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Abstract: This paper proposes a novel hybrid data-driven modeling method for missiles. Based on
actual flight test data, the missile hybrid model is established by combining neural networks and
the mechanism modeling method, considering the uncertainties and nonlinear factors in missiles.
This method can avoid the problems in missile mechanism modeling and traditional data-driven
modeling, and can also provide a solution for nonlinear dynamic system modeling problems in
offline usage scenarios. Finally, the feasibility of the proposed method and the credibility of the
established model are verified by simulation experiments and statistical analysis.
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1. Introduction

The missile is the leader in the family of precision-guided weapons. It shows extraordinary
combat capability in local wars and has become the protagonist of weapons in modern high-tech
warfare [1–3]. Due to the high cost, destructiveness and non-repeatability of missile field tests, it is
difficult to repeat actual flight tests in large quantities. Therefore, simulation technology plays a
key role in simulating the dynamic working condition of the missile in a real tactical environment.
Establishing an accurate missile motion model is the premise and foundation of the ballistic simulation
experiment. Only the accuracy of the established model is guaranteed, and the simulation results can
be of practical significance.

At present, there is much research about missile modeling in the published literature. Among
this research, the missile mathematical model established by the mechanism modeling method is
commonly used by researchers in simulation experiments. The mathematical model can describe
the dynamic and kinematic characteristic of the missile, and clearly show the inherent structure and
relationship of the system, reflecting the essence of the process. In [4,5], Blakelock et al. systematically
expounded the establishment process of the missile mathematical model, and [6–12] established the
dynamics and kinematics model of missile. There are several problems in this type of research at home
and abroad. First of all, it can be found that researchers have to spend a lot of time analyzing the force
of the system when using mechanism modeling methods, which makes the research work costly and
time-consuming, and it is still difficult to obtain a precise model for describing the characteristics of
the whole flight process accurately [13,14]. In addition, some assumptions and simplifications are used
in the establishment of missile mathematical model. This simplified model has limited description
capabilities and low fidelity, which directly affects the credibility of ballistic simulation results. Besides,
the inherent mechanism of missile is complex, with non-linearity, strong coupling and time-varying.
In the actual flight process, various unintended disturbances are easily suffered by missile. Especially
in high maneuvering, large-range and large-profile motion, some mathematical approximations are
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no longer valid due to some nonlinearities exhibited by the aerodynamic coefficients. Moreover,
aerodynamic modeling of missile flight simulation is often based on wind tunnel test data, but a
large number of facts show that the flight simulation results based on wind tunnel test data still have
large deviations from actual flight data [15]. It has been clearly indicated that mathematical model
including aerodynamic models must be verified using flight test data. in some relevant documents
including GJB1395A-2009 [16] and CCAR-60 [17]. Furthermore, in the process of digital simulation,
only a few feature points are selected to represent the aerodynamic parameters of the whole trajectory.
It is one-sided to characterize the whole trajectory dynamic process with these parameters. All of the
factors above make it difficult to establish a precise mathematical model close to the realistic plant, so
the reliability of the simulation results is poor.

With the advent of big data era, new data analysis methods and innovations have been promoted.
The development of intelligent technology provides new ideas for the nonlinear systems modeling.
Researchers can obtain massive data from missile flight test. These data can directly or indirectly reflect
the state of missile flight process and control effect, and provide a data foundation for data-driven
modeling. Therefore, in the big data era, it is of great practical significance to study how to effectively
use the flight test data for missile modeling.

The research of nonlinear complex system prediction is mainly focused on various prediction
models based on Takens’ theorem [18]. Various prediction theories and methods of low dimensional
chaotic time series are established, such as local prediction method, global prediction method, and
nonlinear prediction method based on support vector machine technology, among which global
prediction method includes global polynomial predictor, neural network modeling method, etc.
Compared with mechanism modeling, data-driven modeling which describes the characteristics of
sample data as the criterion, is a ’black box’ modeling technology, directly using the system input
and output data to analyze the relationship between system variables. Data-driven modeling is more
suitable for nonlinear dynamic system identification and control. In recent years, Neural network
and data-driven method are widely used in guidance law and controller design, and it has achieved
abundant research results [19–25]. There are also some attempts to solve the dynamic system modeling
problem by using a hybrid model of mechanism-neural network [19,26–28]. In [26], Yan et al. proposed
a hybrid model structure for aircraft modeling, consisting of basic and additional systems. In [27,28],
San Martin et al. proposed the use of hybrid models of supervised neural networks for the modeling
of dynamic systems.

It can be found that these studies have a common point that they all use the past input and output
data of the actual system as input to the identification model. Once the actual system output value
is missing, the established identification model will not work. This kind of data-driven modeling
method which does not consider the internal mechanism of the system and completely relies on a large
amount of experimental data to determine the quantitative relationship between the input and output
of the system, is generally applied to the online usage scenarios [29]. In this scenario, the identification
model is treated as an approximator, which is used to control the realistic plant [30]. In [31], Hunt et al.
provided a survey of nonlinear system neural network modeling applied in the control field. In [32],
Hou et al. made a detailed analysis of the data-driven control (DDC) method, indicating that the
input of the neural network approximator includes the input and output of the controlled plant at
current moment. In [28,33,34], a data-driven identification model for nonlinear systems is established
for optimization of control system and control algorithms design.

Unfortunately, for some special research plants, such as missiles, it is unrealistic to require
researchers to measure the realistic output of the missile in real time when simulation experiments are
performed on the ground. It must be pointed out that the purpose of establishing a missile model is
to replace the actual missile for simulation, not for controlling the actual missile. This offline usage
scenarios means that the output of the actual system needed in traditional data-driven modeling will
not be available. If the output of the actual system is replaced by the output of the neural network itself
and used as an input of neural network, the identification model which is established by the single-step
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iteration will result in a serious accumulation of errors and the iterative process of identification
diverges or converge to wrong values.

