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Abstract: In this work, we explore disformal transformations in the context of the teleparallel
equivalent of general relativity and modified teleparallel gravity. We present explicit formulas in
components for disformal transformations of the main geometric objects in these theories such
as torsion tensor, torsion vector and contortion. Most importantly, we consider the boundary
term which distinguishes the torsion scalar from the Ricci scalar. With that we show for
f (T) gravity that disformal transformations from the Jordan frame representation are unable to
straightforwardly remove local Lorentz breaking terms that characterize it. However, we have shown
that disformal transformations have interesting properties, which can be useful for future applications
in scalar-torsion gravity models, among others.

Keywords: teleparallel gravity; f(T) gravity; scalar-torsion gravity; disformal transformations;
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1. Introduction

Modifications to Einstein’s general relativity are nowadays a well motivated field of research, due
to the riddles of dark sectors in cosmology such as dark energy and dark matter. Moreover, the need
for an early accelerated expansion in the inflationary paradigm, as well as infamous obstacles in the
quest for quantum gravity, can also be seen as indications of new physics beyond general relativity.

One of the possible paths to deform general relativity lies in modification of the fundamental
geometric objects that describe the gravitational field. It is known that there exist at least two
alternative equivalent descriptions of general relativity based on torsion or non-metricity of spacetime.
They are called teleparallel equivalent of general relativity (TEGR) [1,2] and symmetric teleparallel
gravity (STEGR)[3,4], respectively. The Lagrangians are proportional to the torsion scalar T and the
non-metricity scalar Q, which differ from each other and from the Ricci scalar R only by boundary
terms, giving rise to equivalent equations of motion. However, their modifications, for example
f (T) [5] and f (Q) [6], yield genuinely different gravity models.

Even the simplest modified models of this sort, such as f (T), are very non-trivial and present
challenges for understanding the nature of their degrees of freedom (see Section 3.2 for a summary).
Note that, in other cases, clever changes of variables have proven to be very useful for investigating
the structure of theories at hand. For example, in f (R) gravity, conformal transformations allow to
establish equivalence with scalar-tensor models. At the same time, in f (T) they fall short of giving a
clearcut result. Then, it feels natural to try a more general class of transformations, the disformal ones.

Disformal transformations have been considered by Bekenstein as a deformation of the metric
tensor that defines a gravitational theory supplied by two geometries, one for the gravity sector and
one for the matter sector. Assuming Finslerian geometry for the matter sector, he found that in order to
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preserve both the weak equivalence principle and the causal structure, it has to reduce to a Riemannian
geometry, whose metric g̃µν is related to the gravitational one gµν by [7,8]

g̃µν = α2gµν + β∂µφ∂νφ. (1)

This is a non-trivial generalization of a conformal transformation, in the sense that the original
space-time gµν is not only isotropically stretched but also considers anisotropic variation in the
directions in which the scalar field varies. The causal structure of the transformed metric depends on
the coefficients α, β, which have to be restricted at least by requiring that the metric is non-degenerate.
One of the interesting applications of disformal transformations to gravity is their use for mapping
gravitational theories with second-order field equations to higher derivative theories that still avoid
Ostrogradsky’s instability [9].

This sort of transformation has been scarcely discussed in the context of the tetrad
formalism [10,11]. We are interested in developing disformal transformations in the teleparallel
equivalent of general relativity framework, and apply it to modified teleparallel gravity in order
to better understand the issue of the extra degrees of freedom that these theories exhibit. For this,
we start with a brief introduction to teleparallel gravity in Section 2. We introduce modifications of
gravity based on the teleparallel formalism in Section 3, together with an introduction to the issue of the
degrees of freedom. The basics of disformal transformations in tetrad formalism and transformations of
the main geometrical objects are presented in Section 4. The main results of this paper are presented in
Section 5, where we look for an interpretation of the extra d.o.f. of f (T) gravity in terms of a disformal
transformation parameterized by a scalar field. Finally, we devote Section 6 to the conclusions.

