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Abstract: This work presents a new approach to speech recognition, based on the specific coding of
time and frequency characteristics of speech. The research proposed the use of convolutional neural
networks because, as we know, they show high resistance to cross-spectral distortions and differences
in the length of the vocal tract. Until now, two layers of time convolution and frequency convolution
were used. A novel idea is to weave three separate convolution layers: traditional time convolution and
the introduction of two different frequency convolutions (mel-frequency cepstral coefficients (MFCC)
convolution and spectrum convolution). This application takes into account more details contained in
the tested signal. Our idea assumes creating patterns for sounds in the form of RGB (Red, Green, Blue)
images. The work carried out research for isolated words and continuous speech, for neural network
structure. A method for dividing continuous speech into syllables has been proposed. This method can
be used for symmetrical stereo sound.
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1. Introduction

Speech recognition systems allow computers to process audio signals into text or perform specific
tasks. Highly developed speech recognition systems will allow you to change the way you communicate
with a computer. The possibilities seem limitless—from simply giving commands to the machine (so-called
hands-free computing), by dictating text and automatic writing, to the possibility of voice control of
devices installed in our homes. Another very important application will probably be the development
of security systems based on user speech recognition. The human voice is as unique as fingerprints and
can therefore be a very practical tool, e.g., for controlling access to guarded objects. Another application
will be the ability to translate computer speech in real time online. Combining speech recognition with
a mechanism that translates recognized content into other languages would completely revolutionize
intercultural communication. A public real-time translation system used, e.g., in Skype technology, would
give average users unlimited communication possibilities and lead to the creation of a real global village.
A language barrier would be overcome. Such a system would give people access to countless sources of
information in foreign language versions [1–4].

Audio coding is a major problem in speech recognition. It is a technique for representing a digital
signal in the form of information bits. Due to the high interest in coding on the part of industry, research
on speech coding methods is very popular among researchers. Standardization organizations are working
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to introduce global coding norms and standards. Thanks to them, the industry will be able to meet the
market demand for speech processing products [1,2].

Modern speech recognition systems use deep learning techniques [5–7]. They are used to represent
features and to model the language [8,9].

In classification tasks, deep neural networks (DNN) are used, among others, with polynomial logistic
regression, as well as by introducing modifications using support vector machines (SVM) [10,11]. Better
results are achieved by the recently popular convolution neural networks [12,13].

New frameworks are being created for the fastest open-source deep learning speech recognition
framework [14]. Work is underway to improve their efficiency compared to existing ones such as ESPNet,
Kaldi, and OpenSeq2Seq.

There are also solutions in which the architecture of the Recurrent Neural Network (RNN) is used to
obtain lightweight and high accuracy models that can run locally [15]. This will allow the use in real time.

There are works on algorithms implemented in the frequency domain that allow speech analysis
by identifying the intended fundamental frequency of the human voice, even in the presence of
subharmonics [16].

The problem is also examined covered in audio recognition to the better-studied domain of image
classification, where the powerful techniques of convolutional neural networks are fully developed [17].

The article presents the use of convolutional neural networks to recognize continuous speech and
isolated words. As part of our research, we’ve developed speech sharing algorithms and speech coding
algorithms using RGB (Red, Green, Blue) images. It can be used for a symmetrical stereo signal. Our
method uses a convolution of three techniques (mel-frequency cepstral coefficients (MFCC), time and
spectrum) in contrast to the similar method [18] that uses convolution of only two components (time
and spectrum).

2. Convolutional Neural Networks

The structure of the visual cortex in mammalian brains was a pattern for creating the Convolutional
Neural Network (CNN) [19]. The local pixel arrangement determines the recognition of the shape of the
object, so CNN begins to analyse the image with smaller local patterns, and then combines them into more
complex shapes. The effectiveness of CNN in recognizing objects in images can be the basis for solving
the problem of speech recognition. There is a picture at CNN and its architecture reflects this. Thus, our
method uses sound encoding using images. A typical CNN network includes convolution layers, pooling
layers, and fully connected layers. Convolution layers and pooling layers constitute internal structure, and
fully connected layers are responsible for generating class probability.