At present, few scholars have conducted in-depth research on the modeling of complex nonlinear
systems in offline usage scenarios, but its significance in the field of missile modeling is significant.
To solve this problem, this paper establishes a missile hybrid model based on flight test data,
which can simulate the missile flight characteristics and can be used for simulation and model
verification. The unique contributions of this paper are as follows: (i) Aiming at the problems
existing in traditional neural network modeling method, a novel hybrid data-driven modeling method
is proposed for nonlinear dynamic system modeling in offline usage scenarios. (ii) Based on flight test
data, a six-degree-of-freedom(6-dof) missile hybrid model is established, considering the uncertainties
and nonlinear factors in missile.

The remaining parts of this paper are arranged as follows. Section 2 studies the mathematical
model of the missile to explain the intrinsic mechanism and dynamic characteristics of the system, and
analyzes the specific problems in the mathematical model. Section 3 analyzes the problems existing
in traditional data-driven modeling applied to offline usage scenarios, and proposes a new hybrid
data-driven modeling method for offline usage scenarios. A missile hybrid model based on data-driven
is designed in Section 4. Two simulations and some discussions are carried in Section 5 to verity the
feasibility of the proposed method and the credibility of the established model. At last, Section 6
concludes this paper.

2. Analysis of Problems in Missile Mathematical Model

Modeling is the basis of simulation experiments. At present, the missile mathematical model
which is established by researching the relationship between key variables and other measurable
variables, is commonly used by researchers in simulation experiments. It includes kinematics and
dynamics models. This section studies the internal mechanism and dynamic characteristics of the
system through the establishment of missile mathematical model, and analyzes the existing problems.

Mechanism Modeling and Analysis

Before establishing the missile mathematical model, we use several assumptions and simplified
conditions as follows [5,6]:

1. The earth is a homogeneous sphere, and the rotation of the earth is neglected;
2. Missile has an axisymmetric layout form with constant mass and rotational inertia;
3. This paper studies the case of missile without engine thrust.

Based on the above premise assumptions, a dynamic model describing the missile’s motion in
space is established, which mainly includes dynamic equation, kinematic equation, geometric relation
equation, height equation and so on [1,5–7,35,36].

(1) Dynamic equation of the missile’s centroid motion

m
d~V
dt

= GB~R + m~g (1)

~R is the aerodynamic force of missile received during the flight, expressed in the velocity coordinate
system as

~R =

 −X1

Y1

Z1

 =

 −Cx1qS
Cα

y1qSα

Cβ
z1qSβ

 (2)

m denotes the mass of missile; ~V denotes the velocity vector of the missile in the ground coordinate
system; GB is the transformation matrix from body coordinate system to the earth coordinate system;
Cx1, Cα

y1, Cβ
z1 are the axial force coefficient, the derivative of the normal force coefficient, and derivative
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of lateral force coefficient, respectively. For aerodynamic axisymmetric missiles, Cα
y1 = −Cβ

z1 ; q = 1
2 ρV2

denotes the dynamic pressure; S is the maximum cross-sectional area of missile; α denotes the angle of
attack and β denotes the angle of sideslip.

In summary, the centroid dynamics equation of the missile in the ground coordinate system is
expressed as

m


dVx
dt

dVy
dt

dVz
dt

 = GB

 −Cx1qS
Cα

y1qSα

Cβ
z1qSβ

+ m
g
r

 x
y + Re

z

 (3)

where r is the geocentric distance and Re is the earth radius. In [37], Bingwei gave the formula
expression of standard atmospheric parameters.

(2) Dynamic equation of missile rotation around centroid
The dynamic equation of missile rotation around the centroid decomposed in body coordinate

system can be described as

I
d~ωT
dt

+ ~ωT ×
(

I · ~ωT
)
= ~Mst + ~Md + ~Mc (4)

The component form written on each axis of the missile body coordinate system can be
expressed as  Ix 0 0

0 Iy 0
0 0 Iz




dωx
dt

dωy
dt

dωz
dt

+


(

Iz − Iy
)

ωzωy

(Ix − Iz)ωxωz(
Iy − Ix

)
ωyωx

 =

 0
mβ

y1qSlβ
mα

z1qSlα

+

 mωx1
x1 qSlωx1

m
ωy1
y1 qSlωy1

mωz1
z1 qSlωz1

+

 mδ
x1qSlδx

mδ
y1qSlδy

mδ
z1qSlδz


(5)

where I denotes the rotational inertia, ~ωT =
[

ωx ωy ωz

]T
denotes the component of the rotational

angular velocity in the body coordinate system; ~Mst, ~Md, ~Mc are the stabilization moment, damping
torque and control moment, respectively; mα

z1, mβ
y1 denotes the stabilization moment coefficient, and

mα
z1 = mβ

y1 ; mωx1
x1 , m

ωy1
y1 , mωz1

z1 are the dimensionless rotation derivatives, and m
ωy1
y1 = mωz1

z1 due to the

axisymmetric layout form; mδ
x1, mδ

y1, mδ
z1 denotes the control moment coefficient; l denotes the length

of the missile.
(3) Kinematics equation of missile centroid motion
To determine the trajectory of the missile’s centroid relative to the ground coordinate system, the

kinematics equation of the missile’s centroid motion is established, which is expressed as:
dx
dt
dy
dt
dz
dt

