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1. Introduction

The celebrated inequality states that, if f : [a,b] — R is a convex function, then

(40 = 5 [ e < L0200

Furthermore, if p : [2,b] — [0, ) is an integrable function symmetric with respect to 22, that is

pla+b—x)=p(x) for x € [a,b],

then the following weighted generalization of the Hermite-Hadamard inequality is known as the
Fejér inequality

a+b) _ Ji fx < fla)+ ()
N2 )5 e =2
Dragomir [1] established a counterpart of the Hermite-Hadamard inequality for co-ordinated convex

functions, that is functions f : [a,b] x [c,d] — R which are convex with respect to each variable
separately. It has been proven in [1] that for such functions, the following inequalities hold

(555 s S [ () e [ (550 o]

1 b pd
S b=a)d—c) /u /c flx.y)dydx

H _a/fxcdx—}—/fxddx+/faydy+/fbydy]
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_ f@,0) + f(a,d) + £(b,0) + f(b,d)
- 4
Refinement versions of these inequalities have been presented in [1-3].
A counterpart of the Fejér inequality for co-ordinated convex functions has been formulated
by Alomari and Darus [4]. They proved that if p : [a,b] x [c,d] — [0, 0) is an integrable function

symmetric with respect to the lines x = ”T“’ andy = %, ie,

pla+b—x,y)=p(xy) for x€[ab], ye€lcd 1)
and

p(x,c+d—y)=p(xy) for x€lab], yelcd], ()

then for every co-ordinated convex function the following inequalities hold

f<a+b c—i—d) _ S S GypCy)dydx _ f(ac) + fla,d) + f(bc) + f(b,d)
202 Jo S pCoydydx 4

In recent years, several modifications of the notion of convexity were studied by many authors
(see e.g., [5-9]). The following general definition was introduced in [10].

Definition 1. Let F : [0,1] x [a,b] x [a,b] — R be a continuous function. A function f : [a,b] — R is said
to be convex with respect to F, or briefly F-convex, provided

fltx+ (1 =t)y) <tf(x) + (1 =1)f(y) + F(t,x,y) for x,y € [ab], t€[0,1]. ®)

In particular, if F is of the form

F(t,x,y) =Ct(1—t)|x —y| for x,y € [ab], t€0,1], 4)
where C € (0,), then any function f : [a,b] — R satisfying (3) is called approximately convex.
Furthermore, if f : [a,b] — R satisfies (3) with F given by

F(t,x,y) = —Ct(1 —t)(x —y)* for x,y € [a,b], t €[0,1], (5)

where C € (0, c0), then it is called strongly convex with modulus C. For some applications of F-convex
functions in the optimization theory and in the theory of partial differential equations we refer to [11]
and [12], respectively.

It should be noted here that, although a definition of the F-convex function does not require any
additional properties of F, it is reasonable to assume that F is symmetric, that is

F(1—t,y,x) =F(t,xy) for x,y € [ab], t€]01] (6)

In fact, if f is F-convex then there exists a symmetric function Fs such that f is Fs-convex and

Fs(t,x,y) < F(t,x,y) for x,y € [a,b], t€[0,1]

To find this, one could take

Fs(t,x,y) == min{F(t,x,y),F(1 —t,y,x)} for x,y€ab], t€][0,1]
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Note that F given by (4) or (5) is symmetric. Moreover, a symmetry of F is a necessary condition for
the existence of an F-affine function, i.e., a function satisfying equation

fltx+ (1 —t)y) =tf(x)+ (1 —t)f(y) + F(t,x,y) for x,y € ab], t€][0,1].

In what follows we deal with the functions of two variables, which are F-convex with respect to
each variable.

Definition 2. Let F : [c,d] x [0,1] X [a,b] X [a,b] = R, G : [a,b] x [0,1] X [¢,d] X [c,d] — R be continuous
functions. We call a function f : [a,b] x [c,d] — R co-ordinated (F, G)-convex, provided

fltxr + (1 =t)xa,y) < tf(x,y) + (1 =) f(x2,y) + F(y, t, x1,x2),

flotyr+ (= 8y2) < tf(xy) + (=8 f(xy2) + G(x, £ y1,42)
fort € [0,1], x1,x2 € [a,b], y1,y2 € [c,d], x € [a,b],y € [c,d].

Following the remark formulated above, we restrict our attention to the case where F(y, -, -, -) for
y € [c,d] and G(x, -, -, -) for x € [a, b] are symmetric functions, i.e.,
F(y,1—t,xp,x1) = F(y,t,x1,x2) for x1,x3 € [a,b], y € [c,d], t €]0,1]

and

G(x,1—ty2,11) = G(x, t,y1,y2) for x € [a,b], y1,y2 € [c,d], t €[0,1],

respectively. This assumption will not be repeated. Our main aim is to present the Hermite-Hadamard
and the Fejér type inequalities for co-ordinated (F, G)-convex functions.