2. Teleparallel Gravity

The spacetime manifold in which gravitational phenomena take place is commonly described by
two geometrical structures: a base of orthonormal vectors (tetrad or vierbein) and a spin connection.
The first one leads to the definition of metric, while the second one provides the rule for
parallel transport. The basis of tetrads ea is defined in the tangent space Tp(M) of a 4-dimensional
manifold M, and the corresponding co-tetrad basis Ea resides in the co-tangent space T?

p (M).
The Latin indices a, b, . . . = 0, . . . , 3 will denote (co-)tangent space indices, and the Greek indices
µ, ν, . . . = 0, . . . , 3 are spacetime ones. When expanded in a coordinate basis as ea = eµ

a ∂µ and
Ea = Ea

µdxµ, the components satisfy completeness relations Ea
µeµ

b = δa
b and Ea

µeν
a = δν

µ. We recover the
usual metric of general relativity by declaring the norm of tetrads in terms of the Minkowski metric,
that is

eµ
a eν

b gµν = ηab, gµν = Ea
µEb

νηab, (2)

where, in the second relation, we show that the metric can be recovered through the co-tetrad
components. We will consider a spacetime endowed with the Weitzenböck connection, defined as

Γα
µν = eα

a ∂µEa
ν. (3)

This is equivalent to the choice of the spin connection ωa
µb = 0, and it renders the Riemann

tensor to vanish, but leaves non-zero torsion Tα
µν = Γα

µν − Γα
νµ = eα

a (∂µEa
ν − ∂νEa

µ). In such a
spacetime, the basis vectors are parallel, transported trivially throughout the manifold, coining the
term tele-parallel (parallel at a distance).

The Weitzenböck connection is just a subcase of a more general family of flat connections.
In general, the condition of flatness is imposed as vanishing of the curvature 2-form. This condition
can be solved by the so-called inertial connection [1,12], which can also be viewed as covariantization
of the Weitzenböck case since it can be obtained by arbitrary Lorentz transformations of the latter.

A gravitational theory that gives dynamics to the tetrad field and has equations of motion
equivalent to the Einstein’s equations is the teleparallel equivalent of general relativity (TEGR), whose
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action is written as (we adopt the (+,−,−,−) signature convention, so that the Lagrangian density of
the Einstein–Hilbert action reads −√gR, with the minus sign) [1,2]

S =
1

2κ

∫
d4x E T, (4)

where κ = 8πG, E = det(Ea
µ), and

T =
1
4

Tρ
µνT µν

ρ − 1
2

Tρ
µνTµν

ρ − TµTµ, (5)

where Tµ = Tρ
µρ is the torsion vector.

The TEGR action is equivalent to general relativity (GR) due to the mathematical identity

R(Γ) = R(
(0)
Γ ) + 2

(0)
5 µTµ +T (6)

between the curvatures of a metric-compatible torsionful connection Γ and the Levi-Civita

connection
(0)
Γ . With the zero spin connection prescription, the curvature R(Γ) is equal to zero, and the

TEGR action given in terms of the torsion scalar is equivalent to the Einstein–Hilbert one modulo the
surface term of the torsion vector divergence, this is

− ET = ER(
(0)
Γ ) + 2E

(0)
5 µTµ. (7)

Given the Weitzenböck choice of the connection, the surface term is not invariant under the local
Lorentz transformations (LLT) Ea

µ → Ea′
µ = Λa′

a (x)Ea
µ. This fact is not important once we plug this

expression into the TEGR action, since it is integrated out and it gives Lorentz invariant equations of
motion fully equivalent to GR. However, it will be a crucial point when taking non-linear extensions of
this model.

3. Modified Teleparallel Gravity and Degrees of Freedom

3.1. Generalized Teleparallel Gravity

The Lagrangian (4) is a suitable starting point for building modifications to Einstein’s gravity.
This is because the Lagrangian is quadratic in first-order derivatives of the tetrad field; therefore, any
non-linear modification of it would yield equations of motion with only second-order derivatives.
This outcome is not easy to get once we adopt the task of modifying gravity, as it is quite common
to get fourth-order equations of motion when such modifications are implemented. This theoretical
motivation led to the introduction of the f (T) gravity theories with the action [5,13]

S =
1

2κ

∫
d4x E f (T). (8)

The associated equations of motion are indeed purely second order in derivatives of the
tetrad field, namely