 =


Vx

Vy

Vz

 (6)

where Vx, Vy, Vz denotes the velocity of missile.
(4) Kinematics equation of missile rotation around centroid
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To determine the attitude of the missile in space, a kinematic equation describing the attitude
change relative to the ground coordinate system is established, which is expressed as

dϕ

dt
=

ωy sin γ + ωz cos γ

cos ψ

dψ

dt
= ωy cos γ−ωz sin γ

dγ

dt
= ωx +

(
ωy sin γ + ωz cos γ

)
tan ψ

(7)

where ϕ, ψ, γ denote the pitch angle, yaw angle and roll angle respectively.
(5) Geometric relation equation
The equation is shown in Equation (8).

sin β = cos(θ − ϕ) cos σ sin ψ cos γ + sin(ϕ− θ) cos σ sin γ− sin σ cos ψ cos γ

sin α =
cos(θ − ϕ) cos σ sin ψ sin γ + sin(θ − ϕ) cos γ cos γ

− cos β
+

sin σ cos ψ sin γ

cos β

(8)

where θ and σ denote the trajectory inclination angle and trajectory deflection angle.
θ = arctan

Vy

Vx

σ = − arcsin
Vz√

V2
x + V2

y + V2
z

(9)

(6) Height equation
The height h of any point on the ballistic trajectory from the ground is approximated by the

following formula:
h = r− Re (10)

where r =
√

x2 + (y + Re)
2 + z2 denotes the geocentric distance.

The above equations constitute the motion equations describing the relationship between missile
forces, torque and missile motion parameters. It can be seen that the missile mathematical model
established by the mechanism modeling method mainly has the following problems. Above all,
mechanism modeling is always based on many simplifications and assumptions in the analysis process.
The simplified model has limited description capabilities and low fidelity, which directly affects the
credibility of ballistic simulation results. Then, the process of establishing a mathematical model
through mechanism analysis is cockamamie. It takes a lot of time to analyze the model structure
and force, and carry out complex theoretical derivation. Besides, the geometrical parameters of the
missile’s shape are not deterministic. There are still slight differences in the aerodynamic configuration
and shape even for the same type of missile. Meanwhile, a lot of unknown parameters exist in the
mathematical model. For example, Cx1, Cα

y1, Cβ
z1 in dynamic equation of the missile’s centroid motion (3)

and mα
z1, mβ

y1, mωx1
x1 , m

ωy1
yl , mωzl

zl , mδ
x1, mδ

y1, mδ
z1 in dynamic equation of missile rotation around centroid

(5) cannot be directly measured and are difficult to determine by complex theoretical calculations or
expensive wind tunnel experiments. All the factors mentioned above make it difficult to establish a
precise mathematical model that approximates the realistic missile, which leads to poor reliability of
the simulation results.

3. Hybrid Data-Driven Modeling Method

Traditional neural network modeling typically train offline and used online. This means that
the established model and the realistic plant are online at the same time, and the data-driven model
is used as a reference model, which is suitable for the optimization of the control system and the
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design of the control algorithm, so as to realize the control effect of the control system on the realistic
plant. Unfortunately, For such a special plant such as missile, it is impractical to repeat a large number
of realistic flight tests. The purpose of building a missile model is to replace the realistic plant for
simulation experiments. These simulation experiments are carried out without the actual missile,
which is called offline usage scenarios. The biggest difference between offline usage scenarios and
online usage scenarios is that the output of actual system cannot be measured in offline usage scenarios.
Therefore, in view of the problems existing in traditional neural network modeling methods, this paper
proposes a novel hybrid data-driven modeling method for complex nonlinear dynamic systems in
offline usage scenarios.

3.1. Introduction to Usage Scenario

For most controlled plant, they are nonlinear, strong coupling, time-varying. In addition, there
are many uncertain factors such as interference in the actual environment. In the more complex
control environment, the traditional control methods cannot adapt to the higher control requirements.
To solve this problem, a large number of model-based control methods emerge, such as model reference
adaptive control, neural network model predictive control and so on. In these control structures, it
is necessary to establish the model of controlled plant, and their usage scenarios are called online
usage scenarios.

As shown in Figure 1, the offline trained model and the actual controlled plant are online at the
same time, and the neural network model estimates the output of the plant online for the optimization
of the control system and the design of the control algorithm.

Figure 1. Online usage scenarios.

However, It takes a lot of manpower, material and financial resources to conduct physical
experiments. For the control system, the purpose of designing the controller is to control the realistic
controlled plant. Therefore, researchers build a model that is similar to the realistic controlled plant by
studying and analyzing the process and characteristics of the system, and then use this model to carry
out a series of simulation tests. We regard this model usage scenario as an offline usage scenario.

Figure 2. Offline usage scenarios.

As shown in Figure 2, there are only controllers and identification models in the offline use
scenario, and there is no realistic controlled plant. In this scenario, the purpose of establishing the
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identification model is to replace the actual research plant for simulation experiment, so as to simulate
the control effect of the controller on the actual controlled plant, rather than controlling the actual
research plant.

Due to the high cost of some research plants, and many limitations of the experimental site, it
is difficult to carry out a large number of physical experiments repeatedly. For such research plants,
the established identification model is usually used for offline use scenarios to carry out simulation
experiments. Therefore, in this paper, the data-driven modeling method is used to collect test data
and establish the ’black box’ or ’gray box’ model of the controlled plant, in order to approximate the
output of the realistic controlled plant for simulation experiments.

In addition to the different purposes of modeling, there is a significant difference between the
offline usage scenario and online usage scenario, i.e., in the online usage scenario, the actual output of
the research plant can be measured in real time, while in the offline usage scenario, there is no actual
research plant at all, so this output cannot be obtained. This brings great difficulties to the data-driven
modeling of complex nonlinear systems with multiple inputs and multiple outputs.