2. Results

2.1. Hermite-Hadamard Type Inequalities

In this section, we prove the Hermite-Hadamard type inequalities for (F, G)-convex functions.
Our proof is based on some methods used in [1,3]. We begin with the result establishing the
Hermite-Hadamard type inequalities for F-convex functions. It will be useful in further considerations.

Theorem 1. Let F : [0,1] X [a,b] X [a,b] — R be a continuous symmetric function (cf. (6)). If f : [a,b] — R
is an integrable F-convex function then

()it Lo e (b @
and
s [ o< LR a0 b ®

Proof. Assume that f : [a,b] — R is an integrable F-convex function. In view of (3), we obtain

— " fle)ds = [ fltas -0y < 2@+ 270) + [ EGa by

which gives (8). Note also that, as f is F-convex, we have

f(x+y) Sf(x)+f(y)+1:‘<1,x,y) for x,y € [a,b]. )

2 2 2
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Setting in (9) x = ta+ (1 — t)b, y = tb+ (1 — t)a, where t € [0, 1], and integrating obtained in this way
inequality with respect to t, we obtain (7). O

Now, we are going to formulate and prove the Hermite-Hadamard type inequalities for
co-ordinated (F, G)-convex functions.

Theorem 2. Assume that f : [a,b] X [c,d] — R is an integrable co-ordinated (F, G)-convex function. Then:

a+b c+d 17 1 b c+d 1 d (a+b
< Z | - - S -
f( > )—z{ba/ﬂf@’ 5 >dx+dc/cf< > ,y>dy]+R1, (10)

where

1 b fc+d 1 1 4 _ (a+b 1
{b—a/u P(2 ,z,x,a+b—x)dx+d_cl G<2 ,z,y,c+d—y>dy},

% [blTa fabf (x’ C;d) dx + ﬁ fcdf (#ﬂV) d]/:| < (bfa)l(dfc) fab fcdf(x/y)dydx +Ro, (11)

where

1 b pd 1 g b pd 1 p
RZ:Z(ba)(dc){/a /C G(x,z,y,c+d—y>dy x+/a /C F(ylz,x,cH—b—x) ]/dx],

b pd
o Ja Jo Fxy)dydx

(12)
b b d d
< b i fre)dx+ 5 [ flxdydx + 7 [ fla,y)dy + 7 [7 F(b y)dy] + Rs,
where
1 1 b r1 1 d 1
R =3 {b — / /0 Glx, by, d)dtdx + —— /C /0 E(y, t,a,b)dtdy] ;
and
b b d d
Lok 2 f e oy + g [ e d)dx+ 75 [ fla )y + 7 7 (b, y)dy]
(13)
< [0 ) L 0) | g
where

1 1 1 1
R4:}L U F(c,t,a,b)dt+/ F(d,t,a,b)dt+/ G(a,t,c,d)dt+/ G(b,t,c,d)dt]
0 0 0 0

Proof. Note that, for every x € [a,b], the function f(x,-) is G(x,-,-,-)-convex. Thus, applying
Theorem 1, we obtain

c+d 1 d 1 4 1
f(x, 2 )Sd— /f(x,y)derd_C./c G(x,z,y,c+dy>dy

CJc
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1 d
< w—!—/ G(x,t,c,d)dt+%/ G(x,;,y,c—l-d—y) dy.
0 —

Integrating this inequality with respect to x, we find
L[ (x5 ax
1 b pd b d 1
< b—a)d—c) [/a /c f(x,y)dydx—i—/a /C G <X, 2,y,c+d—y) dydx}
1 b b
= 2b—a) [/ﬂ f(x,c)dx+/g f(x,d)dx]

1 b 1 1 b d 1
+b—ll/g /O G(x/t,C,d)dth'FmA 1 G<X,2/y,C+d—y) dydx

50f10

Moreover, since for every y € [c,d], f(-,y) is F(y, -, -, -)-convex, using the similar arguments, we
conclude that

dic/cdf(a;b,@dy
S(b—a)l(d){/c/g xydxdy+// < xtl—l—b—x)dxdy]
< z(dl_c) udf(a,y)dw/cdf(b,y)dy]
—c// (v, t,a,b)dtdy + ———— b—a)d—0 / / (y,l,x,a+b—x)dxdy.

