)[txt + (1 — t)y'], y" = Qe (I — uB)x".
It follows from (3) that

l[ttn = x* | = 116020 + (1 = 6n)z0 — x|
< Onllxtn — 2T+ (1= 6u) ||zn — 7|
= Onllxn — x| + (1= 82) ¥ (xu) — x|
< Onllxn — er|| + (1= 0n)|lxn — er||

=|lxy —x

Then we compute:

21 — x|

= |lanf (xn) + Bnxn + yuT"un — x|

= Jlan(f(xn) = F(x7)) + @ (F(T) = ") + Bu(xn = x7) + (Tt — x7) |
< aull f () = FON N+ an |l f(7) = T+ Bullxvw — T+ 7| T 0 — 27|
< apllxn — x|+ anll £ (") = x|+ Bullxn — x| + vukn|un — x|

= (&np + B+ Yukn) 1Xn — x| + anl | f(x7) — x|
<[1—(1—p—ean]llxn — x| +aul f(x) = 2T

1
< max{|[x, — x+\|, m”f(xJF) - x+||},

which implies that x, is bounded, and so are z,,,uy,f (x4), T"uy.
From (3) and Lemma 8, we observe that

[

= [|Qe(I = AA) (txp11 + (1 — wpir) — Qe(I — AA) (txy + (1 — t)wn) ||

= [|Qe(I = AA) (txpi1 + (1= )QE(I — uB)xp11) — Qe(I — AA) (txy + (1 — 1) Qe(I — uB)xy) |
= [I¥ (xns1) = ¥ (xn)l] < X041 — xall,

then

[t = unll = [0nsa2xn1 + (1 = 1) Zng1 — Gnxtn — (L= 6n)za|
= [|0n+1(Xn1 = xn) + (8nt1 — On)xn + (1 = On1)(Znt1 — 2n) — (1 — On)zu|
< ntallxns1 = Xl + [0ns1 = SnlllXn — znll + (1 = Spr1) 241 — za|
< xn1 = xnll + [8nt1 — Onll[xn — zu]-
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Set p,, = %,for all n > 0, we obtain
Pt — pn = Xn+2 = Prr1Xn+1 ~ Xn+l — Brxn
" " 1- :Bn—H 1- ﬁn
- W1 f (Xng1) + Vg1 T 1ty 49 _ anf(xXn) +ynT"Un
1= PBu+1 1=Bn
_ w1 f (1) + (1= Bus1 — @) Tty _ anf(xn) + (1 —an — Bn) T"un
1- ,Bn+1 1- .Bn
o D‘n-i,-l _ Xpn+1 _ Xn
T g [f (enn) = f )] + (3= By 1-f )f (xn)
B Kp+1 . &n )Tnun _ %(Tn+lu 1 — T”un) + Tn+1u 41— Tnun
T=Bu1  1-Bn 1= Pust " ’
Xyt Xp+1 Xn n
=— - — -T
EE f(x0) = )]+ (25— = T2 [F) = T
(- 0‘117+1)[Tn+1un+1 _ Tn+1un} +(1- %)[T’Hlun — T"uy].
1- ,BnJrl 1- .3n+1
Thus,
Phn+1 Ant1 a M

— < S xyp1 — x| + e
Ipnea = pall < 725 e =l + 1575 = 7=

[
T sup | Ty — T+ (1= 2 Yy 1 — 1]
- ﬁ?’l“rl

1—Bu+1 ek
< [ Py + (1 Xn41

_|_

14 14
V1] || g1 — 2| + [t M

T a1 pun T=Pra 1=

+ ﬂ sup HTnJrlun — T”un|| + ﬂk;wrll(sn#»l - 5H|M

1—PBut1 xeE 1= Bt

ap1(l—p—¢) Xnt1 &n

D b Lt S A TP — Xl + nE - M
_[ 1—,3n+1 ]” n+1 n” |1_ﬁn+l 1_'3n|
+ I s [Ty — T |+ 2y 4 (0041 — 8a|M,

1= PBut1 xek 1= Put1

where M > 0 is a constant satisfies:
M > {supuzolln — 2all, supusoll £ (n) = T"ua]}.
By (i), (ii) , we can find,
limsup([|pui1 = pall = [xn41 = xal]) <O.
n—sco

Applying Lemma 4, we have

nlgrolo lpn = xull = 0.
We know that N o
Pn— Xn = ”1‘*'17/3””,
and we obtain
i [5,41 = ] =0,

Next, we show that limy, e [|x; — ¥y || = 0 and lim;_ye0 ||x, — Tx, || = 0.