At present, in the field of single input single output (SISO) nonlinear system modeling in offline
usage scenario, researchers regard the model as an approximator and use it to simulate the output of
SISO system by transferring new input signals to the offline trained model. However, few researchers
have studied the modeling of complex nonlinear systems with multiple inputs and multiple outputs
in offline scenarios. Therefore, how to build a data-driven model with high fidelity and put forward a
new modeling method to apply to offline usage scenario is worth studying, and is also the focus of
this paper.

3.2. Traditional Neural Network Modeling

Common data-driven modeling methods include statistical modeling, artificial neural network
modeling, support vector regression and so on. This subsection mainly introduces the traditional
neural network modeling method. It is an important nonlinear modeling method and a ’black box’
modeling technique. It uses the past input and output data of the realistic system to construct the
expressions of the input variable and the output variable by analyzing the relationship between
variables of the system, so that the output ŷ(k) of the model keeps approaching the output y(k) of
realistic system. According to the Taken’s theory [16], most of the nonlinear systems can be expressed
as Equation (11).

y(k) = f [y(k− 1), . . . , y(k−m), u(k), . . . , u(k− n)] (11)

where u(k) is the input vector, y(k) is the output vector, n and m are the time lag factors of the input
and output respectively, and f (·) is a nonlinear function.

Figure 3. Traditional neural network modeling.
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According to (11), a neural network approximate model f̂ (·) can be used to replace the unknown
nonlinear function f (·) to establish a neural network identification model as shown in Figure 3, which
can be described by (12) for online usage scenarios.

ŷ(k) = f̂ [y(k− 1), . . . , y(k−m), u(k), . . . , u(k− n)] (12)

In the online usage scenario, the neural network identification model is used as a reference
model, which is online at the same time with the realistic plant, used to control the realistic
plant. The input u = [u(k), . . . , u(k− n)]T of the past n steps of the actual system and the output
y = [y(k− 1), . . . , y(k−m)]T of the past m steps constitute the input vector P (13) of the neural network,
and the output ŷ(k) is obtained by the fitting of neural network. Then, the output y(k) of the realistic
plant, the output ŷ(k) of neural network model and the error e between them are sent to the controller.
Through the corresponding control algorithm, the control signal u at the next step is obtained.

P = [y(k− 1), . . . , y(k−m), u(k), . . . , u(k− n)]T (13)

It is easy to find that the input P of the neural network in the model established by the
traditional neural network modeling method includes the output information of the realistic plant
{y(k− 1), . . . , y(k−m)}. For some special plants, such as missiles, the identification model is often
used for offline usage scenarios, as shown in Figure 2. The identification model exists to replace the
realistic plant and cannot be online at the same time as the real model, which results a problem that the
output information of realistic plant cannot be measured. Once this part of the information is absent,
the output {y(k− 1), . . . , y(k−m)} of the actual system in the past m steps can only be replaced by
{ŷ(k − 1), . . . , ŷ(k − m)} ,which is obtained by the time delay of the neural network identification
model’s output ŷ(k) . It will be used as an input to the neural network along with the input signal
{u(k), . . . , u(k− n)} , and the output ŷ(k) will be obtained by neural network fitting, as shown in (14).

ŷ(k) = f̂ [ŷ(k− 1), . . . , ŷ(k−m), u(k), . . . , u(k− n)] (14)

It is found through experiments that this single-step iteration makes the output of neural network
directly used as its input, which will lead to serious error accumulation, and finally the iterative process
diverges or converges to the wrong value, and the output of neural network continually deviates from
the output of actual system, so that the identification model cannot be established correctly. Therefore,
traditional neural network modeling methods are not suitable for offline usage scenarios.

3.3. A Novel Hybrid Data-Driven Modeling Method

For a nonlinear dynamic system, its input and output are not a static one-to-one mapping
relationship. The output of the system at a certain moment is the comprehensive dynamic response of
the past input and output. In general, a discrete state space expression for a dynamic system can be
expressed as {

x(k + 1) = Φ[x(k), u(k)]

y(k) = Ψ[x(k)]
(15)

where x(k) = [x1(k), x2(k), ..., xw(k)]T is used to describe the system’s state variables at time k, which
determine the motion of the system. u(k) = [u1(k), u2(k), ..., up(k)]T is the inputs, and its time domain
is [k, k + 1). The outputs is y(k) = [y1(k), y2(k), ..., yq(k)]T . Φ and Ψ are the static nonlinear mappings,
defined as Φ : Rw × Rp → Rq, Ψ : Rw → Rq.

Because there is no realistic plant in the offline usage scenario, the output of the realistic plant
cannot be measured, which makes the traditional neural network modeling method difficult to
be applied to the complex nonlinear system modeling in offline usage scenario. Moreover, fitting
the system’s outputs with neural network directly (14) will lead to serious error accumulation and



Symmetry 2019, 12, 30 9 of 21

divergence in the iterative process. Therefore, this paper proposes a hybrid data-driven modeling
method to solve the problems.

Figure 4. Structure of hybrid data-driven model.

As shown in Figure 4, The input of hybrid model consists of two parts, one is the input signal
u = [u1(k), u2(k), ..., un(k)]T from the outside at current step , the another part x = [x1(k), x2(k), ..., xj(k)]T

comes from the interior of the hybrid model at current step.The interior of the hybrid model contains
two parts, one is the neural network model built for a key intermediate variables ẋi. If there are
multiple key intermediate variables, then multiple neural network models are established in turn. The
other part is the mechanism model, which can transform the state variable x into ŷ. One part of the
output is transmitted to the external control system, and the other part is transmitted to the internal of
hybrid model as the state variables, used as one part of the input of neural network at the same time.

