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Abstract: Let X be a Banach space with both g-uniformly smooth and uniformly convex structures.
This article introduces and considers a general extragradient implicit method for solving a general
system of variational inequalities (GSVI) with the constraints of a common fixed point problem
(CFPP) of a countable family of nonlinear mappings {S,}9*_, and a monotone variational inclusion,
zero-point, problem. Here, the constraints are symmetrical and the general extragradient implicit
method is based on Korpelevich’s extragradient method, implicit viscosity approximation method,
Mann's iteration method, and the W-mappings constructed by {S, }5°_.

Keywords: variational inclusions; general extragradient implicit method; variational systems;
norm convergence.

1. Introduction

Let X be Banach space and | be duality set-valued mapping on X. Let A; : C — X and
Aj : C = X be two nonlinear nonself mappings of accretive type. In this work, we investigate the
following symmetrical system problem:

(mAYy* +x* —y*, J(x—x*)) >0, VxeC, (1)
(WpApx* +y* —x*,J(x —y*)) >0, VxeC,

with two real constants y#; and pp > 0. This is called a symmetrical variational system. This system
was first introduced and studied in [1]. The symmetry system is quite applicable in lots of convex
optimizations and finds a lot of applications in applied sciences, such as intensity modulated radiation
therapy, signal processing, image reconstruction, and so on. Indeed, the model of these problems can
be rewritten as a variational inequality, which is a special case of the system that is, the unconstrained
minimization problem

min f(x) := f(x) + Ic(x),

where f : H — R is a real-valued convex function that is assumed to be continuously differentiable
and Ic(x) is the indicator of C:
0, xedcC,
le(x) = {

oo, x¢C.

There are lot of numerical techniques for dealing with it; see, e.g., [2-9]. In addition, x* = y*,
A1 = Ay = Avyield that Equation (1) becomes the generalized variational inequality, which consists
of numerically getting x* € C with (J(x — x*), Ax*) > 0, where x is any vector in its subset C.
The (generalized) variational inequality models lots of real applications, such as image reconstruction
in emission tomography. In addition, one knows that projection methods are efficient for such a
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problem [10]. In 2006, Aoyama, liduka, and Takahashi [11] proposed and focused on a process
and proved the norm convergence of the sequences defined by their process with the aid of the
weak topology.

In 2013, in order to solve the above symmetrical variational system with common fixed points of a
family of non-expansive self-mappings {S, }:~_, on C, Ceng et al. [12] investigated an implicit two-step
iterative process via a relaxed gradient technique in a class of Banach spaces with restricted geometry
structures. Let I1¢ be a sunny non-expansive retraction operator onto set C, A; be a1-inverse-strongly
accretive nonself operator, A be ay-inverse-strongly accretive nonself operator from C to X, and f be
a contraction self operator on C. Under the restriction Q) = N5 Fix(S,) N Fix(Ic (I — py Aq)TIc (I —
12Az)) # @, let {x, } be the vector sequence devised by

{ yn = (1= a)le (I = pr ADTe(L = p2Az)xn + o f (yn), @
Xn+1 = (1 - ,Bn)sn]/n + ,ann Vn >0,
with 0 < 1p; < 2u; fori = 1,2, where {a,} and {B,} are number sequences in (0, 1) satisfying the
conditions: ), gay = oo, limy yeo 0y = 0, limsup,_, ., By < 1 and liminf, ;o B, > 0. They proved
norm convergence of {x,} to x* € Q). Recently, this problem has attracted much attention from the
authors working on convex believel problems; see, e.g., [13-19]

Meantime, in order to solve the Equation (1) with the common fixed point problem constraint of a
countable family of non-expansive self-mappings {5, }/>_, on C, Song and Ceng [20] found a general
iterative scheme in a Banach space with both uniformly convex and g-uniformly smooth structures
(whose smoothness constant is x;, where 1 < q < 2). Let Ilc, A1, A2, G be the same operators as
above. One lets ) = N Fix(S,) NGSVI(C, A1, Ay) # @ and suppose that f is L-Lipschitzian nonself
mapping with constant L > 0 and F is a k-Lipschitz #-strongly accretive singel-valued noself operator.
7’("‘]‘;% ) and assume 0 < p1~! < KZ%, 0< ,u?71 < % 1 > Ly > 0. For arbitrarily

g’

Let T = p(y —
given xg € C, let {x, } be the sequence generated by

Yn = (1= Bn)xn + Bullc(I — p1 A1)l (I — p2Az)xn,
Xp+1 = HC[“n’Yf(xn) +Yuxn + (1 =)l — "‘nPF)Sn]/n] Vn >0,

where {v,},{Bn}, {an} are real control sequences processing parameter conditions. They claimed
convergence of {x,} to x* € Q) in the sense of norm.

Suppose that A is a g-order a-inverse-strongly accretive self operator on X and B : X — 2% is
an accretive operator with the range of (I + B)~! filling the full space. In 2017, in order to solve the
variational inclusion (VI) of obtaining x* € X such that 0 € (A + B)x*, Chang et al. [21] suggested and
devised a viscosity implicit generalized rule in the setting of smooth Banach spaces that also processes
uniform convex structures. They claimed that {x,} converges to x* € () in norm. The method
employed by Chang et al. [21] has been applied to popular equilibrium problems; see, e.g., [22-27]

Motivated by the above research results, the purpose of this research is to obtain, on the Banach
space with uniform convexness and g-uniform smoothness, for example, L, with p > 1, a feasibility
point in the solution set of the Equation (1) involving a CFPP of nonlinear operator {S,,}; , and a
variational inclusion (VI). We suggest and investigate a general method of gradient implicit typ, which
is based on Korpelevich’s extragradient method, the implicit viscosity approximation method, and the
W-mappings constructed by {S,,}_,. We then prove the vector sequences devised and generated by
the proposed implicit method to a solution of the symmetrical variational Equation (1) with the VI and
CFPP constraints in the norm. Finally, our results are applied for solving the CFPP of non-expansive
and strict pseudocontractive operators, and convex minimization problems in Hilbert spaces. Our
results improve and extend some related recent results in [12,20,21,28,29].
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2. Preliminaries

Let g > 1be a real number. The set-valued duality mapping J; : X — 2X" is defined as
Jo(x) = {¢ € X* : ||x]| = (x,¢) and [[x[|""" = lg[l} VxeX.