2.1. Convolutional Layer

Convolutional layer (CL) consists of neurons connected to the receptive field of the previous layer.
The neurons in the same feature map share the same weights [20]. CL contains a set of learnable filters.
One filter activates when a specific shape or blob of colour occurs within a local area [20]. Each CL has
multiple filters, while the filter is a set of learnable weights corresponding to the neurons in the previous
layer. The filter is small spatially (usual filter sizes are 3 × 3, 5 × 5 or less frequently 7 × 7) and extends
along the full depth of the previous layer.

The depth of CL depends on the number of various functions used in the image that are obtained by
the number of learnable filters. Every neuron in CL uses weights of exactly one CL’s filter; many neurons
use the same weights. The neurons in CL are segmented into feature maps by the filter they are using.
The receptive field of a neuron in CL specifies the local area of the neuron’s connectivity onto the previous
layer. All neurons within the same CL have the same size of their receptive fields. All connections of a
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given neuron form the reception field of this neuron. The volume of the receptive field is always equal to
the filter size of a particular CL multiplied by the depth of previous layer.

The activation is computed by application of the activation function over the potential. As an
activation function, most of the time, the ramp function is used—also referred as the ReLU unit. If
the specific feature matters in one part of the image, usually the feature is important also in the rest of
the image. One of the most important hyper-parameters next to the number of filters is stride. When
determining the stride, take into account the size of the receptive field of a neuron and the size of the
image. In case it is incorrectly chosen, the stride must be changed or zero-padding should be used, in order
to keep a specific input size, or to normalize images with various shapes.

2.2. Pooling Layer

Pooling layer (PL) is an effective way of nonlinear down-sampling. It has as the CL receptive field and
stride; however, it is not adding any learnable parameters. PL is usually put after the CL. The receptive
field of neuron in PL is two-dimensional. Max-PL is the most frequently used PL. Each neuron outputs the
maximum of its receptive field. Usually, the stride is the same as the size of the receptive field. The receptive
fields do not overlap but touch. In most cases, stride and size of receptive field are 2 × 2. Max-PL amplifies
the most present feature (pattern) of its receptive field and throws away the rest. The intuition is that,
once a feature has been found, its rough location relative to other features is more important than its exact
location. The PL is effectively reducing the spatial size of the representation and does not add any new
parameters—reducing them for latter layers, making the computation more feasible.

Due to its destructiveness—throwing away 75% of input information in case of a small 2 × 2 receptive
field—the current trend prefers stacked CLs eventually with stride and uses PLs very occasionally or
discards them altogether [21].

2.3. Structure

As a feed-forward artificial neural network, the CNN consists of neurons with learnable weights
and biases. CNN’s neurons still contains activation function and the whole network expresses single
differentiable score function. The position of the pixel matters in comparison with MLP. It receives
three-dimensional space input (x, y, z)—the value of the z-th channel of the pixel or occurrence of z-th
feature of CL at position (x, y).

The CL and PL are locally connected to the outputs of the previous layer, recognizing or magnifying
local patterns in the image. PL is usually put after the CL. This pair of layers is repeatedly stacked upon
each other following with the fully connected layers (FC) at the top. The positions of neurons in the
previous layer are always considered without stride as inputs for latter layers. The FC is connected to all
outputs of the last PL. The outputs of the last PL should already represent complex structures and shapes.
The FC follows usually with another one or two layers finally outputting the class scores.

The usual architecture can be: input layer (IL), CL, PL, CL, PL, FC, FC. Recent studies suggest stacking
many CLs together with fewer PLs.

2.4. Back-Propagation

The single evaluation is completely consistent with the feed-forward neural network. The input data
or activations are passed to the next layers, the dot product is computed over which activation function is
applied. Down-sampling the network using PL might be present. At the end, two or three fully connected
layers are stacked. In order to use the gradient descent learning algorithm, the gradient must be computed.