2
Adding up these inequalities, we obtain (11) and (12)

Since f(-, c+d) is F(C'Ed, ,-,-)-convex and f(a+b ) is G(%, )

-, %, *)-convex, taking into account
the first inequality in Theorem 1, we have

—a.Jg 2 ’2
and

a+b c+d 1 4 (a+b 1 a+b 1
< 7 -
f( 2 2 )d—c/cf( 2 ’y>dy+d—c./c G( 7 et y) Y
Adding them up we obtain (10).
Finally, as f(-,c), f(-,d), f(a,-) and f(b

G(b, -, -, -)-convex, respectively, applying the second inequality in Theorem 1, we find

b—a a

/bf(x,c)dx < w —l—/OlF(c,t,a,b dt

< fla.d) + f(b,d) erf(b’d) + /OlF(d, t,a,b)dt,

a+b c+d 1 b c+d 1 b c+d 1
f( 272 >_ba/af(x' 2 >dx b /F< X a+b x>dx

,') are F(C,',',')'/ F(d,',‘,')_, G(ﬂ,',‘,')' and
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e [ o< T 1

and

dic /df(bry)dy < va/ol G(b,t,c,d)dt.

Adding up these inequalities, we obtain (13). O
2.2. Fejér Type Inequalities

In order to prove the Fejér type inequalities for co-ordinated (F, G)-convex functions we need the
following auxiliary result.

Lemma 1. Assume that f : [a,b] X [c,d] — R is a co-ordinated (F, G)-convex function.

(i) If [x1,x2] C [x],x5] C [a,b] and x1 + xp = x| + x5 then

xh—x xh —x
flevy) + ) < f(,y) + f(x3,9) +F (yf ,ﬁ_x},xif@ +F (yrx?_j%,xé)
2 X 27X

fory € [c,d].
(@) If [y1,y2] C [y}, 5] C [e,d] and y1 + y2 = y3 + y5 then

! _ ! _
)+ f(xy) < foyh) + flxyy) + G (x, ii _ii,y’yy’z) +G (x, ]‘12 _i?yify’z)

for x € [a, b].

Proof. We prove only the first part of the lemma since the proof of the second part is similar. Assume
that [x1, x2] C [x],x5] C [a,b] and x1 + x = x| + x}. Since

/ /
Xy — X1 X1 —X

X1 = % /xg—i— 7 }xé
XX X=X

and

/ /!
X=Xy ,  X2— Xy,

B
for every y € [c,d], we obtain
/ / /
Flo1,9) + Flaa ) < Bt Fsh0) + S )+ F (1 B0 1,
Xhb—X2 .., Xp—Xxy .., xXh—x2 ,
X~ xif(xlr]/) + g xif(xz’y) +F (y, xé—xi'xl’x2>

2xh — (x1 +x2) ,, x14+x—2%) xh—x1 , xh—x2 ,
== " f(x;, ————f (x5, Fly —, x7,x Fly ——, x7,x
xIZ_xi f(ly)+ xé_xll f(Zy)+ yxé_xll 17X | + yxlz_xll 1742

_ / / xlz_xl ot xé—x2 o
= f(x1,y) + f(xp,y) +F Yo X +F %Wrxyxz :

2 1
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O

In the next theorem we establish the Fejér type inequalities for (F, G)-convex functions.

Theorem 3. Assume that p : [a,b] x [c,d] — R is a positive integrable function symmetric with respect
to the lines x = 50 and y = C+d (cf. (1) and (2)). If f : [a,b] X [c,d] — R is a continuous co-ordinated
(F, G)-convex functzon such that f p is integrable on [a, b] X [c,d] then

f<a—|—b c—i—d) 124 £ (x,y)p(x, y)dydx + K 1)
272 f f p(x,y)dydx
where
gt et 1
K= 2/ / G (x, 2,y,c+d—y) p(x,y)dydx
gt 1
+2/ / G<a+bx,2,y,c+dy> p(x,y)dydx
c+d
+4/ / (C+d ! ,X, a+b—x> p(x,y)dydx
and
b rd
Iy S FCoypCey)dydx =L _ f(a,¢) + fla,d) + f(b,c) + f(b,d) 5
5 pCey)dydx 4 ’
where
L=L1+Ly+ L3
a+b c+d
= fa% fc% { (]/,h = b) +F<]/,h o, b) +F<c+d y,— a, b) +F(c+d—y,%,a,b)}

p(x,y)dydx

a+b c+d
z d—y y—c
+/ / |: ( a, d_clcld> +G (ﬂ, d_clc/d>:| p(X,y)dydx
a-y y—c¢
+/ / { ( — ,d> +G (b, d—C’C’d>:| p(x,y)dydx.