It is known that the duality mapping J; defined above from X into the family of nonempty
(by Hahn-Banach’s theorem) weak* compact subsets of X* satisfies, for all x € X, J;(—x) = —J;(x).
Under the structures of smoothness and uniform convexness, one knows that there exists a continuous
convex and strictly increasing function g : [0,2r] — R such that 0 = ¢(0) and g(|lx — y||) < [|x||> +
lylI? = 2(x, ] (y)) forall x,y € B, = {y € X : |ly|| < r}. We suppose that IT maps C into some subset
D. One recalls that IT is called a sunny provided that f(x —II(x)) +II(x) € Cforx € Cand t > 0,
TT[T1(x) + t(x — [1(x))] = I1(x). ITis a retraction provided IT = I12.

Lemma 1. [30] We suppose that ¢ > 1 and X is a g-uniformly smooth Banach space with the generalized
duality mapping J,. Then, for any given x,y € X, the inequality holds: ||x + y||7 < [|x[|7 + q(y, jq(x +
v)) Vig(x+y) € Jy(x+y) and Fix((I + AB)"1(I — AA)) = (A+B)"'0 VA > 0. Let a, B, and v
be three position real constants with o« + B+ v = 1. In addition, if X is uniformly convex, then there
exists a continuous convex and strictly increasing function g : [0,00) — [0, 00) with the restraint that

llex + By + vyl* + apg(llx —yll) < allx|* + BllylI> + vyl for all a, B,y € [0,1].

Proposition 1. [31] We suppose that X is g-uniformly smooth space with q € (1,2]. Then, gy |9 + ||x||7 >
|x +yl|7 = q(y, J;(x)) for any vectors x € X,y € X. If q = 2, the special case, then 3 ||y|* + || x> >
|l +yl|? — 2y, Jo(x)) for any vectors x € X, y € X.

From now on, one assumes that A is a set-valued operator from C to 2X. A is called an accretive
operator if (j,(x —y),u —v) > 0, where j,(x —y) € J;(x —y), Vu € Ax,v € Ay. A is called an
a-inverse-strongly accretive operator (j;(x — ), u —v) > «||Ax — Ay||7, where j;(x —y) € J;(x —y),
a>0,Yue Ax,v € Ay. Forall A > 0, X = (I + AA)C. Then, A is called m-accretive. On the class of
m-accretive operators, one can get a back-ward operator J{ = (I + AA)~!, which is commonly called
the resolvent operator of A .

Lemma 2. [32] In a Banach space X, one has Jyx = ]V(%x +(1- %)]Ax), Vx € X, u,A > 0. Let ]/‘{l be the
associated resolvent operator of A. Thus, ]f is a single-valued Lipschitz continuous operator Fix (] f) = A",
where A=10 = {x € C: 0 € Ax}; if the setting is reduced to Hilbert spaces, m-accretiveness is equivalent to
the maximal monotonicity.

Proposition 2. [33] Let X be a uniformly convex and g-uniformly smooth Banach space. Assume that r > 0 is
some positive real number and A is a single-valued accretive with the inverse-strongly accretiveness and B is an
accretive operator with X = (I + AB)C. a-inverse-strongly accretive mapping of order q and B : C — 2% is an
m-accretive operator. Thus, there exists a continuous convex and strictly increasing function ¢ : Rt — RT
with ¢(0) = 0 such that

ITax = Tay 17+ Alag — A9 eg) | Ax — Ayl|? < Jlx =yl = @(I(1 = JR)(I = AA)y — (I = J)(I - AA)x])),

forall x,y € By, aball in C, where Kq is the g-uniformly smooth constant of X. In particular, if 0 < A7~1 < %’
then T) is non-expansive.

Lemma 3. [20] Let X be g-uniformly smooth and A : C — X be g-order a-inverse-strongly accretive. Then,
the following inequality holds:

Agec = 1A T 1) [ Ax — Ay||7 + |[(I = AA)x — (I = AA)y||7 < [lx —y]".
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In particular, if 0 < AT~ < %, then the complimentary operator of A processes the nonexpansivity. Suppose
that Ilc is a non-expansive sunny retraction from X onto C. Let both the mapping A1 : C — X and
Ay 1 C — X be inverse-strongly accretive and let G be a self-mapping on C defined by Gx := Tlc(I —
AN (I — ppAy) Vx € C. If0 < ;4?71 < ‘%"fori = 1,2, G is a non-expansive self-mapping C. (x*,y*),
where both x* and y* are in C, solves the variational system (1) if and only if x* = Ilc(y* — u1 A1y*), where
y* =T (x* — upApx™).

Lemmad4. [34] Let X171 = auXp + (1 —ay)yn Yn > 0and limsup,, ., o (||[Yn+1 — Ynll — |01 — xa]]) <0,
where {«, } is a sequence satisfying the condition limsup, _, &, < 1and iminf, .o &y > 0and {x,} and
{yn} are bounded sequences in a Banach space. Then, limy, o ||yn — xx|| = 0.

Let {,} be a real sequence in (0,1) and S; a non-expansive mapping defined on C for each
i € {1,2,-,}. Next, one defines a mapping associated with n by

un,n = énsnun,nJrl + (1 - gn)lr
un,n—l = én—lsn—l u’rl,'rl + (1 - Cn—1)l,

Uy = CkSklpjr + (1= )1,

Wy = Uno = GoSoln,1 + (1 — o)1,
where Uy, ,4+1 = 1. The Wy, called W-mapping, is a non-expansive mapping.

Lemma 5. [35] Let {S,}5", be a countable family of non-expansive self-mappings on C, which is a
subset of strictly convex space with N5 Fix(Sy) # @, and {Cu}s_, be a real sequence such that
0 < gn <b<1Vn > 0. Then, the following statements hold:

(i) the limit limy, oo Uy, kX exists for all x € Cand k > 0;

(i) Wy is non-expansive and Fix(W, ) = N} Fix(S;) Vn > 0;

(iii) the mapping W : C — C defined by Wx := limy 0o Wyx = limy, o Uy 0x Vx € C, is a non-expansive
mapping satisfying Fix(W) = N5 Fix(Sy) and it is called the W-mapping generated by Sy, S1, ... and
C0,C1y e

Using the same arguments as in the proof of [[36], Lemma 4], we obtain the following.