The usual back-propagation algorithm is applied with two technical updates. The classical
back-propagation algorithm would calculate different partial derivatives of weights belonging to the
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neurons in the same filter; however, these must stay the same. Therefore, derivatives of loss function with
respect to weights of neurons belonging to the same feature map are added up together.

The update of back-propagation itself is when dealing with max-PLs. The back propagating error is
routed only to those neurons that have not been filtered with max-pooling. It is usual to track indices of
kept neurons during forward propagation to speed up the back-propagation.

3. Deep Autoencoder

3.1. Autoencoder

Autoencoder is a feed-forward neural network where expected output is equal to the input of
the network—its goal is to reconstruct its own inputs. Therefore, autoencoders are belonging to the
group of unsupervised learning models [19]. Usually, the autoencoder consists of an IL l0 of one or
many hidden layers l1, ..., lk−1 and output layer lk. Since the idea of autoencoders is very similar to the
Restricted-Boltzman Machine, it is common for the structure of autoencoders to follow the rule |li| = |lk−i|.
Each autoencoder consists of an encoder and decoder.

The encoder can be used for compression. Unlike Principal Component Analysis (PCA) analysis
restricted to linear mapping, the encoder represents nonlinear richer underlying structures of the data [22].
The activations of the lc layer can be further used for classification. FCs are appended with the size of the
last corresponding to the number of labels. The usual learning algorithms are used.

3.2. Deep Autoencoder

A Deep Autoencoder consists of many layers stacked on each other allowing to discover more
complicated and nonlinear structures of the data. Since it may be complicated to tune deep autoencoder
networks, commonly the training procedure is made of two steps:

• Pre-training; each layer l1, ..., lc is pre-trained. Firstly, the pair l0 as an example and l1 as an encoder is
used. The goal is to find representation of l0 in l1 using the right optimizer. The weights l0 to l1 and l1
to l0 may be tied up representing the Restricted Boltzman-Machine. When good representation of l0
inputs is encoded in l1, the pair l1, l2 is pre-trained further until pair lc−1, lc is reached.

• Fine-tuning, the full network is connected and fine-tuned. In case of classification, the encodings of
input data points can be used for classification training or the whole network.

4. Time Frequency Convolution

Thus far, the CNNs used for speech recognition have been built based on frequency. CNNs using
the convolution spectrum could also be found. In this article, we present the applied CNN. As shown in
Figure 1, a convolution of three CLs was used. An important novelty in the discussed network is conducting
the convolution taking into account time (Time convolution) and frequency (MFCC convolution and
Spectrum convolution). The use of time convolution helps reduce problems with time artifacts, whereas
the problem of small spectral shifts (e.g., different lengths of vocal paths in loudspeakers) is solved by
using across frequency. In addition, the MFCC convolution introduced reduces noise sensitivity. MFCC
allows you to adapt the frequency analysis to the method of analysis used by the human ear. The spectrum
analyses the signal linearly, while the MFCC performs linear analysis to a frequency of 1 kHz, and the
1 kHz above characteristic becomes exponential.

To encode the sounds using the RGB image, the MFCC coefficients [23,24] for the R component were
applied, the time characteristic was used for the G component, and the signal source was used for the B
component. Convolution of the three components R, G and B is performed in parallel. Coefficient maps,
accepted for coding, had different sizes. Of course, in order to create a colour image, it was necessary to
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scale the RGB components to one size. It was assumed that individual sounds will be coded using images
with a size of 120 × 120 pixels. The time characteristics for the word “seven” are shown in Figure 2.

Examples of characteristics for the word “seven” are shown in Figures 3–5. Parameters of the coefficient
maps were chosen in an experimental way. The accepted criterion was the best initial adjustment to the
size of 120 × 120 pixels.

M
ax

-p
oo

lin
g

M
ax

-p
oo

lin
g

Time convolution

MFCC convolution

F
ul

l-c
on

ne
ct

ed
 la

ye
rs

La
be

ls

Spectrum convolution

M
ax

-p
oo

lin
g

Figure 1. Block diagram showing time-frequency convolution neural nets.

Figure 2. The time characteristics for the word “seven”.