Proof. Assume that f : [a,b] X [c,d] — Ris an integrable co-ordinated (F, G)-convex function such
that fp is integrable. Then, for every x € [a,b] and y € [c, d], we have

a+b c+d c+d c+d c+d 1
f( ) >_f( >+ f(tl+b > >+F(2,2,x,a+b—x>

1 1 1 1
< Ef(x,y)+Zf(x,c+d—y)+1f(a+b—x,y)+Zf(a+b—x,c+d—y)

1 1 1 1 c+d 1
+§G (x,z,y,c+d—y) +§G <a+b—x,2,y,c+d—y) +F<2,2,x,a+b—x>.
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Therefore, as p is symmetric with respect to the lines x = ”+b and y = —d , we obtain
a+b c+d
f(a+b c+d>// (xydydx—4/ / <a+b Cerd)p(x,y)dydx
atb  ctd

< [T ) + flat b=z e td —y)lp(xy)dydx
[ /Cy[f(x,wd—y)+f<a+b—x,y>1p<x,y>dydx+1<
:/f /CT[f(x,y)+f(a+b—x,C-f—d—y)]P(xr]/)dydx
+/; /C%d[f(a—l—b—x,c—l—d—y)—i—f(x,y)]p(a—i—b—x,y)dydx—i—](
_// Flx,y)+ fla+b—x,c+d—vy)p(x,y)dydx + K
_//C+dfxy) (xydydx+/ /Wf 4 b—xc+d—y)p(x,y)dydx + K
_/ /dexy) (xydydx—i—// Fx,y)p(a+b—x,c+d—y)dydx + K

= /ab /Cdf(x,y)zﬂ(x,y)dyderK-

Thus, (14) holds.
Furthermore, using again the symmetry of p and applying Lemma 1 to [y,c +d — y] C [c,d] and
[x,a+b—x] C [a,b], where x € [a, %52, y € [c, <34], we have

f(ac)—i—f(ad)l—f(bc +fbd// (x, ) dydx

_/ / (a,¢) + f(a,d) + f(b,c) + f(b,d)]p(x,y)dydx

a+b
/ / { fla,y)+ fla,c+d—y)— (a,z_z,c,d)—G(a,Z_E,c,d)

+f(b,y)+ f(b,c+d—y)—G (b,g:z,c,d) -G (b,Z ,C, d)] p(x,y)dydx

[ [ s sesso o ion) ot

+f(x,c+d—y)+ fla+b—x,c+d—y)

=

Sy

(c+d y,b_ ab) (c—l—d—y,;:z,a,b)]p(x,y)dydx—(L2+L3)
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= [ [T w) + flat b xe b d - ylploy)dys

a+tb c+d

+/ﬂ 2 / C[fa+b—xy)+ f(x,c+d—y)p(x,y)dydx — (L + Lo + Ls)

[

= /gT /CT[f(x,y) +fla+b—x,c+d—y)lp(xy)dydx

c+d

b cotd
+f,+,,/ T flatb—xc+d—y)+ f(xy)pla+b—xy)dydx — L
7 Cc

- /ab/cz[f(x'y) +fla+b—x,c+d—y)lp(x,y)dydx — L

c+d c+d

bt bopehd
I//C f(x,y)p(x,y)dde/u/c fla+b—x,c+d—y)p(x,y)dydx — L

c+d

b5t b rc
:// f(x,y)z?(x,y)dydw/a /ﬂf(x,y)p(a+b—x,c+d—y)dydxfL

b pd
:/ﬂ /c fx,y)p(x, y)dydx — L,
which gives (15). O

3. Discussion

In this paper the Hermite-Hadamard and Fejér type inequalities for co-ordinated (F, G)-convex
functions are proved. Since every co-ordinated convex function is co-ordinated (F, G)-convex (with
F and G being identically 0), from our results, one can easily deduce the results by Dragomir [1] and
Alomari and Darus [4]. Furthermore, applying Theorems 2 and 3, one can obtain the Hermite-Hadamard
and Fejér type inequalities for co-ordinated (C, D)-approximately convex functions and co-ordinated
(C, D)-strongly convex functions defined by

fltxr + (1 =t)xa,y) <tf(x1,y) + (1 —1)f(x2,y) + D(y)t(1 —t)|x1 — x2l,

ftyr+ (1= t)y2) < tf(xy1) + (1= 1) f(x,y2) + CO)EHL = 1) |y — v2
fort € [0,1], x1,x2 € [a,b], y1,y2 € [c,d], x € [a,],y € [c,d]; and

fltxr+ (1= Bz, y) < tf(x,y) + (1= 1) f(x2,y) = DW)t(1 = H)(x1 — x2)%,

Flutyr+ (1= Dy2) < tf(xy1) + (1= D f(x,y2) = C()HA = ) (y1 — y2)?

fort € [0,1], x1,x2 € [a,b], y1,y2 € [c,d], x € [a,b], y € [c,d], respectively, where C : [a,b] — (0,00)
and D : [c,d] — (0, 00) are given functions.

Note also that from Theorem 1 the Hermite-Hadamard inequalities for approximately convex
functions and strongly convex functions can be derived. Finally, applying Theorem 1, with F = 0, we
obtain the classical Hermite-Hadamard inequality.

Author Contributions: M.C. and M.Z. have contributed equally to this paper. All authors have read and agree to
the published version of the manuscript.
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