This method avoids using the output of neural network as an input directly. Instead, by analyzing
some intermediate variables ẋi that causes nonlinear characteristics in a complex nonlinear dynamic
system, which have an input space u and an output space y, fit the intermediate variables based on
data-driven approaches. Then, the system’s state variable x is converted into ŷ by the mechanism
modeling method so that y→ ŷ, and a hybrid model including neural networks and mechanism is
established, which can be expressed as (16).{

ẋi(k) = f̂ [x1(k), ..., xj(k), u(k)]
ŷ(k) = g[x(k)]

(16)

where f̂ (·) is approximate model of neural network, g(·) is linear mapping function, ẋi is one or more
intermediate variables related to the nonlinear characteristic factors of the system, and the next state
variable xi(k + 1) can be obtained by integrating ẋi(k).

[
x1(k), . . . , xj(k)

]
is one or more system state

variables that can cause a change in xi, i, j ∈ [1, w].

4. Hybrid Data-Driven Modeling for Missle

In this section, a six-degree-of-freedom (6-dof) missile hybrid model will be established to illustrate
in detail how to use the hybrid data-driven modeling method proposed in Section 3.3.

Missile is a nonlinear multi-input multi-output (MIMO) system with three inputs
(
δx, δy, δz

)
and

twelve outputs
(

x, y, z, vx, vy, vz, ωx, ωy, ωz, ϕ, ψ, γ
)

according to the mathematical model. To avoid
the influence of aerodynamic parameters on the accuracy of the missile model, the acceleration model
(3) and the angular acceleration model (5) about the missile’s centroid motion are replaced with
neural networks. Then, a hybrid model of the missile containing neural network and mechanism is
established based on flight test data. The main steps are as follows:

Step 1: Flight test data Preprocessing.
Step 2: Establish acceleration model.
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Step 3: Establish angular acceleration model.
Step 4: Establish a missile hybrid model.

4.1. Acceleration and Angular Acceleration Modeling

There are inevitable problems such as outliers, measurement noises, time-domain inconsistency,
etc. existing in the measured data. Unprocessed flight test data used directly for hybrid data-driven
modeling will reduce the accuracy of the model and even cause the iterative process of identification to
diverge or converge to erroneous values. Therefore, the missile flight test data must be pre-processed
before using it, mainly including the following parts:

(i) Identify, eliminate, and correct the outliers to eliminate signal anomalies, which are caused by
external disturbances during flight test;

(ii) Data smoothing filtering are used to filter out measurement noise;
(iii) Correct the time delay between each measurement data.

It can be known from Equation (3) that the acceleration of missile’s motion in space is mainly
affected by the dynamic pressure q, the angle of attack α, and the angle of sideslip β. The size of
dynamic pressure is determined by the missile velocity V , and V is affected by the position P. The
angle of attack and the angle of sideslip cannot be measured directly during the actual flight test, and
they are mainly affected by the pitch angle ϕ, the yaw angle ψ, the trajectory inclination angle θ and
the trajectory deflection angle σ. Therefore, the accelerations ax, ay, az of the three channels are selected
as 3 key intermediate variables ẋi in formula (16).

Based on the above analysis, the centroid motion of missile is decomposed into three channels.
Taking the pitching channel as an example, the acceleration ay of missile longitudinal motion is
determined by the current altitude h, longitudinal velocity vy, pitch angle ϕ and trajectory inclination
angle θ. To avoid the error of pitch angle caused by missile rotation around centroid affecting the
accuracy of the acceleration model, the pitch angle is not considered as an input of the acceleration
model. Finally, the acceleration model of missile pitching channel is established, as shown in Figure 5.

Figure 5. Acceleration model of pitching channel.

The acceleration neural network modeling of rolling and yaw channels is similar to that of pitching
channels. The acceleration model of three channels can be expressed as formula (17).

ax(k) = f̂NN1 [vx(k), x(k)]

ay(k) = f̂NN2
[
vy(k), y(k), θ(k)

]
az(k) = f̂NN3 [vz(k), z(k), σ(k)]

(17)

It can be known from Equation (5) that the angular acceleration of missile in space is mainly
related to the current rudder signal δ, angular velocity ω, dynamic pressure q, angle of attack α and
angle of sideslip β. q is determined by V and P, α and β are mainly affected by ϕ, ψ, θ, and σ. Therefore,
the accelerations ω̇x, ω̇y, ω̇z of the three channels are selected as 3 key intermediate variables ẋi in
formula (16).

The three-channel decomposition of the missile rotation around centroid is carried out. Taking
the pitching channel as an example, the angular acceleration ω̇z of the longitudinal motion of the
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missile is determined by the current rudder signal δz , the current altitude h, longitudinal velocity vy ,
pitching angular velocity ωz, pitch angle ϕ and trajectory inclination angle θ . To simplify the structure
of the neural network and improve the fitting accuracy, the measured pitch angle and the trajectory
inclination angle are processed by the formula (18) to obtain an angle of attack signal.

α = ϕ− θ (18)

Finally, the angular acceleration model of missile pitching channel is established, as shown in
Figure 6.

Figure 6. Angular acceleration model of pitching channel.

The angular acceleration neural network modeling of rolling and yaw channels is similar to that
of pitching channels. The angular acceleration model of three channels can be expressed as formula
(19). 

ω̇x(k) = f̂NN4 [δx(k), x(k), ωx(k)]

ω̇y(k) = f̂NN5
[
δy(k), z(k), vz(k), ωy(k), β(k)

]
ω̇z(k) = f̂NN6

[
δz(k), y(k), vy(k), ωz(k), α(k)

] (19)

4.2. Establishment of Missile Hybrid Model

Acceleration model and angular acceleration model of pitching, yaw and rolling channels are
established in turn. After a series of integral operations and angle calculations, a hybrid model
containing the neural network and mechanism model is finally established. The structure is shown in
Figure 7.