6 of 15

4)
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From (3), Lemma 3, and the non-expansiveness of Qr, we have

lwn — "> = [|Qe(I — uB)xy — Qe(I — uB)x"|?
< |I(I = uB)xy — (I — uB)x*|)?
< [l — x")|* — p(2B — cp) || Bxy — Bx* |2
Then
llzn — 22
= [|Qe(I — AA)[txy + (1 — Hwy] — Qe(I — AA)[tx" + (1 — t)y'] |2
<I(I = AA) [txn + (1 — Hw,] — (I = AA)[tx" + (1 — )y "]
< ltxy + (1 = Hwy — (it + (1= HyH |12 = A2a — cA) || Atx, 4+ (1 — Hwy) — A(txt + (1 = t)yh)||?
< tlxn — &M+ (1= £) o — yT|I> — A2a — cA) | A(txn + (1 = hw,) — A(tx" + (1= t)y") |12
< [lxn — x| = (1 = £)u(2B — cp)||Bx, — Bx|?
—AQ2a —cA)||A(txy + (1 — Hwy) — A(tx+ +(1- t)y+)||2,
and
(|14 —x+H2
< Sullxn — X124+ (1= 6n) |z — x*|1?
< lxn — 27?2 = (1= 6,) (1 — )pu(2B — cp) || Bxy — Bx"||?
— (1= 6)A 20 — cA)||Atxy + (1 — t)wy,) — A(txT + (1 — )y ||
Moreover, we know that
01 — x*|1?
= ||“nf(xn) + Bnxn + YTty — er||2
< [ f(xn) — x|+ Bullxn — 2|2+ vl Ty — x|
< | f () = x| 4 Bullxn — xTI? + ki [Jun — 27|17
< |l f(xn) — X1 + Bullxn — xT |12 + yukGl|lxn — x|
— Yuk (1= 6,)(1 — )p(2B — cpt) || Bx, — BxT|?
— k3 (1 = 6)A(2a — cA) || Atx, + (1 — Hwy,) — A(tx™ + (1 —£)yh)|1?,
which implies that
Yk (1= 6,)(1 — £)u(2B — cp)||Bx, — Bx*|?
+ Yuk3 (1 = 8)A (20 — cA) | A(txn + (1 — Hwy,) — A(txt + (1 — )y ||?
< anllf () = 2|17 4 (B + yuki) 100 — x> = (|21 — 277
< | f (o) = x| 4 [l — xT)? = [[0p1 — 2712
(

< at|f Con) = o2 o [l = g | (e — 2+ o1 = 7))
By the conditions (i), (ii), and (4), we deduce
lim ||Bx, — Bx'|| =0
n—o0

lim [ Aty + (1= t)wn) — At + (1 -tyH|| =o. ©
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Applying Lemmas 1 and 7 to find

leon =y 1> = 1Qe(I — pB)xw — Qe (I — uB)x"||?
< (I = puB)xn — (I — uB)x", j(wn — y"))
< {xn — 2", j(wn — y")) — p(Bxn — Bx", j(wn —y"))
1 .
Slllen =M1+ fleon = y"|12 = g(llxvw = x" = (wn = y") D] = p(Bxu — Bx", j(wn — y"))-

IN

Hence, we have

lwn —y* |17 < lxw = x*)1> = g(llxn = x" = (wn — y")II) — 20 (Bxy — Bx", j(wn — y")).
Further, we estimate

2w — €112 = Qe (1 — AA) [ty + (1 — £)ewn] — Qe( — AA)[tx" + (1 — t)y"]
< (1= AA) [t + (1= wa] — (1= AA) [t + (1= Dy, (zn — 51)
< (txy + (1= tw, — (txF + (1= 1)y, j(z0 — x1))
— MA(txy + (1= Hwy) — Altxt + (1 = H)y"), j(z0 — x1))
<ty —x",j(zn = 27)) + (1= 1) (wn =y, j(20 — x7))
— MA(txy + (1 = Hwy) — Altxt + (1= H)y"), j(zn — x1))

t

< E[IIxn = x|+ llzn = 2% = g(llxn = zul])]
1

+

TH 2 = g(llwn —y* — (20 — "))
—MA(txy + (1 = Hwy) — A(txJr +(1- t)y+),j(zn — x+)>,

lwn =y |* + ||z —

noting that 0 <t < 1, so

lzn — x*)? < tllxn — 2P+ (1= B)Jwn —y")1* = tg(l|xn — za)