Proposition 3. Let {S,}° , and {{,}5>, be as in Lemma 5. Let D be any bounded set in C. One has
limy, 00 SUP,c p [|Wnx — Wx|| = 0.

Lemma 6. [37] Let a,1 < an + Ayyn — anAny Yn > 0, where {A,} and {y,} are sequences of real
numbers such that limsup,, . vn < 00r Y07 o |Anyn| < oo; {An} C [0,1] and Y7 g Ay = oo. Hence,
lim;;, 00 4y, = 0.

3. Convergence Results

Theorem 1. Suppose that X is uniformly convex and g-uniformly, where 1 < q < 2, smooth space.
Suppose that B is a set-valued m-accretive operator and A is a single-valued w-inverse-strongly accretive
operator. Suppose that A1 is a single-valued nq-inverse-strongly accretive operator and A, is a single-valued
wp-inverse-strongly accretive operator. Suppose that f is a contraction defined on set C with contractive
efficient 6 € (0,1) and {W,, } is the sequence defined by Equation (3). Suppose that I is a non-expansive
sunny retraction from X onto set C and Q = N_Fix(S,) NGSVI(C, A1, A2) N (B+ A)~10 # @, where
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GSVI(C, A1, Ap) is the fixed point set of G := I1c(I — p1 A1) (I — upAp) with 0 < y'}_lxq < quq and
0< "ug_qu < quy. Define a sequence {x, } as follows:

un = Hc(yn — p2Asyn),

Un = HC(”" - .ulAlun)' (4)
Yn = BuXn + YnWa(tnxn + (1 — tn)]ffn(l — A A)on) + anf(xn),

Xn+1 = (1 - 571)Wn]/n +6uxy n >0,

where {A,} C (0, (%)‘1%1) and {on }, {Bn}, {vn}, {0n}, {tn} C (0,1) satisfy the following conditions:

(i) an+Pun+yn=1and)y ju, = o0

(1) limy e |,3n - ,anl| = limy, 0 |’)’n - ’Yn71| = limy 0 0y = limy 0 |tn - tn,ﬂ =0;
(i) liminf, yeo Yntn(1 —ty) > O0and limsup, _,  yu(1 —t,) < 1;

(iv) liminf, e Byyn > 0, liminf, ,e0 6y > 0and limsup,, 0y < 1;

(0 0<A< > 0andlimy oy = A < (£)71.

Then, x,, — x* € Q) strongly.

Proof. Re-write process Equation (4) as

{ Yn = BuXn + YnWn(tnxn + (1 — t0) TuGyn) + anf (x4), (5)

X1 = (1= 6n)Wpyn + pxy n >0,

1
where T, := | /l\%” (I —AyA)Vn > 0. From {A,} C (0, (%) 7-1) and Proposition 2, we observe, for each
n, that T, is a non-expansive self-mapping on C. Since &, + , + v = 1, we know that

000+ B+ Yntn + (1 —tn) = and+yn+ Pn=1—a,(1—9).

For each n, one defines a self-mapping F, on C by F,(x) = auf(xn) + Buxn + YuWn(tnxn + (1 —
tq)TyGx) Vx € C. Thus,

[Fn(x) = Fa()Il = YulWa(tnxn + (1 — tn) TuGx) — Wy (tuxy + (1 — tu) Ty Gy) ||
< (1= t) || TnGx — TuGyl| < yn(1—ta)|lx =yl

Since 0 < (1 —t,) < 1, one has a unique vector y, € C satisfying
Yn = ‘an(xn) + ﬁnxn + ')’nwn(tnxn + (1 - tn)TnG]/n)‘
The following proof is split to complete this conclusion. [
Step 1. We show that iterative sequence {x,} is bounded. Take a fixed p € OO = N5 Fix(S,) N

GSVI(C, A1, Ay) N (A + B)~10 arbitrarily. Lemma 5 guarantees Wyp = p, Gp = p and T,p = p.
Moreover, the nonexpansivity of T, and G (due to Proposition 2) sends us to

1P = ynll = [1Ba(p — xn) + vulp — Wa(taxn + (1 — tn) TaGyn)] + an(p — f(xn))]|

< Bullp = xall + vallp — Wa(tnxn + (1 — t0) TaGyn)|l + an(|lf (xn) = fF(P) I +llp — F(P)I)
< Bullp = xull + valtallp — xull + (1 = tu)lp — TuGynll] + an(Sllp — xul + | £(p) — PlI)

< (L =ta)llp = yull + (@nd + B + Yutu) |p — Xull + anllf(p) — Pl
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which therefore implies that

7!5 n ntn
Ip—yall < SSEBatatey el (p) — p

=1Mﬁgnf“npxm+1%1mwu 7l (6)
= (1 - 200 lp — xall + =245 1 £(p) — P

Thus, from Equation (5), Equation (6), and Lemma 5 (i), we have

Ip = X2l < (1 =38n)llp — Waynll + dullp — xnlll§<(1*5n)IIP*ynH+5n|\P*an
<‘Sn”P—an+<1_5n>{(1_%))”f7 |l + ==y 1 () — P}

L [ T B A T SmaX{Hfl,)(,pH,||P*an}~

One claims that all the iterative sequences are bounded.
Step 2. One proves that ||x,,11 — X, || goes to 0 as 1 goes to co. By borrowing Equation (5), we have
Zn — Zy—1 = tn(Xn — xy—1) + (bp — ty—1) (xn—1 — Tn71Gyn71) +(1— tn)(TnG]/n - Tn71G]/n71),

and

Yn —Yn—1 = (D‘n - lxn—l)f(xn—l) + “n(f(xn) - f(xn—l)) + Bn (xn - xn—l) (7)
+ (,Bn - ﬁnfl)xnfl + ')’n(ann - anlznfl) + (’Yn - 'Ynfl)wnflznfl'

By using Lemma 2 and Proposition 2, one deduces that

1 TGyn — Tn-1GYn—1ll < TaGyn — TaGyn—1ll + | TaGyn-1 — Tn-1Gyn1|l

< lyn = yuall + 15, (I = A A)Gyn1 = J§ (I = Ay 1A)Gyp |

< lyn = ynall + 15, (I = AnA)Gyn1 = J§ (I = 2AnA)Gyy|
+ ”]EW](I_AWA)G]/'A 1~ ]/\ (1_ n— 1A)G]/n 1||