4S µν
a f ′′(T)∂µT+ 4

[
eλ

a Tρ
µλS µν

ρ + e∂µ(Eeλ
a S µν

λ )
]

f ′(T)− eν
a f (T) = −2κeλ

a T ν
λ , (9)

where T refers to the usual energy–momentum tensor of any type of matter which couples to the metric.
These equations are obtained by taking the variation with respect to Ea

ν, and we can easily see their
second-order character. In addition to this, the theory has interesting applications in cosmology, a field
in which it has been extensively used for getting early and late accelerated phases without introducing
additional fields.
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When working in the pure tetrad formalism, the f (T) theory, as well as most other modified
teleparallel theories, exhibits violation of the local Lorentz invariance. In particular, for f (T), the
reason can be traced to Equation (7). Since the torsion scalar changes by a surface term under a local
Lorentz transformation, the non-linear function of it will transform as

f (T) −→ f (T+ surface term). (10)

Therefore, the former surface term can no longer be integrated out, and it gives rise to a theory
sensitive to local Lorentz transformations.

A different angle regarding this issue can be obtained in the Jordan frame representation of f (T)
gravity. For this, we rewrite the action with the help of an auxiliary scalar field φ as

S =
1

2κ

∫
d4xE

(
f (φ)− f ′(φ) · (T− φ)

)
, (11)

for which the equations of motion are the same as for the original model, and φ = T. Another option
is to choose the scalar field as φ = f ′(T) (related to the previous one via an obvious field redefinition),
so that

S = − 1
2κ

∫
d4x E (φT−V(φ)), (12)

and it can be viewed as a Legendre transform V(φ) = Tφ− f (T), and T = V′(φ).
In this formulation, one can relate the symmetry breaking with the scalar field φ changing in

space and time, since now the former surface term produces effects via derivatives acting upon f ′(φ)
or φ at an attempt to integrate by parts. This resonates well with the fact that the Lorentz-violating
terms in f (T) equations of motion are proportional to ∂T, and the scalar φ is set to be given by T.

A natural next step is to try removing the extra factor in front of T via a conformal transformation.
A known fact is that, in teleparallel gravity, this approach falls short of success. A would-be Einstein
frame (where the factor in front of T is the unity) results, with another Lorentz-violating term [14,15].
The action that results after this procedure is

S =
1

2κ

∫
d4x E

(
T̂− 2√

3
T̂µ∂µψ− 1

2
ĝµν∂µψ∂νψ−U(ψ)

)
, (13)

where hatted quantities refer to conformally transformed ones.
This frame comes together with the presence of a scalar field with an unusual coupling T̂µ∂µψ,

which spoils local Lorentz invariance. This formulation is very suggestive of the presence of new
degree(s) of freedom, and also has the worrisome feature that the kinetic term of the ψ field is of the
ghostly sign. However, one should not forget that there is an intricate kinetic mixing of the scalar field
with the tetrad components via the Lorentz-breaking term. Therefore, it is not easy to draw definitive
conclusions from this form of the action.

It is, of course, not surprising that we could not cleanly reveal these properties via a
conformal transformation. It should not be possible to get rid of Lorentz-violating terms by an
isotropic field redefinition. However, we could definitely try to explicitly relate those effects to some
different kinds of fields. Like, for example, preferred frame effects can come in the disguise of a vector
field in the Einstein–Aether model [16]. Furthermore, since, in our case, the origin of violation seems
to be related with the gradient of the scalar, we can try a more complex transformation, which contains
a preferred direction—a disformal transformation. The assertion we would like to test is whether it
can be used to parameterize the new dynamical mode of f (T) [17], and if it is possible to remove
Lorentz-violating terms in a teleparallel Einstein frame. Before doing so, let us briefly summarize the
state-of-the-art concerning the issue of the degrees of freedom.
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3.2. On the Extra Degree(s) of Freedom of f (T) Gravity

The issue of the nature and the number of the extra degree(s) of freedom of f (T) gravity and
other modified teleparallel theories is still not settled, despite intense debate in recent years [17–21].
Here, we will briefly summarize some points that we feel are important to consider in a discussion:

• Lorentz invariance: It is believed by some authors [1,22–25] that the loss of local Lorentz invariance
could be restored by dropping the assumption of the Weitzenböck connection and resorting to a
more general one, inertial connection. However, see the Ref. [26] for another viewpoint, especially
when it comes to modified teleparallel gravities.