— (1 =t)g(wn —y" = (zn — xN]))

—2MA(txy + (1= Dwy) — A(txt + (1= y"), j(z, — x1))
< lxw =22 = (1= £)g(|lxn — x" = (wu — y")|)
—2p(1— t)(Bx, — Bx", j(w, — y"))

— (1 =t)g(wn —y" = (zn — 2N

—2AMA(txp + (1 — Hwy,) — A(ifor +(1 - t)y+),j(zn — x+)>
< lxw =22 = (1= £)g(|lxn — x" = (wu —y")|)

—2p(1 = t)||Bxy — Bx* || lw, — v

— (1 =t)g(wn —y" = (zn — x|

—2A||Atxy + (1 — Hw,) — A(txt + (1 = HyH)||||z0 — T,

then
[ — %"
< Onllxn — 22+ (1 = 6,)||zn — xT||?
< oo = 2P = (1= 62) (1 = g (flxn — 2" = (wn — y")|])
= 2p(1 = 62) (1 — )| Bxy — Bx*|[[|wn — ||
— (=11 =n)g(wn —y" = (24 = 2")))
—2A(1 = 8) || Aty + (1 — Hwy,) — A(tx™ + (1= Oy |[[|z0 — x|



Symmetry 2020, 12, 36 9 of 15

We know that
%041 — 27

< an| f(xn) — erH2 + Bnllxn — er||2 + ’Ynk%”un - x+||2

< | f(xn) — er”2 + Bullxn — er”2 + 'Ynk%z”xn - er”2

— (1= 8)(1 = ) yukzg ([0 — x" — (wn — y")|)

= 2p(1 = 8,) (1 — )Yk || Bxn — Bx™ || lwn — ||

—(1-t)(1- ‘Sn)'Ynk%zg(Hwn _er — (zn — er)H)

= 2A(1 = 8n) Yukp | A(txn + (1 = Hwn) — A(tx" + (1= )y")][[|z0 — x|

< | f () = 2T 4 oo — 2T

— (1= 8)(1 = ) yukzg ([0 — x" — (wn — y")|)

= 2(1 = 6) (1 = t) vk || B — B [|wn — ||

— (1= 1)1 = &) kg (lwn — y" = (zn — "))

= 2M(1 = 8u)yuky | A(txn + (1 = t)wn) — A(tx" + (1= t)y")[[[]z4 — 27|,

which implies that

(1= 8n) (1 = ) kg (llxn — x* = (wn — y")]I)

+ (1= )1 = &) yakng(lwn —y" — (zn — x")I)

< | f (o) = 22+ otn = 22 = o gn — 272

= 2u(1 = 8n) (1 = )yuky || By — Bx" || [|wn — "]

= 2A(1 = 8n)yuky [ Atxn + (1 = Hwn) — A(tx" + (1= By [lzn — 27|

< atul| £ o) = 212+ oo = 2 (ln = 2]+ a1 = 27]))

= 21(1 = 00) (1 = £)yuky || Bxtn — Bx'|[[|wn — y'||

= 2A(1 = 8n)yukg [ Atxn + (1 = Hwn) — A(tx" + (1= By") [ [lzn — 27
It follows from (4), (5), condition (i), (iii), and the properties of g, that we have

Tim (|, — 2"~ (wn —y")] =0

lim ||w, — er —(zn — x+)|| =0.

n—oo
So,
[0 — 2, |l
< lxn — 2" = (wn =y + lwn —y* = (20 — x7)]| (6)
— 0.
We can obtain
X0 — ¥ (xn)|| = [|xn — zul| = 0,n — 0. ?)

Moreover, we have

[[xn+1 = T

= [l f (xn) + Buxn — &n Tty — B T

= [lan[f(xn) = T"un] 4 Bn[xn — T"un||

< Bullxn — xup1ll + Ballxns1 — T"unll + anll f(xn) — T"unll,
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which implies that

(1= B)llxns1 — T"unl| < Bullxn — xpyall + anll f(xn) — T"un .