= llyn — yuall + 1JF (P21 (1 — A=) B ) (1= 2w A) Gy (8)
B (= AaA) Gy ||+ B (1= AuA)Gyuy — JF (I Aa1 A)Gyi |

<y =yl + 1= 228 (1= A A) Gy 1 — (I = AuA) Gy 1|
+ |)\n - /\n—1|||AGyn—1||

< |An = Au—1 My + [[yn — ynall,

where sup,,» 1 {}1J5 (I — A, A)Gyn—1 — (I = AuA)GYu_1ll + [AGy,_1]l} < My for some My > 0.
Thus, it follows from Equation (8) that

”ann —Wy1zp1 H < ||ann—1 - Wn—lzn—ln + Hann - ann—ln
< |t = tualllxn—1 = Tum1GYn—1 + tnl[xn — xn—1]]
+ (1 - tn)HTnGyn - Tnflenfln + ”annfl - anlznfln
< |tn - tn—1|||xn—1 - Tn—lcyn—ln + thXn - xn—1H
+ (1= t)lyn — yu1ll +[An — Ap1[Mi] + [Wnzy—1 — Wy_1z 1|
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This inequality together with Equation (7), implies that
lyn = yn-all < lan = anal[Lf (u-1) | + Bullxn — xp—1ll + anll f(xn) = f(xn—1)l
+1Bn = Bu—1lllxu—1ll + YulWnzn — Wy—1zu—1ll + |va — va—1[|Wa—1zn-1 |l

< o = ana[llf (n-1) | + anbllxn = xnall + Bull¥n — xn1]

+ ‘ﬁn - ,Bn,1|]|xn,1|| + ')’n{thxn - xnle + |tn - tn71|||xn71 - Tnflenle
A1 M| + Wiz — W1z 1]}

+ (1 — tn)[Hyn —J/nle + |/\Vl -

+ |')"rl - ')’n—1|||Wn—1Zn—1||
< (1= tw)llyn — Yu-all + (@nd + Br + Yutn) |01 — x|l + (Jan—1 — an|
+ |ﬁn71 - ,Bn| + |tn71 - tn| + |7n71 - ')/n‘ + |)\n71 - An|)M2 + ||annfl - anlznflnl

where sup, - o{[|f(xn) | + [[xn || + | TuGyull + M1 + [[Wnzu[|} < My for some M, > 0. Then,

1 [(Jan—1 — an| +[Bn-1— Bnl

“115+/5n+’7ntn
< oy =l + =7y
+ |tn—1 - tnl + h’n—l - ')/n| + |/\n—1| - )\n)MZ + ||Wn—1zn—1 - ann—lH]

||yn _yn71|| - lf’Yn(lftn)
n(1=06
= (1= 25l = ot + ey (o = e+ 1B — B
+ |'}’n - '}'n—l‘ + |tn - tn—l| + |/\n - )\n—lDMZ + ||ann—1 - Wn—lzn—ln]
< ||xn - xnle + mm%q - ')/nl + ‘ﬁnfl — Bul + o1 — lxn’
+ |tn71 - tn| + ‘/\nfl - )‘n‘)MZ + HWnanl - anlznle]r

and hence
IWiyin — Wi—1Yn—1l] < IWain — Walyn—1|| + [|Wnyn—1 — Wn—1Yn-1|
llftn) [(JYn—1 = 7| + [Bu=1 — Bul + |an—1 — atn|

< lxen — xpall + T (=t
+ |tn—1 - tnl + ‘/\n—l - )\n‘)MZ + HWnZn—l - Wn—lzn—lH] + Hwnyn—l - Wn—l]/n—l”-

Consequently,
”Wnyn — Wn—lyn—lu —[Jxn = xy1]] < m[(h’n—l —Yul + |ABH—1 - ;8n| + a1 — an|
HAn1 = Au| 1 — ta )Mo + W1z -1 — Waz 1 ||] + IWnyn—1 — Wy1yu-a|l-

Since limy, oo SUP,.cp |[|Wyx — Wx|| = 0, where D = {y, : n > 0} U {z, : n > 0} of C (due to

Proposition 3), we know that
nlgn [Wayn—1 — Wa—1yn1ll = nlgro}o [Whzp—1 — Wy—1zp1]| = 0.

Note that lim, o 0y = 0, limy_ye0 Ay = A and liminf, o (1 — 7y, (1 —t,)) > 0. Since |Bn — Br_1],
|Yn — Yn—1| and |t, — t,,_1] all go to 0 as n goes to the infinity (due to conditions (ii), (iii)), one says

lim sup ([|Wayn = Wi1yn-1ll = |20 = x01]]) <0

n—o0
x,|| = 0. Hence, we obtain
©)

Lemma 4 guarantees limy, ;oo ||Wyt/n
h_{{}o [xn41 — xal = nh_rgo(l = 0n) [Wayn — xall = 0.

Step 3. We show that ||x, — yx|| — 0 and ||x, — Gx,|| — 0 as n — oco. Indeed, for simplicity,

we denote p := I1c(I — ppAp)p. Note that u, = IIc(I — upAz)y, and v, = I (I — p1Aq)u,. Then,
vy = Gyy. From Lemma 3, we have
(10)

un —pIl7T < |[(I - p2A2)yn — (I — V2A2)1P||”7
<y = pll7 — p2(qaz — xqpd )| Agyn — Azp|.
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In the same way, we get
-1 _ _
lon = pll7 + pa (gar —xqu] )| Avitn — Axpl|T < JJun — P17 (11)
Substituting Equation (10) for Equation (11), we obtain

-1 _ -1
o0 — pll7+ p1(qar — xqpd ) | A — A1pIlT < [lyn — pll7 — p2(gaa — xqud )| Agyn — App|9. (12)

By Lemma 1, we infer from Equation (5) and Equation (12) that ||z, — p||7 < tu]|xn — p||7+ (1 —
tw)|lon — p||7, and hence

lyn = plI7 = 1Bn(xn — p) +1u(Wazn — p) +an(f(p) — p) + an(f(xn) — f(p))||7

< ||Bn(xn — p) ""YH(WnZn —p) +an(f(xn) = F(P)IT + qan(f(p) — Pr]q(yn —p))

< anllf(xn) = F(PT+ Bullxn — P74+ vulWnzn — I + qan(f(p) — P, Jg(yn — P))

< adlxn — pl+ Bullxn — plIT+ valtallxn — pl|7+ (1 — tn) |on — p|7]
+qenl f(p) = pllllyn — plli~!

