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Abstract: This paper presents many new complex combined dark-bright soliton solutions
obtained with the help of the accurate sine-Gordon expansion method to the B-type Kadomtsev-
Petviashvili-Boussinesq equation with binary power order nonlinearity. With the use of some
computational programs, we plot many new surfaces of the results obtained in this paper. In addition,
we present the interactions between complex travelling wave patterns and their solitons.

Keywords: B-type Kadomtsev-Petviashvili-Boussinesq equation; sine-Gordon expansion method;
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1. Introduction

Mathematical models named nonlinear evaluation equations (NEEs) arise in different areas of
nonlinear science such as plasma physics, quantum mechanics, hydro-dynamics molecular biology,
nonlinear optics, stratum water wave, optics fibers, biological science, chemistry, etc. Investigations
of NEEs render possible the better understanding the complex phenomena. Recently, many new
mathematical models used to describe today’s real-world problems have attracted the attention of
experts from all over the world. In this sense, to observe these models some important methods
such as the trial equation method, extended tanh method, modified simple equation method,
extended simplest equation method, modified extended tanh method, complex method, generalized
hyperbolic-function method, the homogeneous balance method, the improve F-expansion method with
a Riccati equation, the improved Bernoulli sub-equation function method, the modified exponential
function method and many more methods [1–49]. One of such models named as (3 + 1)-dimensional
B-type Kadomtsev-Petviashvili-Boussinesq equation (B-type KPB) defined by

uty − uxxxy − 3
(
uxuy

)
x
+ 3uxz + utt = 0, (1)

has been investigated [50,51]. Physically, the term utt has been added and used to investigate the effect
of dispersion relation and phase shift properties of the generalized B-type Kadomtsev–Petviashvili
equation [51].

Y.S. Deng and his team have observed the Equation (1) via the breather-type kind soliton solutions
with the help of the breather-soliton mixture [51].

In Section 2, SGEM based on fundamental equation being sine-Gordon equation Equation (1) will
be defined in a detailed manner. In Section 3, some new complex combined dark-bright travelling
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wave solutions, which have not been studied so far to the Equation (1) will be obtained. Considering
the suitable values of parameters, some graphical simulations will be also discussed. In the last section
of this paper, conclusions will be presented.

2. The SGEM

Let’s consider the following sine-Gordon equation [52,53];

uxx − utt = m2 sin(u), (2)

where u = u(x, t), and m is a real constant. When we apply the wave transform u(x, t) = U(ξ), ξ =
µ(x− ct) to Equation (2), we obtain a nonlinear ordinary differential equation (NODE) in the form:

U′′ =
m2

µ2(1− c2)
sin(U), (3)

where U = U(ξ), and, ξ is the amplitude of the travelling wave, c is the velocity of the travelling wave.
If we reconsider Equation (3), we can write in the full simplify version as following:[(U

2

)′]2

=
m2

µ2(1− c2)
sin2

(U
2

)
+ K, (4)

where K is the integration constant. When we resubmit as K = 0, w(ξ) = U
2 , and a2 = m2

µ2(1−c2)
in

Equation (4), we can obtain following equation:

w′ = a sin(w). (5)

If we put as a = 1 in Equation (5), we can obtain following equation:

w′ = sin(w). (6)

If we solve Equation (6) by using separation of variables, we find the following two significant
equations:

sin(w) = sin(w(ξ)) =
2peξ

p2e2ξ + 1

∣∣∣∣∣∣
p=1

= sec h(ξ), (7)

cos(w) = cos(w(ξ)) =
p2e2ξ

− 1
p2e2ξ + 1

∣∣∣∣∣∣
p=1

= tanh(ξ), (8)

where p is the integral constant and non-zero. For the solution of following nonlinear partial
differential equation;

P(u, ux, ut, · · ·) = 0, (9)

let’s consider as

U(ξ) =
δ∑

i=1

tanhi−1(ξ)[Bi sec h(ξ) + Aitanh(ξ)] + A0. (10)

We can rewrite Equation (10) according to Equations (7) and (8) in the form:

U(w) =
δ∑

i=1

cosi−1(w)[Bi sin(w) + Ai cos(w)] + A0. (11)

Under the terms of homogenous balance technique, we can determine the values of n under
the terms of NODE. Let the coefficients of sini(w) cos j(w) all be zero, it yields a system of equations.
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Solving this system, the values of Ai, Bi,µ, c can be found. Finally, substituting the values of Ai, Bi,µ, c
into Equation (10), we can find the new analytical solutions to the Equation (9).