Figure 3. Map of MFCC coefficients for the word “seven” after normalization.
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Figure 4. 2D time characteristics for the word “seven” after normalization.

Figure 5. Signal spectrum for the word “seven” after normalization.

For such defined RGB components, it was possible to create an RGB image, which is a visual pattern
for sound. It was assumed that each syllable should be coded separately. Of course, it is possible to encode
combined phonemes that do not always form a syllable, but are, for example, combined with silence. In
the example recording for the word “seven”, the algorithm generated the division “se”–“ven”. An example
of the coded syllable “se” and “ven” is shown in Figure 6.

(a) syllable "se" (b) syllable "ven"
Figure 6. An example of the coded syllables.
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Figures 7–11 show a comparison of sample characteristics for the words open and window obtained
during the research.

(a) word “open”

(b) word "window"
Figure 7. The time characteristics for the words.

(a) word “open” (b) word “window”
Figure 8. Map of MFCC coefficients for the words after normalization.

(a) word “open” (b) word “window”
Figure 9. 2D time characteristics for the words after normalization.
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(a) word “open” (b) word “window”
Figure 10. Signal spectrum for the words after normalization.

(a) word “open” (b) word “window”
Figure 11. An example of the coded for words.

5. Neural Network Structure

The proposed CNN consisted of 15 layers. The first CL contained 64 filters with dimensions of 9 × 9.
Three CLs are responsible for coding information, transferred into two FCs. The network diagram is
shown in Figure 12.

Figure 12. Assumed network structure.

The last layer (FC) and Classification Layer contains X possible outputs. X depends on the training
data set. The input data are either an isolated word or a syllable. For isolated words, X is the number of
recognized words. For syllables, X is the number of different syllables determined from the training data.
Sometimes, it happens that the split algorithm also combines individual sounds with silence.
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Figures 13 and 14 show training metrics at every iteration. Each iteration is an estimation of the
gradient and an update of the network parameters.

Figure 13. The characteristics for the training progress.

Figure 14. The characteristics for the training loss.

6. Results and Discussion

The studies included two important issues. The first concerned the correctness of the work of the
algorithm, realizing the division of speech into syllables. A method was applied that takes into account signal
energy and signal frequency for the stationary fragment under consideration. The division into individual
syllables was made for the experimentally selected threshold values. For each isolated syllable (which could
also include silence), the image was created as a graphic pattern. Each syllable pattern has been saved as
an image in a directory name corresponding to the designated syllable. The experiment was carried out for
insulated words and continuous speech. A different number of words have been adopted for continuous
speech. Table 1 shows the results of an experiment concerning the division into syllables. The research was
conducted on our own database and public audio books.

The most common in the literature are works that use time and frequency characteristics for analysis.
Our work includes a new component in MFCC signal analysis. The advantage of this technique is to
include sound analysis just like the human ear.

Table 1. Results of the division of words into syllables.

Number Type Number of Words (1) Correct Division
of Experiment of Experiment and Sentences (2–4) [%]

1 separate words 70 98.1
2 continuous speech (from 3 to 7 words) 65 86.7
3 continuous speech (from 6 to 12 words) 65 80.5
4 continuous speech (from 10 to 20 words) 65 69.7

The obtained result is difficult to compare to other existing methods because the previous approaches
included only one or two components (time and spectrum). In addition, these methods were used for
grayscale images, while our method uses ternary analysis (in addition MFCC) for RGB images.
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As expected, the best results were obtained for the separated words—98%. It is obvious that the
results obtained for continuous speech have a lower recognition rate. Nevertheless, the result of 70–80%
is satisfactory.

The second type of research concerned the evaluation of the effectiveness of speech recognition for
isolated words and for continuous speech. The recorded data were divided into training data and test data, at
a ratio of 70 to 30. The learning time of the neural network and the number of epochs required for correct
learning were also examined. The results of the main experiment are shown in Table 2.

Table 2. Speech recognition results.