Figure 7. Structure of the missile hybrid model.
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The input of missile hybrid model consists of two parts, one is the input signal from the outside,
including the current rudder signal δx, δy, δz, the another part comes from the interior of the model,
including the position ~P, velocity ~V, angular velocity ~ω, pitch Angle ϕ, yaw angle ψ, trajectory
inclination angle θ and trajectory deflection angle σ at the current moment.

The interior of the hybrid model consists of the acceleration model, the angular acceleration
model, three integrators, and angular calculation part. The acceleration model is composed of three
neural networks. NN2 represents the acceleration model of pitching channel, and its structure is
shown in Figure 5, where ay(k) is obtained from h(k), vy(k), θ(k) through NN2. Since the missile has an
axisymmetric layout form, the acceleration model of the yaw channel is in one-to-one correspondence
with the acceleration model of the pitch channel. NN1 and NN3 respectively represent the acceleration
model of rolling and yaw channels, and their structure is similar to NN2 as is shown in formula (17).
The acceleration a(k) = [ax(k), ay(k), az(k)]T obtained by the acceleration model is integrated to obtain
the velocity signal V(k + 1) = [vx(k + 1), vy(k + 1), vz(k + 1)]T , and after another integration, the
position signal P(k + 2) = [x(k + 2), y(k + 2), z(k + 2)]T is obtained.

The angular acceleration model consists of three neural networks. NN6 is the angular acceleration
model of the pitching channel in Figure 6, which obtains the ω̇z(k) according to δz(k), h(k), vy(k), ωz(k)
and α(k). Since the missile has an axisymmetric layout form, the angular acceleration model of the yaw
channel is in one-to-one correspondence with the angular acceleration model of the pitch channel. As is
shown in formula (19), the angular acceleration models NN4 and NN5 of rolling and yaw channels
are similar to NN6 of pitching channels, and the output ω̇x(k), ω̇y(k) is obtained by fitting the neural
networks, respectively. ω̇(k) = [ω̇x(k), ω̇y(k), ω̇z(k)]T obtained from the angular acceleration model is
integrated to obtain the angular velocity ω(k + 1) = [ωx(k + 1), ωy(k + 1), ωz(k + 1)]T at next step.

In the angle calculation part, three attitude angles ϕ, ψ, γ is calculate from the angular velocity
ω according to the Kinematics equation of missile rotation around centroid (7). According to the
definition of the trajectory inclination angle and the trajectory deflection angle, as is shown in Equation
(9), θ and σ are calculated.

The output of the hybrid model contains the position, velocity, angular velocity, and attitude
angle at the current time. One part of the output is transmitted to the external guidance and control
system, and the other part is transmitted to the interior of hybrid model, used as an input to the
neural network.

The types and related settings of NN1-NN6 in the missile hybrid model can be the same or
different. Several fully connected neural networks can be chosen for the design of hybrid model
according to actual needs. For example, BP neural network which is a multi-layer feedforward
neural network trained by the error back propagation algorithm is the most widely used neural
network, which was proposed by Rumelhart [38] in 1986. The Radial Basis Function (RBF) neural
network has good approximation and global optimal performance, and has high learning and training
efficiency [39]. It has been widely used in modeling, system identification and parameter estimation of
complex models. Which type of neural network is chosen to build the acceleration neural network
model (NN1-NN3) and the angular acceleration model (NN4-NN6) in the hybrid model is selected by
researchers according to the actual training data, training effect and test effect. At present, there is a lack
of general theoretical guidance on the determination of neural network structure, which is generally
different according to different applications. In practical application, the general adopted method is to
constantly try, that is to compare a variety of neural network structures, refer to some constructive
opinions, and finally determine a better neural network structure to meet the fitting accuracy.

Through the above steps, a 6-dof missile hybrid model can be obtained. It can approximate
the realistic missile, can be used to simulate the flight characteristics of missile, and can be used for
simulation and model verification.
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5. Simulation Result and Analysis

In this paper, based on flight test data, a missile hybrid model is established by combining
mechanism analysis with neural networks. Figure 8 shows the whole process of establishing a missile
hybrid model.

Figure 8. Hybrid data-driven modeling flowchart.

In this section, the feasibility of the proposed modeling method and the credibility of the missile
hybrid model are evaluated through two simulation experiments and statistical analysis. Firstly, the
data collected by the mathematical model is taken as the actual flight test data, used as the training
sample set of neural networks. According to the steps in Section 4, the missile hybrid model is
established to verify the feasibility of the method. However, the simulation results obtained by using
only one ballistic trajectory data to modeling are contingent, which is not enough to explain the
credibility of the established model. A large number of simulation experiments and statistical analysis
must be carried out to give corresponding conclusions. Therefore, the Monte Carlo method is used to
analog target in Section 5.2. Data of multiple ballistics under various disturbance factors are collected,
and the missile hybrid model is established respectively. Then, the credibility of the hybrid model are
verified by statistical analysis of the model accuracy.

5.1. Feasibility Analysis

To verify the feasibility of the proposed modeling method, the data collected by missile
mathematical model established by the mechanism analysis is used as flight test data, and the missile
hybrid model is established by hybrid data-driven modeling method. Finally, the output of the hybrid
model is compared and analyzed with the mathematical model. The simulation scheme flow is shown
in Figure 9.