3. Application

In present part of the paper, we apply SGEM to obtain new mixed dark-bright soliton solutions to
B-type KPB. Consider the following wave transformation for B-type KPB equation:

u(x, y, t, z) = U(ξ), ξ = kx + wy + rz− ct. (12)

This can be obtained the following differential equation:(
3rk + c2

− cw
)
U′′ − 3wk2(UU′)′ −wk3U4 = 0. (13)

Integrating Equation (12) and the constants of integrate to zero yield:

(
3rk + c2

− cw
)
U−

3wk2

2
U2
−wk3U′′ = 0. (14)

Applying some simplifications, we find the following nonlinear ordinary differential equation
(NODE) for B-type KPB equation:

2
(
3rk + c2

− cw
)
U− 3wk2U2

− 2wk3U′′ = 0. (15)

The homogeneous balance principle produces n = 2. If we consider this into Equation (11), we get
the following:

U(w) = B1sin(w) + A1cos(w) + B2cos(w)sin(w) + A2cos2w + A0, (16)

U′′ (w) = B1cos2 (w)sin(w) −B1sin3(w) − 2A1sin2(w)cos(w)

+B2cos3(w)sin(w) − 5B2sin3(w)cos(w)

− 4A2cos2(w)sin2(w) + 2A2sin4(w),
(17)

Substituting Equations (15) and (16) into Equation (14) produces an equation including many
trigonometric terms. When we take a set of algebraic equations to zero, we find a system. Solving this
system, we find the following coefficients:

Case 1 If A0 = 2k; A1 = 0; A2 = −2k; B1 = 0; B2 = 2ik; r =
−c2+(c+k3)w

3k ; inserting this value
into Equation (10), yields the following complex combined dark-bright soliton solution:

u1(x, y, z, t) = 2k− 2ik sec h
[
ct− kx−wy−

−c2+w(c+k3)
3k z

]
×tanh

[
ct− kx−wy−

−c2+w(c+k3)
3k z

]
− 2ktanh

[
ct− kx−wy−

−c2+w(c+k3)
3k z

]2
,

(18)

in which c, k, w are real constants and non-zero. See Figures 1–3 to illustrate.
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Case-2: when we choose, A0 = 4k
3 ; A1 = 0; A2 = −2k; B1 = 0; B2 = 2ik; r = −

(c2
−cw + k3w)z

3k ;
taking these values into Equation (10) produces another complex combined dark-bright solution to
Equation (1):

u2(x, y, z, t) = 4k
3 − 2ktanh

[
ct− kx−wy + c2

−cw+wk3

3k z
]2

+2ik sec h
[
ct− kx−wy + c2

−cw+wk3

3k z
]
tanh

[
ct− kx−wy + c2

−cw+wk3

3k z
]
,

(19)

where k, c, w are real constants with non-zero values. Choosing the suitable values of parameters, some
figures may be found as follows (see Figures 4–11).
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Case-3: if it is taken as for Equation (10), A0 = 4k
3 ; A1 = 0; A2 = −4k; B1 = 0; B2 = 0 and

c = 1
2

(
w−
√
−12kr− 16k3w + w2

)
results in the following dark soliton solution:

u3(x, y, t, z) =
4k
3
− 4ktanh

[
−kx−wy− rz +

t
2

(
w−

√
−12kr− 16k3w + w2

)]2
, (20)

in which k, w, r are constants and non-zero. Some suitable values of parameters, we plot as follows:
Case-4: considering other coefficients such as A0 = −4

3 c
1
3 ; A1 = 0; A2 = 2c

1
3 ; B1 = 0; B2 = −2c

1
3 ;

and k = −c
1
3 ; w = c

2 −
3r
2 c
−2
3 , for Equation (10), we find another new complex combined dark-bright

solution to Equation (1) as follows:

u4(x, y, z, t) = −4
3 c1/3 + 2ic1/3 sec h

[
ct + c1/3x− rz−

(
c
2 −

3r
2 c−2/3

)
y
]

×tanh
[
ct + c1/3x− rz−

(
c
2 −

3r
2 c−2/3

)
y
]
+ 2c1/3tanh

[
ct + c1/3x− rz−

(
c
2 −

3r
2 c−2/3

)
y
]2

,
(21)

with c, r being real constants with non-zero values.

4. Conclusions

In this paper, we have successfully employed the SGEM to the (3 + 1)-dimensional B-type KPB
equation. New dark, complex combined dark-bright soliton solutions to the governing equation
have been constructed. We have observed that all solutions found in this paper have satisfied the
(3 + 1)-dimensional B-type KPB equation with the help of some computational programs. To gain a
better understanding of complex wave patterns, we have plotted two- and three-dimensional surfaces
of the results in Figure 1, Figure 3, Figure 4, Figure 6, Figure 7a, Figure 8, Figure 9, and Figure 11
along with contour simulations given more detailed information about the low and high points of
waves in a selected area Figure 2, Figure 5, Figure 7b, and Figure 10. In this sense contour simulations
have become an alternative observing managing system for the results in terms of depth and height
observations. Physically, dark solution, which is the third solution for Equation (19) was used to
explain gravitational potential of gravity [54]. With this sense, it is estimated that these results are
of such gravitational physical meanings. When we compared these results with the existing works
in the literature [51], it can be observed that these solutions were of entirely new dark and complex
combined dark-bright soliton solutions to the (3 + 1)-dimensional B-type KPB equation. It is estimated
that the sine-Gordon equation expansion method is an efficient and powerful computational tool that
can be used for studying complex nonlinear models.

Moreover, as a future work, we will investigate the stability properties of the negative solitary
solutions obtained by using sine-Gordon equation expansion method in terms of orbital dynamical
stability [55]. N.T. Nguyen et al. [55] have observed the orbital stability of negative solitary waves via
numerical simulation by using a spectral discretization.
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