Number Type Learning Time Number Word Error
of Experiment of Experiment [s] of Epochs [%] Rate [%]

1 separate words 1920 125 4.2
2 continuous speech (from 3 to 7 words) 2658 317 9.7
3 continuous speech (from 6 to 12 words) 8280 428 11.3
4 continuous speech (from 10 to 20 words) 10,065 641 14.8

Based on the results shown in Table 2, it can be seen that continuous speech recognition is a much
more difficult task. The improvement of this factor will be the subject of further work of our team.

7. Conclusions

Research has shown that effective speech recognition is possible for isolated words. Appropriate
speech coding by means of images allows use in CNNs. The proposed method of speech coding is an
interesting alternative to the classic approach. It has been noticed that, when speaking slowly, the division
into syllables is quite easy. Further work will focus on increasing the efficiency of word recognition
through a more accurate division into syllables. The algorithm MFCC should also be developed further, as
it introduced the biggest mistakes in the visual coding of speech. This method can be used for symmetrical
stereo sound. We also want to refine the division of speech into syllables, by introducing better divisions.
This will allow for the smooth creation of learning data, which in its current form was the most difficult task.

Author Contributions: M.K. devised the method and guided the whole process to create this paper; J.B., J.K. and M.K.
implemented the method and performed the experiments; M.K. and J.K. wrote the paper.

Funding: This project was financed under the program of the Minister of Science and Higher Education under the
name “Regional Initiative of Excellence” in the years 2019–2022 project number 020/RID/2018/19, and the amount of
financing is 12,000,000 PLN.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Riccardi, G.; Hakkani-Tur, D. Active learning: Theory and applications to automatic speech recognition.
IEEE Trans. Speech Andaudio Process. 2005, 13, 504–511. [CrossRef]

2. Xiong, W.; Wu, L.; Alleva, F.; Droppo, J.; Huang, X.; Stolcke, A. The Microsoft 2017 Conversational Speech
Recognition System. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018.

3. Wessel, F.; Ney, H. Unsupervised training of acoustic models for large vocabulary continuous speech recognition.
IEEE Trans. Speech Audio Process. 2005, 13, 23–31. [CrossRef]

4. Windmann, S.; Haeb-Umbach, R. Approaches to Iterative Speech Feature Enhancement and Recognition.
IEEE Trans. Audio Speech Lang. Process. 2009, 17, 974–984. [CrossRef]

http://dx.doi.org/10.1109/TSA.2005.848882
http://dx.doi.org/10.1109/TSA.2004.838537
http://dx.doi.org/10.1109/TASL.2009.2014894


Symmetry 2019, 11, 1185 11 of 12

5. Mohamed, A.R.; Dahl, G.E.; Hinton, G.E. Acoustic Modeling Using Deep Belief Networks.
IEEE Trans. Audio Speech Lang. Process. 2012, 20, 14–22. [CrossRef]

6. Mitra, V.; Franco, H. Time-frequency convolutional networks for robust speech recognition. In Proceedings of
the 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), Scottsdale, AZ, USA,
13–17 December 2015; pp. 317–323.

7. Yu, D.; Seide, F.; Li, G. Conversational Speech Transcription Using Context-Dependent Deep Neural Networks.
In Proceedings of the 12th Annual Conference of the International Speech Communication Association, Florence,
Italy, 27–31 August 2011.

8. Tüske, Z.; Golik, P.; Schlüter, R. Acoustic modeling with deep neural networks using raw time signal for
LVCSR. In Proceedings of the 15th Annual Conference of the International Speech Communication Association,
Singapore, 14–18 September 2014.

9. Arisoy, E.; Sainath, T.N.; Kingsbury, B.; Ramabhadran, B. Deep Neural Network Language Models. In Proceedings
of the NAACL-HLT 2012 Workshop: Will We Ever Really Replace the N-gram Model? On the Future of Language
Modeling for HLT; Association for Computational Linguistics: Montréal, QC, Canada, 2012; pp. 20–28.

10. Lekshmi, K.R.; Sherly, D.E. Automatic Speech Recognition using different Neural Network Architectures—A
Survey. Int. J. Comput. Sci. Inf. Technol. 2016, 7, 2422–2427.