Set the initial launch height of missile to 8000 m, the initial launch velocity is [236.1, 0, 5] m/s,
the position of target is [15200, 0, 5] m, and the simulation step is 0.005 s. We carry out simulation
experiments based on MATLAB/SIMULINK. The solver type we choose is fixed step and the fixed step
size (fundamental sample time) is set to 0.005 s. Runge Kutta is a high precision single step algorithm
widely used in engineering, so the solver chosen is ode4 (Runge Kutta) [40,41]. Neural network toolbox
of MATLAB is used to train neural networks. Three acceleration neural network models (NN1–NN3)
for rolling, pitching and yaw channels are fitted by 3 BP neural networks. A BP neural network NN1
with 3 layers (input layer, hidden layer and output layer) is used to fit the acceleration of rolling
channel. According to Equation (17), the acceleration of the rolling channel ax is affected by vx, x, so
NN1 has 2 input nodes and 1 output node. The hidden layer has 6 nodes, and the transfer function is
hyperbolic tangent S-type tansig function. The offline Levenberg–Marquardt algorithm is chosen for
training. Another BP neural network with four layers is used to fit the acceleration of pitching channel.
The acceleration of pitching channel ay is affected by three factors vy, y, θ, so NN2 has 3 input nodes
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and 1 output node. The first hidden layer has 8 nodes, and the transfer function is logsig function;
the second hidden layer has 3 nodes, and the transfer function is tansig; the output layer transfer
function is linear purelin function, and the training algorithm is the same as NN1. The acceleration of
the yaw channel az is affected by vz, z, σ, so NN3 has 3 input nodes and 1 output node. A BP neural
network with 3 layers is used to build NN3, hidden layer has 8 nodes, and the transfer function and
training algorithm are the same as NN1. After establishing the acceleration neural network models of
three channels, 3 RBF neural networks (NN4-NN6) are used to establish the 3 angular acceleration
neural network models. The relevant parameters are as follows: Set mean squared error goal to 0.0001,
spread of radial basis functions to 1, number of neurons to add between displays to 10. It has been
found through the experiment that the ability of neural network to perceive the data with small value
and little change is poor, and it is easy to produce iterative error in the modeling process. Therefore,
whether to use six neural networks to replace the acceleration model and the angular acceleration
model at the same time needs to be determined by the researchers according to the actual flight test
data. For example, if the flight test data is collected from a missile with STT(Skid-to-Turn) control
mode (γ = 0), the angular acceleration model of the rolling channel(ω̇x) cannot be replaced by neural
network, but mechanism modeling method should still be used to establish the angular acceleration
model of the rolling channel. Fitting results and errors of acceleration and angular acceleration model
of pitching channel are shown in Figures 10 and 11.

Figure 9. The flow chart of simulation scheme for modeling method feasibility analysis.

(a) (b)

Figure 10. Fitting result of pitching channel: (a) Acceleration; (b) Angle acceleration.
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(a) (b)

Figure 11. Fitting error of pitching channel: (a) Acceleration error; (b) Angle acceleration error.

From the fitting results of neural network training, it can be seen that the fitting accuracy of
acceleration model and angular acceleration model established by BP and RBF neural network both
have high fitting precision. The acceleration model and the angular acceleration model of pitching,
yaw, and rolling channels are established in turn. Solved by integrating and angle calculation, a missile
hybrid model shown in Figure 7 is constructed. The simulation results are shown in Figure 12.

In this paper, mean square error (MSE) and the mean absolute percent error (MAPE) are used as
the evaluation indexes of neural network output.

MSE =
1
N

N

∑
i=1

(
y′i − yi

)2 (20)

MAPE =
1
N

N

∑
i=1

∣∣y′i − yi
∣∣

yi
(21)

Table 1 summarizes MSE and MAPE between the 12 outputs of missile hybrid model and the
mathematical model, respectively.

Table 1. Output errors between missile hybrid model and mathematical model.

Output of Missile MSE MAPE

x 8.83e−5 6.62e−7

y 1.99e−4 3.80e−5

z 5.17e−5 1.36e−2

vx 3.66e−7 2.27e−6

vy 7.10e−6 −3.96e−5

vz 8.78e−7 −9.87e−4

ωx 1.19e−7 0.19
ωy 4.89e−6 3.96e−5

ωz 4.7e−3 0.26
ϕ 2.38 6.28e−2

ψ 9.40e−7 2.30e−3

γ 8.88e−11 0.24e−4
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(a) (b)

(c) (d)

(e) (f)

Figure 12. Simulation results of missile hybrid model and mathematical model: (a) Position in Y-X
direction; (b) Position in Z-X direction; (c) Mach number; (d) Pitch angle; (e) Yaw angle; (f) Pitching
angular velocity.
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From Figure 12 and Table 1 it can be seen that the system output response curves of missile hybrid
model and mathematical model are substantially coincident, and the errors of each output parameters
is small. Instead of directly determine the quantitative relationship between system input and output
in traditional neural network modeling method, the hybrid data-driven modeling method proposed
in this paper uses the neural network to fit the necessary intermediate variables and combines the
mechanism modeling to establish a missile hybrid model. The simulation results show that this method
can effectively avoid the serious impact of error accumulation on the model, and the established model
achieves high precision, which verifies the feasibility of the proposed method.

5.2. Credibility Analysis

To verify the credibility of the missile hybrid model established by the hybrid data-driven
modeling method proposed in this paper, the accuracy of the established model is statistically analyzed
based on Monte Carlo method. The simulation scheme flow is shown in Figure 13.

Figure 13. The flow chart of simulation scheme for model credibility analysis.

The basic steps are as follows:

Step 1: Establish the mathematical model of the missile by the mechanism modeling method, and
the data collected by the mathematical model (pseudo-missile model) is taken as the flight
test data of realistic missile.

Step 2: Determine the main random disturbance factors encountered during the missile flight and
determine its distribution law;

Step 3: Simulation target practice of missile is done with Monte Carlo method, and the data of the
n collected random trajectories is taken as the flight test data of n ballistic trajectory;

Step 4: According to the hybrid data-driven modeling method proposed in this paper, the data
of each random ballistic trajectory collected in step 3 is used to establish a missile
hybrid model.