< (@06 + B+ vatn) X0 — pIT + vn(1 = t)[llp — yullT — p2(qa2 *Kqﬂg_l)”AZyn — Aop|l7
— 1 (qer — gl )| Avn — ArplI) + qeallp — vull T lp — £(p)-

It yields that

n 7‘5 n —tn 71
lyn = pI7 < (1= 22522 e — pll7 — 22052 [ (g2 — kgpd )| Asyw — Aop|f

1 . n
+u(qar — g )| Avun — ApllT) + =T e — vl = F(P)I-
Combing this with Equation (5), one says

01 = pI7 < éllx = pl7 + (1= ) Jyu — pI? 1 1
n _ n 3 n
S%WVWW+O—%HO—£ﬁ§%Nm—Mq1%%W§MWM—Mw )
X || Aoy — Aap||7+ ir gy — eg] )| Aven — Asp|l) + =T £ (0) = plllyn — 1197}

n n n n n 1
= (1 - U= x, — p|7 - lﬁj%%ﬁlWﬂWz—wm )X (13)

g(1=3, ) ~
X || Ay — Aap|7 + p1(gay — rqp YAy — Arpl|7) + i %1 D;ﬂ 1£(p) = pllllyn— pl7!

7‘571 n —tn -
< flarn — p = S22 sn) 1 (g — kg ™) Azyn — Az
+ 11 (ger — o) || Ay — Aapl|7] + aa M,

where Supn%{% lp—yal" P — f(p)||} < M3, where M3 > 01is a real. Thus, it follows from

Equation (13) and Proposition 1 that

—0n)yn(1—t, -1 -1 _
U2 alein) 1y (gaz — kgpd ) | Azyn — Aap |17 + i (qer — op] )| Avit — Avp|]
< lw = pll7 = a1 = pll7 + My

< qllxn = xnsalll2ns1 = P17+ Kgllxn — 2nga |7 + 2 M.

Since 0 < y?_l < qal fori = 1,2, from Equation (9), liminf, e 74 (1 —t,) > 0, liminf, e (1 —

0n) > 0and im0 &y = 0 we get

Bim | Aoy, — Azpl| =0 and  lim [ Ayuy — Ayp] = 0. (14)
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Utilizing Propositions 1 and 3, we have

[un = pII* = T (I — p2A2)yn — He (I — p2A2) pl|?
(I = 2 A2)yn — (I — u2A2)p, J(un — p))
(Yn —p, J(tn — p)) + p2(Azp — Asyu, J (un — p))

3lllyn P||2+Hun ﬁllz—g1(\|yn—un—( = P)IDI + p2l| Azp = Agyallllun — pll,

<
<2

which implies that
1w =PI + g1 ([yn — 1w — (p = PI) < llyn — pI* + 22)| Azp — Agyulll|un — pl|- (15)
Following the above line, one can derive

lttw = v+ (P = P)) < llun =PI + 201 Asp — Avun|ll|on — pll. (16)

lon — pII* + g2

Combining Equation (15) and Equation (16), one further derives

lon = plI* + 81(Iyn — tw — (p = DI + 82(lltn — 2u + (p — P)1) (17)
< llyn = pI* + 22l Azp — Aoyulllun — Bl + 21 (| A1 — Avun[[|on — p]l-

Utilizing Lemma 1, we obtain from Equation (5) and Equation (17) that

llzn — IDH2 < (1= tu)|TuGyn — P”Z =t (1= tn)&3(llxn — TuGynll) + tullxn — PH2
< (1= ta)llon — plI? = ta(1 = ta)&3([1Xn — TuGyaull) + tullxn — plI%

and hence

||yn_PH2 < 200 (J(yn — p), f(P) = P) + 1Bn(xn — ) + Yn(Wnzn — p) + an(f(xn) — f(p))
< Bullxn = plI* + Yullp — Waza|l® + anllf (p) — f(x )”2 Brnynga(llxn — Waznl|)
+ 20, (f(p) — p, J(yn — p))
< aydlxn — PHZ + Ballxn — PHZ + Ynltnllxn — PHZ + (1 —tn)|lon — P”z
— tn(1 = tn)g5(|[xn — TuGynl)] + 2anl| f(p) — Pllllyn — Pl — Buynga(l[xn — Wazal])
< wndllxn = pl* + Bullxn — plI* + ya{tallxn — plI* + (1 = ta)[llyn — pII?
= 81(lyn —un = (p = P)I) — 82(llun — vn + (p — P)II) + 212 A2p — Azynl||un — P
+ 2| Arp — Avunlll|on — pll] = tn (1 = ta)g3([1xn — TuGynl)} + 20u | f (p) — Pl Iy — pll
— Brnynga(llxn — Wazal|)
< (@b + B+ utu) 1xn = pII> + 10 (1= ta) lyn — pII> = va(1 = tu)[81(lyn — n — (p = D))
+ &2([[un —on + (p = P) D] + 2u2l| A2p — Aoyu||llun — Pl + 2u1[| A1p — Arun|[||on — p||
+2an | f(p) — Plllyn — pIl — Yutn(1 — ta)gs(llxn — TuGynll) — Buynga(llxn — Wazal]),

I?

which immediately yields

lyn =PI < (1= 22282205l = P12 = 2252 (g (lyn — un — (p = D))

)
ty
+82([lun —vn + (p - )H)] Ty M2l Azp — Azyall|lun — pll

1l Ar1p — Aqunl|l[on — pll + anllp — yallll f(p) = pll]
- mhntn(l — tn)g3(1xn — TuGynl) + Buynga(llxn — Waznl|)]-
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This together with Equation (5) leads to

%41 — pII* < Gullxn — plI> + (1 = 6a)llyn — plI?
s(snnxn—p\|2+<1—5n>{<1—%>|\n Pl — 2205k g1 (lyw — wn — (p = P)1)
+ 82l = v+ (p = )N + 152y M2l A2p — Asyall | — P

+ ]| Arp — Agutulllon — pl| + aall £ (p) = plllyn — pl]