• Weak gravity: It has been shown that there are no new propagating gravitational modes in the
linearized approximation around Minkowski spacetime with the trivial choice of the tetrad [27,28].
This follows from a simple observation that f (T) gravity reduces to TEGR in this limit [29], and in
particular, the local Lorentz invariance is restored.

• Cosmological perturbations: Extra propagating modes also do not appear in the linear cosmological
perturbations around a spatially flat FRW universe with the standard choice of the background
tetrad [30–34]. When a dynamical scalar mode is seen in the perturbations [32], it actually comes
from an additional scalar field added as a matter field to the model.

• Hamiltonian formalism: Probably, the first attempt to count the number of degrees of freedom in the
Hamiltonian formalism of f (T) gravity can be found in the Ref. [35], where the authors claim that
the theory has n− 1 extra degrees of freedom in n spacetime dimensions. Later work finds only
one extra degree of freedom in any dimension [17,36]. It is suggested that the extra mode could
be related with the proper parallelization of spacetime. For other kinds of modified teleparallel
gravities, the consideration of this mode is still pending [37].

• Conformal transformations: We proved above that a clean interpretation of the extra degree(s) of
freedom of f (T) gravity cannot be achieved with the use of conformal transformations. This result
was first obtained in [14], and some more details and refinements, and also extensions have been
given in [15].

• Claims of acausality: Assuming the presence of extra modes, the cosmological results indicate a
strong coupling regime for them, which is bad news for predictability. Also, acausality claims for
f (T) gravity can be found in the Ref. [38] through the method of characteristics; however, they use
the number of degrees of freedom calculated in the Ref. [35] to draw some of their conclusions,
which are currently in doubt.

• Galaxy rotation curves: An indirect indication for extra degree(s) of freedom can be found in [39],
where they use a model with f (T) = T + αTn to reproduce galactic rotation curves. When
the function approaches GR/TEGR (n = 1), the curves are different to those obtained in GR,
indicating the presence of some extra mode.

• Remnant symmetry: Even though the full Lorentz group is no longer a symmetry of f (T) gravity,
there still exist subgroups of remnant symmetries which have been studied in the Ref. [40].
Obviously, a good understanding of symmetries is an important key to understanding the degrees
of freedom.

• Null tetrads: Last but not least, null tetrads can be used to find solutions with T = 0 (or any
other constant instead of zero) [41–43], which could be useful for exhibiting the extra d.o.f. [44],
even though, at the background level, these solutions are not different from general relativistic
ones, up to rescaling of fundamental constants.

Based on all the points raised above, and focusing particularly on isolating the extra d.o.f. in f (T)
gravity through some transformation involving a scalar field, it comes naturally to ask whether an
extended kind of transformation, the so called disformal transformations, can give some clue about the
physical interpretation of the extra d.o.f.. This work is intended to fill this gap in current research by
presenting basic calculations in (modified) teleparallel theories of gravity and possible interpretations
and applications.
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4. Disformal Transformations in the Teleparallel Framework

4.1. Generalities on Disformal Transformation of the Tetrad Field

We will consider disformal transformations of the tetrad field in the following general form:

Ẽa
µ = C · Ea

µ + D · (∂aφ)(∂µφ), (14)

where we use the standard formulas for manipulating tangent space indices, that is ∂a ≡ eµ
a ∂µ and

∂a = ηab∂b. The C and D are scalar functions, and for the majority of calculations, we will not
need to explicitly specify their arguments, although, ultimately, we assume they depend on φ and
(∂φ)2 ≡ (∂µφ)(∂µφ).

Note that the tetrad transformation is quadratic in the field derivatives. However, it is easy to
prove that the metric transforms the same way, though with the (∂φ)2 correction in the coefficient,
see below. That is why it would not be appropriate in our case to restrict the arguments of C and
D to the value of φ only. In the current setting, we even could have allowed dependence on T.
However, our main purpose is to see whether it is possible to get rid of the local Lorentz-violating
terms in the Lagrangian. It is hard to imagine this goal could be achieved if all coefficients in every
term depend on the torsion scalar.