Step 5: Compare the output results of n missile hybrid models with the pseudo-missile model, and
statistical analysis to verify the accuracy and credibility of missile hybrid model.
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Remark 1: The Monte Carlo method is a kind of numerical method for solving approximate
solutions of mathematical, physical and engineering problems through statistical experiments or
stochastic simulations of random variables, also known as statistical experiment or stochastic
simulation [5].

The missile is susceptible to a variety of interference factors during the flight, which makes the
missile’s ballistic parameters deviate from the ideal trajectory. Monte Carlo simulation of target
shooting (step 3) can quickly use computer simulation instead of flight test. According to the
distribution law of various random disturbance factors, the corresponding mathematical probability
model is constructed. Then, the random disturbance sampling value is loaded into the 6-dof
mathematical model of the missile to simulate the target, and the ballistic state and output parameters
of the disturbance trajectory are obtained, which provides the data basis for the experiment in step
4. In this paper, the random interference factors that cause the impact point dispersion are mainly
include the following two categories.

(i) Internal factors: missile structural parameter errors, mainly including mass deviation, moment
of inertia deviation, and aerodynamic coefficient deviation.

(ii) External factors: the influence of ballistic wind.

Random errors are added to the parameters, as shown in the equestrian (22):{
disturb = 1 + R, R ∼ N(µ, σ2)

Parameter_dist = Parameter× disturb
(22)

Where R is a random number, and Parameter_dist is the parameter value containing interference.
Table 2 shows the parameter sampling settings for simulation target practice based on Monte

Carlo method in step 2.

Table 2. Sampling settings of Monte Carlo parameters.

Category Disturb Distribution Characteristics Distributed Parameter

Missile body Error of missile mass m Normal distribution N(0, 0.0072)

Error of rotational inertias~I Normal distribution N(0, 0.022)

Aerodynamic coefficient Error of axial force coefficient Cx1 Normal distribution N(0, 0.0672)

Error of derivative of lateral force
coefficient Cβ

z1

Normal distribution N(0, 0.12)

Error of derivative of moment
coefficient mα

z1, mωz1
z1 , mδ

x1, mδ
y1, mδ

z1

Normal distribution N(0, 0.12)

Error of Wind disturbance Wind speed Vw Normal distribution N(0, 12)

Table 3 summarizes the statistical values of the drop error and position, Mach number and pitch
angle between 10 missile hybrid models and pseudo-missile model, respectively.

According to the statistics, 10 missile hybrid models based on the data of 10 ballistics collected
by target practice using Monte Carlo method can successfully destroy the target under the action of
control system. The distance when missile and target are encountered is less than 3 meters, achieving
a high hit precision. In addition, the hit accuracy of missile is not only related to the accuracy of the
established model, but also to the guidance and control law. The mean absolute percent error(MAPE)
of x, y, z is within 7%, the MAPE r of mach number is within 2%, and MAPE of ϕ is within 3%. It shows
that the missile hybrid model established by the proposed method can fit the position, velocity and
attitude well. Taken together, the average relative error of each quantity between the missile hybrid
model and the pseudo-missile model is within 7%. It indicates that the hybrid model established by
using the data collected from the flight test still has the ability to approach realistic plant and achieve
high precision even if the missile is subjected to certain external interference during the flight test in
the field.
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Table 3. Parameter Statistics of 10 missile hybrid models.

Serial Number MAPE of x MAPE of y MAPE of z MAPE of Mach MAPE of ϕ Miss Distance Operational Result

1 0.23% 0.99% 0.79% 0.35% 6.00% 0.8m destroying

2 0.33% 1.75% 6.35% 0.87% 3.56% 2m destroying

3 0.19% 1.10% 0.55% 0.75% 4.21% 1.4m destroying

4 0.15% 2.27% 4.21% 0.80% 2.84% 1.1m destroying

5 0.38% 0.54% 0.84% 0.81% 3.02% 2.3m destroying

6 0.12% 0.71% 2.21% 0.77% 2.90% 0.1m destroying

7 0.9% 4.19% 4.97% 1.54% 2.53% 2.8m destroying

8 0.08% 0.38% 5.15% 0.08% 3.83% 0.01m destroying

9 0.23% 1.02% 0.97% 0.40% 3.43% 1.6m destroying

10 0.25% 1.15% 1.36% 0.64% 3.15% 0.05m destroying

Compared with the traditional method, the data-driven modeling method proposed in this paper
is based on the actual flight test data, using neural network to replace acceleration model and angular
acceleration model, considering the interference and uncertainties in the flight process, which can
effectively avoid the influence of aerodynamic parameters obtained from wind tunnel test on the
accuracy of mechanism model. The hybrid modeling method also avoids using the output of the
neural network as its input directly, which makes the identification iteration converges, and effectively
establishes the 6-dof missile hybrid model. In addition, the simulation results verify the accuracy of
the missile hybrid model under the interference factors, meet the modeling requirements and have
high credibility.

6. Conclusions

A novel hybrid data-driven modeling method is proposed in this paper, and a 6-dof missile
hybrid model is established for offline usage scenarios. Based on flight test data, the neural
network-mechanism hybrid model of missile is established by fitting intermediate variables with
neural networks and combining mechanism modeling method, which can effectively overcome the
influence of uncertainties and nonlinear factors in mechanism modeling method, and avoid the
problems of traditional neural network modeling method applied in offline usage scenarios. Finally,
the feasibility of the proposed method and the credibility of the established model are verified by
simulation experiments and statistical analysis. It also provides a new idea for future MIMO system
modeling problems in the offline usage scenario in engineering field.
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