Therefore
s = Tl < T2 = il T2 1) = T
From conditions (i), (ii), and (4), we find
%01 = T"un|| =0, (n — o0). ®)
We obtain
[¢n = T xu || = ||xn — X1 + X1 — Tuy + Ty — Ty ||

<l = xppall + [[xn1 — T un| + kn flun — xa|
< Nlxn = xpa L+ 1 = T unll + kn (1= ) [ 20 — xa]|-

By (4), (6), and (8), we have
[y — T"xy|| — 0,1 — oo. )
Since T is an asymptotically nonexpansive mapping, we have

lxn — Txn|| = [|xn — Xpg1 + Xpp1 — Tnﬂxnﬂ + TonnH — Ty + Ty, — Txy ||
< lxn = x|+ 1xngr = T g || 4+ [T g — T x| 4 | T iy, — T
< lxn = Xt ||+ 11 — T s |+ kg 161 — xall + k[ T"x0 — x|

< (U k) %0 = xaga ||+ s = T e || 4 k| T — x|

By (4) and (9), we have
|xn — Txu|| — 0,1 — oo. (10)

Since E is a uniformly smooth Banach space and x,, is bounded, there exists a subsequence of x;,
which converges weakly to w. We know that ¥ is nonexpansive by Lemma 8. From (7) and Lemma 5,
we deduce w € F(¥). It follows (10) and Lemma 5, and we deduce w € F(T). Therefore, w € Q.
From Lemma 6, the following holds:

(I-fHaxt,j(x" —w)) <0,Yw € Q.
Further, noticing that j is the weakly sequential continuous duality mapping, we have

limsupseo (1~ ), j(x" = x)) = Tim (T = )t j(x* = x0,)) = (I = 2, (6" —w)) < 0. 11)

k—o0
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Finally, we observe

21 = xT[1P = (xp1 — 27, j (01 — x7))
= (an(f(xn) — er) + B (xn — x+) + v (T un — er),j(xn_H - x*))
< wn (f(0n) = F(X7), j(xng1 = %)) + B (xn = 7, j(x0p1 — x7))
oy (TMun = x7 j (g1 = x) + an(F(x7) = 27, j(xu1 = x1)
< wnpllxn — X" ||| 0041 = 2T+ Bullxn — 2[00 — 27|
+ Yuknlln = 21 = 2T+ @ (F(7) = 2T, j(en 1 = 1))
< wnpl|xn — x| 2041 = 2T+ Bullxn — 22041 — x|
+puknllxn = [ [0n1 = 2T+ an (F(T) = 27, j(x 0 — 7))
= [anp + Bu + Yk |00 — XF || 2011 — xF|| + @ (F(x7) = 2T, j(xp 01 — 7))

anp + Pu + Ynk i
< P ¥ Bt ki R s — 2T ]2) A+ an (PO — 5 (s — ),

2
which implies
P
R e weem ot (O B CREE))
e ;Vn”k")]nxn_x*nu2_anpf"‘gn_%kn<f<x+>—x+,f<xn+1—x+>> 1
<o g2ty et B () - e — ).

= % and 0, = <f<X*>—ﬂfé(f»g1—X*)>, then by the condition (i) and (11),

We have b, =
we have

ibn:i 20,(1—p—€) i (1—p—e) = +oo
n=0 n=0

— &pp — ,Bn - ')/n n =0

() = =) _
1—-p—c¢ -

limsup 0y, = limsup
n—o0 n—o00

Thus, applying Lemma 2 to (12), we have lim,,_,c || x;, — xT|| = 0. This completes the proof. [

Corollary 1. Let H be a real Hilbert space. Let @ # K C H be a closed convex subset. Suppose that T : K — K
is a nonexpansive mapping. Let A, B : K — H be a-inverse strongly monotone operator and B-inverse strongly
monotone operator. Let f : K — K be a contraction with coefficient p € (0,1) and ¥ be defined by Lemma 8.
Assume that QO = F(T) N F(¥) # @. Suppose {an}, {Bn}, {¥n}, {6n} C (0,1). If the sequence {x,} is
generated in the following manner:

wy = Px(I — uB)xy,

zy = Px(I — AA) (txy + (1 — Hwy),
Un = OnXn + (1 —0n)zn,

Xpg1 = &nf (Xn) + BuXu + YnTuiy.
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satisfying the following conditions:

(1) Ay + ﬁn + Tn = 1, nlg‘rolo[xn = O,Z;,)lo:olxn = oo,
(ii) 0 < ligglfﬁn < limsup B, < 1,nli_r)rolo |0,401 — 6n| =0;

n—o0
2p

2
(zzz)O§t<1,O<)\<TDC,O<]/t<?.