We introduce the shorthand notation φµ ≡ ∂µφ, and analogously, for any other scalar function,
such as C or D, and use it whenever convenient. With this, we can write

Ẽa
µ = CEa

µ + Dφaφµ, (15)

ẽµ
a =

1
C

(
eµ

a −
D

C + D(∂φ)2 φaφµ

)
, (16)

for the tetrad and its inverse. Since one is the inverse of another, the orthonormality relations Ẽa
µ ẽµ

b = δa
b

and Ẽa
µ ẽν

a = δν
µ still hold.

One can easily obtain the transformation of the metric (2) and its inverse as

g̃µν = C2gµν + D(2C + D(∂φ)2)φµφν (17)

and

g̃µν =
1

C2

(
gµν − D(2C + D(∂φ)2)

(C + D(∂φ)2)2 φµφν

)
. (18)

A useful consequence of the last relation is that

φ̃µ ≡ g̃µν∂νφ =
1

(C + D(∂φ)2)2 φµ (19)

which simply states that the length of φµ transforms according to the corresponding eigenvalue of the
transformation matrix.

An important requirement when doing transformations in a given theory is to preserve invertibility.
For the disformal transformations, the most obvious requirement amounts to

C 6= 0, C + D(∂φ)2 6= 0

which is the condition on the eigenvalues of the transformation matrix. If a transformation should be
continuously connected with identity, then we substitute the 6= signs with the > ones.

Since the transformations above contain field derivatives, they can fail being invertible even
with non-zero eigenvalues, thus producing what is known under the name of mimetic gravity [45,46].
The corresponding general conditions for disformal transformations of the metric can be found in the
Ref. [47].
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Sometimes conditions on light cones, time directions and other properties of the metrics are
also imposed. They can be easily derived, too. However, we will not need any of these. Now,
we have all the basic building blocks for studying transformations of the main geometrical objects
in teleparallel gravity.

4.2. Disformal Transformation of the Torsion Tensor

We start with the calculation of the disformally transformed connection coefficients, defined
in Equation (3). The calculation amounts to replacing the tetrads by their tilde versions given in
formulas (15) and (16). Before that, and considering that Ea

αΓα
µν = ∂µEa

ν, we can make a useful
observation for the object ∂µφa:

∂µφa = ∂µ(Ea
νφν) = Ea

ν∂µφν + Γν
µαEa

νφα = ∇µφa = Ea
ν∇µφν. (20)

Now, with all these prerequisites, we get

Γ̃α
µν = Γα

µν +
Cµ

C
δα

ν +
D

C + D(∂φ)2 φα5µ φν +
CDµ − DCµ

C(C + D(∂φ)2)
φαφν

+
D
C

φν5µ φα − D2

C(C + D(∂φ)2)
φαφβφν5µ φβ.

(21)

The disformally transformed torsion tensor is the antisymmetric part of this expression (21).
Note, that if we want to specify the admissible arguments, for example, that C = C(φ, (∂φ)2),

we just need to use the Leibniz rule, that is

Cµ ≡ ∂µC(φ, (∂φ)2) =
∂C
∂φ

φµ + 2
∂C

∂(∂φ)2 φα5µ φα. (22)

Another way to obtain T̃α
µν is to use mixed components (differential forms) representation, this is

T̃a
µν = ∂µẼa

ν − ∂νẼa
µ. With our definitions, we have

T̃a
µν = CTa

µν + CµEa
ν − CνEa

µ + φa(φνDµ − φµDν) + D(φν5µ φa − φµ5ν φa). (23)

This result has also been obtained in [11]. However, the expression we want is T̃α
µν = ẽα

a T̃a
µν,

which is easily found to coincide with the antisymmetric part of the Formula (21):

T̃α
µν = Tα

µν −
D

C + D(∂φ)2 φβφαTβ
µν +

Cµ

C
δα

ν −
Cν

C
δα

µ +
(CDµ − DCµ)φν − (CDν − DCν)φµ

C(C + D(∂φ)2)
φα

+
D
C
(φν5µ φα − φµ5ν φα)− D2

C(C + D(∂φ)2)
φαφβ(φν5µ φβ − φµ5ν φβ)

(24)

where we have taken into account that

5µ φν −5νφµ = −Tβ
µνφβ. (25)

4.3. Contortion and Torsion Vector

In order to find the Einstein frame for f (T) gravity, a straightforward way to proceed would be to
find the transformation of the torsion scalar. It amounts to calculating