17”%71”[%1%(1 —tn)g3([1xn — TuGynll) + Buynga(llxn — Wazal|)]}
<(1- %)Hxn PIP = = (1 = ) (81 (llyn — un — (p = P)I)
+g2(lun —on+ (p = P)I)) + Yutn (1 = tn)g3(l[xn — TuGyaull) + Bnrnga(l[xn — Wnzn|)]
+ iy el A2p = Asynllllun = pll + il Arp — Avunl[llon — pl
+anllf(p) — PHHyn pll]
<2 —pl? ﬁ[%( —tn)(1(lyn —un — (p = P)) + &2(lun —vn + (p — P)1I))
+ Yutn (1 — tn)83([[xn — TuGynll) + Bnynga(llxn — Wazal|)] + m[ﬂZHAZP — Aoy X

X un = pll + pallArp = Avuin [ [ow = | + anllp = yalllp = £ (P)II]-
It yields that

oty [ (L= ) (g1 (llyn — 1n = (p = P)I) + g2(llttn —vu + (p = P)I)

+ Yntn (1 = tn)g3([[xn — TuGynll) + Bnynga(llxn — Waznl|)]

< llan = plP? = llxns1 = pI? + 1= Frgy 2l A2p — Asynll[Jun — P
+ mllArp — Ayun|l[lon = pll + anllyn — pllIlf (p) — pll]

< (xnsr = pll 4 lln = pIDIxn = xnall + 7=y 2l A2p — Azyallllun — pll
+ p1llA1p — Arunll[[on — pll + anllf(p) — Plllyn — Pl

Utilizing Equation (9) and Equation (14), from lim inf, e (1 — 6,) > 0, liminf, o Yntn(1 —tn) >

0 and liminf, e Bryn > 0, we conclude that lim, 0 1 (||yn — un — (p — P)||) = 0, limy—c0 g2 (|| ttn —

+(p—p)|) =0, limy—e0 g3(||xn — TuGyxl||) = 0 and limy,—e0 g4 (|| X1 — Wizs||) = 0. Utilizing the
properties of g1, g2, 3 and g4, we deduce that

W0 |y — ttn = (p = P)I| = limysoo [[ttn — 00 + (p = P) | = limpseo [|¥n = TGyl = limysoo |3 — Waza| = 0. (18)
From Equation (18), we get

[y = Gynll = llyn = oall < llyn = ttn = (p = P + lun —0n + (p =) = 0 (n = 00).  (19)

In the meantime, again from Equation (5), we have y, — x, = a, (f(xn) — Xn) + Yn(Wnzn — xp).
Hence, from Equation (18), we get ||y, — xu|| < anl|f(xn) — xu|| + [|Wnzn — x4|| = 0 (n — o0). This
together with Equation (19) implies that

X0 — Gxall - < |lxn = yull + [lyn — Gynll + |Gyn — Gxul| (20)

< 2lxn = Yl + lyn — Gyull = 0 (n — o).

Step 4. We show that ||x, — Wx,| — 0, ||x, — Thxu|| — 0and |[x, —Tx,|| = 0Oasn — oo,

where Wx = limyo Wyx Vx € C, Ty = J¥(I — AA) and T'x = 6;Wx + 60,Gx + 63Tyx Vx € C

for constants 61,6,,05 € (0,1) satisfying 61 + 6, + 63 = 1. Indeed, since x,.1 — Xy + Xy — Y =
On(xn — yn) + (1 = 84) (Wnyn — yn), from x, — x,,117 — 0 and x,, — y, — 0, we obtain

Xp+1 — Xn|| + || Xn —
HWnyn_ynH = 1-35 Hxn+1 —xn+(1—(5n)(Xn_yn)H < ” ntl 171!5 ” z ]/n” —0 (1’1 — OO),
n n
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which together with Proposition 3 and x,, — v, — 0 implies that
lim ||[Wx, — x,|| = 0. (21)
n—00
Furthermore, utilizing the same method used for Equation (8), one arrives at

[Tuyn — Taynll < 1— %HU}\;,T(I — AnA)yn — (I = A Ayl + [An — All| Aya||
= 1= £ [ITayn — (I = Au Ayl + [An = Al[| Ayl

Since lim, 0 Ay = A and the sequences {y, }, {Tuyn }, { Ayn} are bounded, we get
r}l_{{}o [ Tuyn — Taynll = 0. (22)

By utilizing Lemma 1, we deduce from Equation (18), Equation (19), Equation (22), and x, — v, —
0 that
nh_r)rolo | TAxn — xu|| = 0. (23)

We now define the mapping I'x = 6;Wx + 6,Gx + 63T x Vx € C for constants 61,6,,03 € (0,1)
satisfying 01 + 0 + 63 = 1. Lemma 4 further sends us to

lxn — Txnl] = |01(xn — Wxy) + 02(xp — Gxy) + 03(xp — Taxs) || (24)
< Oq|xn — Waxy || + 62]|xn — G| + 03[0 — Trxn||-
From Equation (20), Equation (21), Equation (23), and Equation (24), we get
lim ||x, — Tx,|| = 0. (25)
n—oo
Step 5. We show that
limsup(f(x*) — x*, J(x, — x¥)) <0, (26)

n—o0

where x* =s-lim,_, x; with x; being a fixed point of the contraction (1 — ¢)I' 4 tf for each t € (0,1).
By Lemma 1, we conclude that

l2n — 2t < fult) + 2t [l2e — 2|12+ (14 £2 = 28) e — xu|? + 26(f (xe) — xt, J (2 — x0)), (27)

where
fa(t) = (ITxn — x| +2/|x¢ — xa|)) I 20 — T [[(1 = 1) = 0 (1 — o0). (28)

Equation (27) yields that

26(] (e = xn), %0 = f(x0)) < ful) + 2 ]lan — x| (29)

Letting n — oo in Equation (29), one arrives at

lim sup 2(x; — f(x¢), J(xr — %)) < tMy, (30)

n—o0

where sup{||x; — x,]|?} < My, where My > 0. Further letting ¢ go to 0 in Equation (30), we have

lim sup lim sup (x; — f(x¢), J(xt — x5)) < 0.

t—0 n—oo
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Thus,

limsup(f (") — x*,J (v, = ') < lmsup{f(x") =", ] (53 — ) = J(x — )

n—oo
+(146)||xr — x*||limsup||xn — x¢|| + limsup(f(x;) — x¢, J(xn — x¢)).
n—oo n—o0

Taking into account that lim;_, ||x; — x*|| = 0, we have

limsup(f(x*) — x*, J(xy — x*)) = limsup limsup(f(x*) — x*, J(x, — x*))

n—oo t—0 n—oo (31)

