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Abstract: In the context of the problem of water pollution, the movement characteristics and
patterns of fish under normal water quality and abnormal water quality are clearly different.
This paper proposes a biological water quality monitoring method combining three-dimensional
motion trajectory synthesis and integrated learning. The videos of the fish movement are captured by
two cameras, and the Kuhn-Munkres (KM) algorithm is used to match the target points of the fish
body. The Kalman filter is used to update the current state and find the optimal tracking position
as the tracking result. The Kernelized Correlation Filters (KCF) algorithm compensates the targets
that are lost in the tracking process and collision or occlusion in the movement process, reducing the
errors caused by illumination, occlusion and water surface fluctuation effectively. This algorithm can
directly obtain the target motion trajectory, avoiding the re-extraction from the centroid point in the
image sequence, which greatly improves the efficiency. In order to avoid the one-sidedness of the
two-dimensional trajectory, the experiment combines the pixel coordinates of different perspectives
into three-dimensional trajectory pixel coordinates, so as to provide a more authentic fish swimming
trajectory. We then select a representative positive and negative sample data set; the number of
data sets should have symmetry. The base classifier capable of identifying different water quality is
obtained by training. Finally, support vector machine(SVM), eXtreme Gradient Boosting (XGBoost)
and pointnet based classifiers are combined into strong classifiers through integrated learning.
The experimental results show that the integrated learning model can reflect the water quality
effectively and accurately under the three-dimensional trajectory pixel coordinates of fish, and the
recognition rate of water quality is above 95%.

Keywords: three-dimensional trajectory; symmetry; ensemble learning; target tracking; SVM;
XGBoost; pointnet

1. Introduction

Water is an important resource for human survival. The water resource problem has become
a global problem. The water resources that can be exploited and utilized by human beings
are decreasing rapidly. With the continuous development of industry and urban construction,
industrial and domestic sewage is increasing. Water quality pollution monitoring is of great significance
in the field of water environment safety protection. At present, most experts carry out pollution
analysis based on the comprehensive pollution evaluation index of water quality collected by physical
and chemical analysis technology and automatic detection technology, thus obtaining the pollution
status [1]. However, this method cannot carry out long-term and systematic monitoring of water
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quality. Generally, monitoring is instantaneous and requires a lot of manpower, material resources
and financial resources. The actual situation of water quality cannot be effectively reflected through
monitoring results, which seriously affects the management and management of water environment.

In response to the above questions, biological monitoring technology has attracted people’s
attention in water quality monitoring due to its advantages of real-time, comprehensive, enrichment,
continuity, high response sensitivity and intuitiveness. In bio-monitoring technology, most scholars
determine fish behavior in a particular water quality environment, obtain sports behavior
parameters through vision, and study water quality safety evaluation model based on parameters.
Cigdem Beyan et al. [2] present a rule-based trajectory filtering mechanism to extract normal
fish trajectories which potentially helps to increase the accuracy of the abnormal fish behavior
detection systems. Rui Nian et al. [3] apply a simple yet effective, real-time and robust of fast
compressive tracking algorithm with an appearance model to focus on the motion trajectories of
underwater fish. Kim [4] Zheng [5], Heng [6], Chen [7] and others use the swimming speed,
rotation angle, respiratory frequency changes of fish and curvature and proximity features based
on the two-dimensional motion trajectory of fish as factors for water quality evaluation, which reflect
the water environment quality from multiple angles comprehensively to some extent. However,
there are problems with these studies: first, the amount of tracking calculation for multiple fish is large,
the real-time performance is poor, and the accuracy is low. Second, the above studies are all aimed at
the trajectory movement of fish in the two-dimensional plane. In fact, fish swim in a three-dimensional
space. So the two-dimensional characteristic parameters cannot describe the actual motion state
of fish accurately. The processing of three-dimensional images has deeper computational features.
Zhang Congxuan [8] et al. proposed a method of 3D motion estimation and depth reconstruction based
on image pyramid optical flow to solve the problem of 3D motion estimation and depth reconstruction
based on the image sequence optical flow; Adam Michael Stewart [9] et al. used the three-dimensional
trajectory of adult zebrafish to simulate the activities of human brain surface in order to understand
the pathophysiology of neuropsychiatric disorders better.