T̃ = T̃a
µνT̃b

ρσ

(
1
4

ηab g̃ρµ g̃νσ +
1
2

ẽρ
a ẽµ

b g̃νσ − ẽν
a ẽσ

b g̃µρ

)
. (26)

However, this calculation is cumbersome, and we leave it for future work. Additionally, as we will
see later, for our purpose, it is possible to take a shortcut and calculate only the transformation of the
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boundary term. For this, we have to transform the torsion vector Tµ. Before that, and for completeness,
let us give an explicit formula for the contortion tensor. In order to calculate it, we need to have the
torsion tensor with all indices at the same level. This is easily done by considering T̃αµν = ẽb

αηabT̃a
µν.

We get

T̃αµν = C2Tαµν + CDφαφβTβµν + C(Cµgαν − Cνgαµ) +
(
(CD)µφν − (CD)νφµ

)
φα

+ D(∂φ)2(Dµφν − Dνφµ)φα + CD(φν5µ φα − φµ5ν φα) + D2φαφβ(φν5µ φβ − φµ5ν φβ),

and then, the contortion tensor Kαµν = 1
2 (Tαµν + Tναµ + Tµαν), antisymmetric in the lateral indices

α− ν, is given by

K̃αµν = C2Kαµν + CDφβ

(
φµTβαν +

1
2
(φαTβµν − φνTβµα)

)
+

1
2

CD
(

φν(5µφα +5αφµ)− φα(5µφν +5νφµ)

)
− D2φµφβ(φα5ν φβ − φν5α φβ)

+ C(Cαgµν − Cνgµα)− φµ ((CD)νφα − (CD)αφν) + D(∂φ)2φµ(Dαφν − Dνφα).

(27)

Another very important quantity is the vector part of the disformally transformed torsion tensor
Tµ = Tρ

µρ, and it can be obtained just by contracting the correct indices in (24):

T̃µ = Tµ −
D

C + D(∂φ)2 φβφαTβµα + 3
Cµ

C
+

(∂φ)2(CDµ − DCµ)

C(C + D(∂φ)2)
+

D
C + D(∂φ)2 φα5µ φα

+

(
DCαφα − CDαφα

C(C + D(∂φ)2)
− D

C
�φ +

D2

C(C + D(∂φ)2)
φαφβ5α φβ

)
φµ.

(28)

5. Disformal Transformations in f (T) Gravity and the Search for the Einstein Frame

Let us recall that our main goal was to search for an Einstein frame, i.e., a frame in which the
action will be written in terms of usual gravity with minimally coupled matter, and in particular,
without local Lorentz-violating terms. Since we assume that the disformal transformation depends
only on the scalar field φ, and does not depend on any Lorentz-breaking quantities, then, according to
the relation (7), instead of transforming the torsion scalar, it is enough to look at the transformation of
the Levi–Civita divergence of the torsion vector.

Let us substitute the Equation (7) into the Jordan frame action (11):

S =
1

2κ

∫
d4x E

(
− f ′(φ)

(
R(

(0)
Γ ) + 2

(0)
5 µTµ

)
+ f (φ)− φ f ′(φ)

)
, (29)

or into the Legendre transform version of it (12):

S = − 1
2κ

∫
d4x E

(
φ

(
R(

(0)
Γ ) + 2

(0)
5 µTµ

)
+ V(φ)

)
. (30)

Of course, those two are different by an obvious scalar field redefinition. (This action can also
be interpreted as a relevant part of any scalar-torsion theory with a non-minimal coupling to the
torsion scalar.)

The only Lorentz-violation term is now the one with
(0)
5 µTµ, and by integrating it by parts,

we reduce the Lorentz-breaking effects to the action term of the form

2
∫

d4x E f ′′(φ)Tµ∂µφ or 2
∫

d4x E Tµ∂µφ, (31)
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depending on the chosen representation.
The question was whether it is possible to get rid of this term by a disformal transformation

in terms of the same scalar field which enters the Jordan frame. We have already computed all the
necessary ingredients for that. The calculation gives a remarkably simple result

φ̃µT̃µ =
1

(C + D(∂φ)2)2

(
φµTµ + 3

Cµ

C
φµ +

D
C

(
φαφβ5α φβ − (∂φ)2�φ

))
(32)

where we have used that φαφµφβTβµα = 0 due to antisymmetry of the torsion tensor. Note that the latter
expression would not have vanished if an independent scalar field was used for the transformation,
leaving us with even more Lorentz-violating terms.