<limsuplimsup(f(x*) — x*, J(xp — x*) — J(xn — x¢)).

t—0 n—00

Since the space is smooth, we conclude from Equation (26) that

limsup (f(x*) = x*, ] (yn — x*)) = limsup{{J(x, — x%), f(x") — x7)

n—00 n—00 (32>

HJ(Yn =) = J(n = x7), f(x7) = x%) } = limsup(J (x, — x*), f(x™) = x7) <0

n—oo

Step 6. We show that ||x, — x*|| — 0 as n — co. Indeed, we observe that

lyn — x*HZ = flan(f(xn) = f(x*)) + Bu(xn — X*) + Yn(Wnzn — x*) + an(f(x*) — x*)||2
< an | f () = F) + Bullxn — x* 12+ vallzn — x* |2 + 20 (f (x*) = x*, ] (yn — x*))
< anblxn — x| 4 Bullxn — x*|1 + v (allxn — 2+ (1= ta) lyn — x*[|?)

+ 200 (f (x7) = %, ] (yn — 7)),
which hence yields

I = 1P < (1= 2202 5P+ =2 ) = S =) (39)
Thus,

l2n+1 = 2|2 < Bnllxn — x*[1> + (1= 8n) | Wayn — 27|12

< Gullxn — %12 + (1= ) { (1 = £22555) v — x| 2 -
+ %U(X*) —x%, J(yn — x*))}
[1 _ an(1-3,)(1-9) ”’x *||2+ an(1-6,) (1~ ) 2(f (x* ) - (yn X ))

1—yn(1—tn) 1—yn(1—ty)
Since liminf; e (117,;5”(7)1(1;:5)) > 0, {1“”7} C (0,1) and Yo gan = oo, we know that
{E el 1%‘5”1 (1t,,§ } € (0,1) and Y ;7 %’W = oo. Utilizing Lemma 6 and Equation (32), one

from Equation (34) gets that ||x, — x*|| — 0 as n tends to the infinity. This completes the proof.

Let g > 1. Amapping T : C — Cis said to be 5-strictly pseudocontractive of order g if for each
x,y € C, there exists j;(x —y) € J;(x —y) such that (Tx — Ty, jo(x —y)) < ||[x —y||7 —n|lx —y —
(Tx — Ty)||7 for some 57 € (0,1). Itis clear that T : C — C is y-strictly pseudocontractive of order g iff
I — T is g-order nj-inverse-strongly accretive.

Corollary 1. Let X be uniformly convex and g-uniformly, where 1 < q < 2, smooth space. Let B : C — 2%
be an m-accretive operator and A : C — X be a g-order a-inverse-strongly accretive operator Let I1c be a
non-expansive sunny retraction onto C and let T be a g-order n-strictly pseudocontractive self-mapping defined
on C such that Q0 = N%_ Fix(S,) NFix(T) N (A + B) 710 # @. Let f be a 5-contractive self-mapping defined
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on C with constant 6 € (0,1) and {W,} be the vector sequence defined by Equation (3). Define a sequence

{xn} as follows:

Yn = BuXn + Y Wa(tuxn + (1= t2)J5 (I = AnA) (1= DI +1IT)yn) + anf (xa), (35)
Xpn+1 = (1 - 5n)wn]/n +ouxy n >0,

where 0 < 1 < min{1, (2)71}, {Ay} C (0,(2)77) and {an}, {Bn}, {10}, {6a}, {tn} C (0,1) satisfy the
following conditions:

(i) Yo oan=o00and &y + Bn+vn =1

(i) limy_eo |,Bn - ,Bn—ll = limy 0 |’)/n - ’Yn—1| = limy e 0y = limy 0 |tn - tn—l‘ =0;
(iii) limsup,_, . Yutn(1 —ts) > 0and iminf, o yn(1 —t,) < 1;

(iv) liminf, .o Bnyn > 0, liminf, yo 6, > 0 and limsup, | 6, < 1;

- 1
(v 0<A<A,Vn>0andlim, yoAy = A < (%‘)H.

Then, x, — x* € Q) strongly.

Proof. In Theorem 1, we put Ay = I =T, Ay = O and y; = I, where 0 < [ < min{1, (%)ﬂ%}
Then, GSVI (1) is equivalent to the variational inequality: (A1x*, J(x — x*)) > 0 Vx € C. In this case,
Ay : C — X is g-order y-inverse-strongly accretive. It is not hard to see that Fix(T) = VI(C, A7).
Indeed, for I € (0,1), we observe that

peVIC A1) & (AipJ(x—p)) 20VxeCe p=Ic(p—1LAp)
Sp=Ilc(p—II-T)p) =1 -1)p+I1Tp < p € Fix(T).

Thus, we obtain that QO = N_Fix(S,) N GSVI(C, A1, A2) N (A + B)~10 = N, Fix(Sx) N Fix(T) N
(A +B)10, and TIc(I — p1 ATIc(I — paA2)yn = Tc(I — 1 A)yn = (1 —1)I +1IT)y,. Thus,
Equation (4) reduces to Equation (35). Therefore, the desired result follows from Theorem 3.1. O

4. Subresults

4.1. Variational Inequality Problem

The framework of potential spaces will be restricted into a Hilbert space H in this section. Let
A : C — H, where C is a nonempty subset, be a single-valued operator. Let us recall the classical
variational inequality problem (VIP): (Ax*,x — x*) > 0 for any x € C. The set of solutions of the VIP
is denoted by the notation VI(C, A). Let I be an indicator operator of C given by

0, ifxeC,
IC(x)_{ oo, ifx &C.

One finds that Ic is a proper convex and lower semicontinuous function and dlc,
the subdifferential, is a maximally monotone operator. For A > 0, the resolvent of dI¢ is denoted by
1% e, iIC = (I + Adl¢)~!. We denote the normal cone of C at u by N¢(u), i.e.,, Nc(u) = {w € H :
(w,v—u) <0Vv € C}. Note that

dlc(u) ={weH:Ic(v)+ (w,v—u) <Ic(u)}
={weH:{(w,v—u) <0} = Nc(u).