There are some problems that cause great interference with using computer vision to monitor
water quality. These include the dynamic and multi-objective environment of water, and when the
two-dimensional trajectory pixel coordinates reconstitute the pixel coordinates of the three-dimensional
trajectory, the error occurs due to the difference between the refractive index of water and the
refractive index of air. Therefore, in this paper the predicted value obtained by the Kalman Filter [10]
mathematical model and the measured value obtained by the mobilenet [11] -ssd [12] target detection
model are matched by the kuhn-munkres [13] (KM) algorithm, and then use the Kalman filter to
obtain the predicted values and measured values for data, update the current state, and find the
optimal tracking location as the tracking result. Due to the instability in the tracking process, this paper
uses the Kernelized Correlation Filters (KCF) [14] tracking algorithm to compensate for the moving
target of the fish with collision or occlusion during the motion process. The final result of the above
process will extract the pixel coordinate points of the two-dimensional trajectory, and calibrate the
two-dimensional pixel coordinate points through direct linear transformation (DLT), to determine the
corresponding points of the image, then use the corresponding points as matching points to calculate
the three-dimensional pixel coordinates of the fish motion trajectory. In terms of model selection,
we use pointnet [15], support vector machine (SVM) [16], eXtreme Gradient Boosting(XGBoost) [17]
as base classifiers to integrate to strong classifiers. The input of pointnet is a three-dimensional
motion trajectory image, and the input of SVM and XGBoost are feature parameters extracted
from three-dimensional trajectory coordinate points, which are integrated by the Multiclass Alpha
Integration of Scores (MAIS) [18] method. The semantic mapping model of fish motion behavior
characteristic parameters and water quality environment is established to finally realize the judgment
of normal water quality and abnormal water quality. The specific process is shown in Figure 1.
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Figure 1. Water quality monitoring flow chart.

2. Fish Target Tracking

2.1. Fish Body Detection

Before tracking fish, first find the location of the fish. We used the MobileNet_SSD detection
model under the caffe [19] framework to detect fish and indicate the location of the fish. MobileNet is
a lightweight deep network model. It uses a Depthwise Separable Convolution [20] to decompose
the standard convolution kernel. Two hyperparameters, width multiplier and resolution multiplier,
are introduced to reduce the size of the input and output channels and input and output feature
maps, which speeds up the detection. MobileNet_SSD adds 8 convolution layers behind the conv13
of Mobilenet, and then extracts a total of 6 layers for detection, improving detection accuracy. Here,
we compare the three network architectures of Faster R-cnn [21], You only look once (YOLO) [22]
and Mobilenet_ssd. In the course of the experiment, because this paper mainly studies the analysis
of fish behavior, the above three network frameworks are used to compare the detection accuracy.
We mainly judge the recall, the precision and the number of FPS (Frames Per Second). The abnormal
water quality judgment can be understood as a two-category problem. There are two categories in the
sample. There are four combinations of the model prediction result and the real label: TP (actually
positive sample, predicted as positive sample), FP(actually negative sample, predicted as positive
sample), FN (actually positive sample, predicted as negative sample), TN (actually negative sample,
predicted as negative sample). Recall is the proportion that is positively predicted to be positive
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in all cases. Precision is the proportion of positive predictions that are positive for all predictions.
The specific formula is as follows:

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FN
(2)

As shown in the Table 1:

Table 1. Performance comparison of network structure in tracking fish.

Model Recall Precision FPS

Faster R-cnn 48.3 75.4 7
YOLO 30.1 66.5 40

Mobilenet_ssd 45.5 72.3 30

As can be seen from Table 1, although Faster R-cnn exceeds Yolo and Mobilenet_ssd in accuracy,
it sacrifices speed because it exceeds the recommended area. For tracking, it is difficult to achieve
high-precision tracking if it is slow. If we only pursue speed, we can prefer to use YOLO. It can be
seen that this algorithm is superior in speed to the other two algorithms, but sacrifices the accuracy
of detection. The Mobilenet_ssd selected in this paper is somewhere in between. The algorithm
is faster than Faster R-cnn and more accurate than YOLO, so it is the best choice for tracking fish
movement behavior.