We still need to improve this expression to make it more comprehensible. Indeed, the covariant
derivatives in (32) are given in terms of the Weitzenböck connection, and in order to separate
the Lorentz-violating effects, we must reduce them to the Levi–Civita ones. This is easily done.
One expression does not require anything:

φαφβ5α φβ = φαφβ(
(0)
5 αφβ − Kµαβφµ) = φαφβ

(0)
5 αφβ (33)

where we have used antisymmetry of the contortion tensor, and for the d’Alembertian operator we get:

�φ =
(0)
� φ + Kµ

µαφα =
(0)
� φ− φµTµ. (34)

Mixing all these ingredients correctly, we get a pleasing result for the disformally transformed
Lorentz-violating term

φ̃µT̃µ =
1

(C + D(∂φ)2)2

[(
1 +

D
C
(∂φ)2

)
φµTµ + 3

Cµ

C
φµ +

D
C

(
φαφβ

(0)
5 αφβ − (∂φ)2

(0)
� φ

)]
. (35)

If we recall now that Ẽ = C3(C + D(∂φ)2)E, then we readily see that the coefficient in front of the
ETµ∂µφ term changes simply by the factor of C2:

ẼT̃µ∂̃µφ = EC2Tµ∂µφ + invariant terms.

Therefore, it is not possible to remove the Lorentz-violating term by means of disformal
transformations.

6. Discussion and Conclusions

We have presented explicit formulas for disformal transformations of the basic quantities in
teleparallel theories of gravity, mostly having in mind the f (T) theory. They are not able to bring the
theory to a genuine Einstein frame form.

An obvious caveat is that we could also allow for Lorentz-violating arguments in C and D.
However, as we have discussed above, it is highly unlikely that it will help eliminate Lorentz-breaking
terms from the action. And, in this case, it would not be enough for our purposes to study only the
transformation of the boundary term.

On the other hand, this Lorentz-violating term in the action vanishes whenever the torsion
vector is orthogonal to the scalar gradient. One can think of that in terms of the fact that the Lorentz
violation in f (T) gravity is related to the direction in which the torsion scalar, or the auxiliary scalar
field, changes. Though, of course, vanishing of an action term for a particular combination of fields
does not have a very clear meaning since it is not respected by generic variations.
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Note, however, that after the disformal transformation, this vanishing can happen in other,
more interesting cases, too. Let us choose a very simple transformation with C = D = 1. For it, the final
answer is even simpler:

φ̃µT̃µ =
1

1 + (∂φ)2

(
(1 + (∂φ)2)φµTµ + φµφα

(0)
5 µφα − (∂φ)2

(0)
� φ

)
. (36)

This term can be set to zero as a whole if the torsion vector is related to the scalar field in a very
particular way, namely:

Tµ =
φµ

(0)
� φ− φα

(0)
5 µφα

1 + (∂φ)2 . (37)

What is a possible physical meaning of this result? We do not know. The formula (37) relates
Lorentz-breaking and Lorentz-preserving quantities in it, and, therefore, is not in line with the whole
procedure we followed. However, it looks intriguing. Can it be related somehow to the cases when
linear perturbative analyses show no new propagating modes? Or to the remnant symmetry?

Another related idea would be to use a two-field disformal transformation of the form

Ẽa
µ = Ea

µ + ψ · φaφµ (38)

where ψ is an independent field at our disposal. All the calculations above apply to this case just by
setting C = 1 and D = ψ. Then, we see that the violating term (35) gets transformed to zero if

ψ = − φνTν

(∂φ)2φµTµ + φµφα
(0)
5 µφα − (∂φ)2

(0)
� φ

. (39)

Of course, the rest of the Lagrangian receives then Lorentz-violation through the ψ field,
but formally, it looks like a metric theory with two scalar fields, φ and ψ. Can we now treat these just
as two independent scalar fields?

Whatever the answers are, we think that it shows that disformal transformations have good
potential to shed some new light on f (T) gravity models. Furthermore, since the latter are currently so
important in cosmological model building, it is worthwhile to further pursue this topic.
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