Thus, we know that x —u € ANc(u) < u = ilc(x) S u=Pe(x)VoeC < (x—u,v—u) <O0.
Hence, we get VI(C, A) = (A + dlc)~10.
Next, putting B = 91 in Corollary 1, we can obtain the following convergence theorem.
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Theorem 2. Let the mapping A : C — H be a-inverse-strongly monotone, and T : C — C be a 2-order
n-strictly pseudocontractive mapping such that QO = N5 Fix(S,) N VI(C, A) NFix(T) # @. Let {W, } be
the mapping sequence defined by (2.1) and f be a 6-contractive self-mapping with contractive constant 6 € (0,1).
Define a sequence {x, } by

Yn = BuXn + YuWa(tnxn + (1 = ty)Pc(I — Ay A) (1 = DI +IT)yy) + anf(xn),
Xn41 = (1 - (511)Wn]/n +épxy n2>0,

where 0 < | < min{1,2y}, {A,} C (0,2a) and {an}, {Bn}, {Vvn}, {60}, {tn} C (0,1) satisfy the following
conditions:

(i) Yogan =o00and &y +Pu+yn =1

(i) limp—e0 |Bn — Bru-1] = limMy—seo [Yn — Yn—1| = liMy 0 &y = limy 00 [ty — 1] = 0;
(i) limsup,_, Yutn(1 —t) > 0and iminf, o yn(1 —t,) < 1;

(iv) liminf, e Bnyn > 0, iminf, ;o0 0y > 0 and limsup, . 0, < 1;

W 0<A<A,Vn>0andlim, seory = A < 2a.

Then, x, — x* € Q) strongly.

4.2. Convex Minimization Problem

Let g : C — R be a convex smooth function and / : C — R be a proper convex and lower
semicontinuous function. The convex minimization problem is

g(x") +h(x") = min{g(x) + h(x)}. (36)

This is equivalent to the problem 0 € oh(x*) 4+ Vg(x*), where dh is the subdifferential of h and
Vg is the gradient of g. Next, setting A = Vg and B = oh in Corollary 1, we can obtain the following.

Theorem 3. Let g : C — R be a convex and differentiable function with %—Lipschitz continuous gradient Vg
and h : C — R be a convex and lower semicontinuous function. Let f be a é-contractive self-mapping defined
on C and {Wy,} be the sequence defined by Equation (3). Let T be an n-strictly pseudocontractive self-mapping
defined on C with order 2 such that Q = N%_,Fix(S,) NFix(T) N (Vg + 0h) 710 # @, where (Vg + 0h) 10
is the set of minimizers attained by g + h. Define a sequence {x, } by

Yn = Bnxn + 1aWa(tnxn + (1 — ta) JY(T = Aa V) (1 = DI +IT)yn) + anf (xn),
Xp+1 = (1= 6n)WalYn + Snxy n >0,

where 0 < I < min{1,21n}, {A,} C (0,2a) and {an}, {Bn}, {vn}, {0n}, {tn} C (0,1) satisfy the following
conditions:

(i) Zfzo:() Ky = 00, Ay + ﬁn +m=1

(i) limy_eo |,3n - ﬁn—l’ = limy 00 |'Yn - 'Yn71| = limy 0 0y = limy e0 |tn - tnfl‘ =0;
(i) limsup,_, Yutn(1 —ty) < 1land iminf, .o yn(1 —t,) > 0;

(iv) liminf, e Byyn > 0, liminf, e 6 > 0and limsup,,_, 0y < 1;

() 0<A<A,Vn>0andlim,_se Ay = A < 20

Then, x, — x* € Q strongly. Indeed, * also solves the inequality: ((I — f)x*,x* —p) <0 Vp € Q uniquely.

4.3. Split Feasibility Problem

Let I : Hi — Hj be a linear bounded operator with its adjoint I'*. Let C and Q be convex
closed sets in Hilbert spaces H; and Hj, respectively. One considers the split feasibility problem (SFP):
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x* € C and Tx* € Q. The solution set of the SFP is C N T~ Q. To solve the SFP, one can set it as the
following convexly minimization problem:

. 1 2
r;'ggg(x) = Eer — PoTx ||~

Here, ¢ has a Lipschitz gradient given by Vg = TI*(I — Pg)I. In addition, Vg is

ﬁ—inverse—strongly monotone, where ||T||? is the spectral radius of I'*T. Thus, x* solves the SFP iff

x* satisfies the inclusion problem:

0€dlc(x*)+Vg(x*) & x*—AVg(x*) € (I+Adlc)x*
& xF = ]glc (x* —AVg(x*))
& x* = Pe(x* — AVg(x")).

Theorem 4. Let I : Hi — Hp be a linear bounded operator with its adjoint T*, and T be an n-strictly
pseudocontractive self-mapping defined on C with order 2 such that Q = N5 Fix(S,;) N Fix(T) N (CN
I1Q) # @. Let f be a 5-contractive self-mapping defined on C and {W,} be the sequence defined by (2.1).
Define a sequence {x, } by

Yn = ﬁnxn + 'ann(tnxn + (1 - tn)PC(I - /\”r*(l - PQ)F)((I - Z)I + lT)y”) + ‘xnf(x")/
Xn+1 = (1 - (5n)wnyn +ouxy n >0,

where 0 < 1 < min{1,2n}, {A,} C (0, ﬁ) and {an }, {Bn}t, {n}, {0n}, {tn} C (0,1) satisfy the following
conditions:

(D) Yoogtn =000, +PBn+vn=1

(i) limpoeo [Brn—1 — Bn| = liMy—co |Yn—1 — Y| = iMoo &y = limy o0 |[ty—1 — tu| = 0;
(i) limsup,_, Yutn(1 —t) < 1and iminf, e yn(1 —t,) > 0;

(iv) liminf, ;e Bnyn > 0, iminf, ;o0 6y > 0 and limsup, . 6, < 1;

® 0<A<A,Vn>0andlimy e dy = A < ﬁ

Then, x,, — x* € () strongly.

5. Conclusions

In this paper, we established norm convergence theorems of solutions for a general symmetrical
variational system, which can be acted as a framework for many real world problems arising in
engineering and medical imaging, which involves some convex optimization subproblems. There is no
compact assumption on the operators of accretive type and the sets in the whole space. The restrictions,
which are also mild, imposed on the control parameters. Our results provide an outlet for viscosity type
algorithms without compact assumptions in infinite-dimensional spaces. From the space frameworks’
point of view, the space in our convergence theorems is still not general; however, it is Banach now.
It is of interest to further relax the convex restrictions in the future research.
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