Then {xy } converges strongly to x* € Q0 which solves the variational inequality:
(I—f)xt,x" —p) <0,¥p € Q.

Proof. In Theorem 1, we put k, = 1 for each n € N and replace Banach space X with Hilbert
space H. O

Corollary 2. Let X be a uniformly convex and uniformly smooth Banach space. Let @ # E C X be a
closed convex subset. Suppose that Qr : X — E is a sunny nonexpansive retraction and T : E — E is an
asymptotically nonexpansive mapping satisfying the uniformly asymptotically reqular condition, and A, B :
E — X are an a-inverse strongly accretive operator and B-inverse strongly accretive operator, respectively.
Let f : E — E be a contraction with coefficient p € (0,1) and ¥ be defined by Lemma 8. Assume that

Q=FT)NFEY) # @. Suppose {an}, {Bn}, {¥n} {60} C (0,1). If the sequence {x,} generated by the
following manner:

wn = Qp(I — uB)xn,

zn = Qe(I — AA)wy,

Up = Onxn + (1 —6y)zp,

Xpt1 = &nf(Xn) + Buxn + YuT"uy.

satisfies the following conditions:
(i) an + Bn + 0 = 1,}3&% =02 &y =00k, —1=€a,0<e<1l—p;
(ii) 0 < ligglfﬁn < liznjotjp Bn < 1,nli_r>ro1o |8ns1 — 0| =0;

2p

2
(111)0<A<71X,0<‘u<7;

(i0) Bu + yakiy <1,
then {x, } converges strongly to an element x* € Q, which is also the solution of the variational inequality:
(1=t j@" = p)) <0,¥p e Q.

Proof. In Theorem 1, if t = 0, then we obtain the corollary. If f = u and T is a nonexpansive mapping,
it is the main result of Qin et al. [6]. [

4. Numerical Examples

In this section, we provide a numerical example to support the validity and feasibility of our
proposed algorithm. The results are performed on a personal computer with Intel(R) Core(TM)
i7-4710MQ CPU @ 2.50 GHz and RAM 8.00 GB.
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Example 1. In the real number field R, we put Bx = %x and Ax = }Ix where x € R. Letk, =1+ ﬁ,
On :1—%,04”: %,ﬁn l—iand'yn = %forallneN. We take t = %,y:3,/\:2. Let T and f

=2 3n
be defined by Tx = %x, flx) = %x. This implies that € = % and p = % Then, starting x1 = 8 and x; = 25
in (3). We have

144n + 144n x (1)" =33 x (1)" — 64
Yot = 2881

We obtain the following numerical results, as shown in Figures 1 and 2.

Xy.

10* ——

w4~ Initial valuex,=8
—— Initial value x,=25

1084 s

0 U SR, - [ .

10—1?

10° 10’ 10°
Number of iterations (n)

Figure 1. Exponential coordinate iteration.

10 1 1 1 1 1 I I 1 1 1

—=— Initial value x,=8

Initial value x,=25

X

Number of iterations (n)

Figure 2. Real coordinate iteration.

Remark 1. First of all, the parameters in Example 1 satisfy the conditions (i)—(iv) in Theorem 1, which shows
that the coefficients in our Theorem 1 are obtained. From Figure 1, we can see the convergence value of the
iterative sequence when the initial values are x1 = 8 and x1 = 25, respectively. From Figure 2, we can observe
the convergence speed of the iterative algorithm. Figures 1 and 2 show that {x,} converges strongly to 0, where
F(T)NF(Y) = 0. The convergence of {xy} in Example 1 shows the implementation and efficiency of our
proposed algorithm.
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5. Conclusions

In this paper, we provide a viscosity approximation method for a general variational inequality
system and fixed point problems in Banach spaces. Some strong convergence theorems are obtained
and the numerical experiments can be guaranteed by Theorem 1. We give an extension to the general
variational inequality system in Banach spaces and we generalize the Hilbert spaces to Banach spaces,
and the nonexpansive mapping to the asymptotically nonexpansive mappings of Imnang [5] and
Cai et al. [14], for the fixed point problem and variational inequality problem. In Theorem 1, if t = 0
dn = 0in Hilbert spaces, this is the main results of Ceng et al. [3]. The results and methods presented
here also include some corresponding recent results of [6,9,10,12-14,17] as special cases.
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