11. Zhang, S.-X.; Liu, C.; Yao, K.; Gong, Y. Deep neural support vector machines for speech recognition.
In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
South Brisbane, Queensland, Australia, 19–24 April 2015; pp. 4275–4279.

12. Sainath, T.N.; Mohamed, A.R.; Kingsbury, B.; Ramabhadran, B. Deep convolutional neural networks for LVCSR.
In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver,
BC, Canada, 26–31 May 2013; pp. 8614–8618.

13. Mitra, V.; Wang, W.; Franco, H.; Lei, Y.; Bartels, C.; Graciarena, M. Evaluating robust features on deep neural
networks for speech recognition in noisy and channel mismatched conditions. In Proceedings of the Fifteenth
annual conference of the international speech communication association, Singapore, 14–18 September 2014.

14. Pratap, V.; Hannun, A.; Xu, Q.; Cai, J.; Kahn, J.; Synnaeve, G.; Liptchinsky, V.; Collobert, R. wav2letter++:
The Fastest Open-source Speech Recognition System. arXiv 2018, arXiv:1812.07625.

15. de Andrade, D.C. Recognizing Speech Commands Using Recurrent Neural Networks with Attention.
Available online: https://towardsdatascience.com/recognizing-speech-commands-using-recurrent-neural-
networks-with-attention-c2b2ba17c837 (accessed on 27 December 2018).

16. Andrade, D.C.; Trabasso, L.G.; Oliveira, D.S.F. RA Robust Frequency-Domain Method For Estimation Of Intended
Fundamental Frequency In Voice Analysis. Int. J. Innov. Sci. Res. 2018, 7, 1257–1263.

17. Krishna Gouda, S.; Kanetkar, S.; Harrison, D.; Warmuth, M.K. Speech Recognition: Keyword Spotting Through
Image Recognition. arXiv 2018, arXiv:1803.03759.

18. Abdel-Hamid, O.; Deng, L.; Yu, D. Exploring Convolutional Neural Network Structures and Optimization
Techniques for Speech Recognition. In Interspeech 2013; ISCA: Singapore, 2013.

19. Rawat, W.; Wang, Z. Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review.
Neural Comput. 2017, 29, 2352–2449. [CrossRef] [PubMed]

20. Bengio, Y. Learning Deep Architectures for AI. Found. Trends R© Mach. Learn. 2009, 2, 1–127. [CrossRef]
21. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.
22. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks.

Sci. Am. Assoc. Adv. Sci. 2006, 313, 504–507. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TASL.2011.2109382
https://towardsdatascience.com/recognizing-speech-commands-using-recurrent-neural-networks-with-attention-c2b2ba17c837
https://towardsdatascience.com/recognizing-speech-commands-using-recurrent-neural-networks-with-attention-c2b2ba17c837
http://dx.doi.org/10.1162/neco_a_00990
http://www.ncbi.nlm.nih.gov/pubmed/28599112
http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1126/science.1127647
http://www.ncbi.nlm.nih.gov/pubmed/16873662


Symmetry 2019, 11, 1185 12 of 12

23. Kubanek, M.; Bobulski, J.; Adrjanowicz, L. Characteristics of the use of coupled hidden Markov models for
audio-visual polish speech recognition. Bull. Pol. Acad. Sci. Tech. Sci. 2012, 60, 307–316. [CrossRef]

24. Kubanek, M.; Rydzek, S. A Hybrid Method of User Identification with Use Independent Speech and Facial
Asymmetry. In Proceedings of the 9th International Conference on Artificial Intelligence and Soft Computing
(ICAISC 2008), Zakopane, Poland, 22–26 June 2008; Springer: Berlin/Heildelberg, Germany, 2008; pp. 818–827.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2478/v10175-012-0041-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Convolutional Neural Networks
	Convolutional Layer
	Pooling Layer
	Structure
	Back-Propagation

	Deep Autoencoder
	Autoencoder
	Deep Autoencoder

	Time Frequency Convolution
	Neural Network Structure
	Results and Discussion
	Conclusions
	References