2.2. Fish Tracking

Compared with the detection of other objects, fish have fast swimming speed and small differences
between individuals, so it is easy to lose detection targets. In the tracking process, changes in
illumination, fluctuation of water surface and shaking of camera will all cause large detection errors.
Solving the robustness, accuracy and rapidity in the tracking process is very important for water
quality monitoring by using fish movements. The traditional target detection algorithm uses the
sliding window method to judge all possible regions in turn. Although this method can realize the
Partial area target detection, the image pixel features will be extracted repeatedly, which is extremely
slow and cannot achieve a real-time effect in subsequent tracking. As shown in Figure 2, this paper first
uses Mobilenet_ssd to detect the target fish in the water, and frame the target fish through a rectangular
frame to find the central coordinate point (x, y). There are a total of 7 red mullet in the trial. When we
capture the first frame, we need to create a Tracks and assign trackID for each red mullet. The KM
algorithm is used to perform feature point matching, and the Intersection over Union (IOU) between
the predicted position of the current frame and the current frame target detection frame is calculated.
After many experiments, we set the IOU threshold to 0.4. If the calculated IOU is less than 0.4,
it determines that the current match is invalid, and then uses the KM algorithm to re-determine and
assign the trackID. If the IOU is greater than 0.4, the current match is maintained. Then, the boundary
frame obtained by the Kalman filter prediction and the bounding box obtained by the target detection
algorithm are used to update the current state, but the frequent trackID switching also loses some
targets, resulting in inaccurate tracking count. Therefore, the KCF tracking algorithm is used here to
compensate for the fish moving target that is lost or occluded during the motion and the occlusion,
and the optimal tracking result is obtained. Figure 2 is a tracking process diagram.
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Figure 2. Track the process.

2.2.1. Kalman Filter Algorithm

The Kalman filter uses mathematical modeling to obtain the target fish’s predicted value and
the detected observation value for data fusion to find the optimal estimated value. When we want
to know the exact bbox of one of the target fish at t frame time, it is recorded as bbox0. The bbox of
the target in the 1 to t− 1 frame is known. Now we have two ways to get the bbox of the t frame:
First, through mathematical modeling, the bbox of the t frame is predicted based on the information
of 1 to t− 1, which is recorded as bboxp. The second is to directly measure the bbox of the t frame by
the target detection algorithm, which is recorded as bboxm. What Kalman filter does is use bboxp and
bboxm to get bbox0. It is implemented in two steps: predict, that is calculated bboxp by mathematical
model; update, combine the measured values bboxm to get the best estimate bbox0 of the current state.

We predict state vector u and variance of uncertainty P (covariance)

u
′
k|k−1 = Fu

′
k−1|k−1 (3)

Pk|k−1 = FPk−1|k−1FT + Q (4)

where, u: previous state vector; P: previous covariance matrix; F: state transition matrix (captures state
transition from one time step to another); Q: process noise matrix.

We correct or update state vector u and variance of uncertainty P (covariance).

C = APk|k−1 AT + R (5)

Kk = Pk|k−1 ATC−1 (6)

u
′
K|k = u

′
k|k−1 + Kk(bk − Au

′
k|k−1) (7)

Pk|k = Pk|k−1 − KkCKT (8)
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where, u: predicted state vector; A: matrix in observation equations; b: vector of observations;
P: predicted covariance matrix; Q: process noise matrix (or covariance matrix of system error);
K: Kalman Gain matrix (based on recursive least squares); C: covariance weighting matrix (with
variance along diagonal); R: observation noise matrix.

Kalman filtering is used to estimate the state of the fish tracking system in two ways: a priori
estimate and a posteriori estimate. The prior estimate refers to the estimation of the state before the
observation is obtained, and the a posteriori estimate is further corrected based on the prior knowledge
after obtaining the observation. Therefore, in the process of dealing with the actual tracking problem,
the initial state of the Kalman filter is difficult to determine accurately. It is necessary to give an
approximate value according to the prior knowledge, and continuously adjust the parameters and
correct it according to the posterior knowledge. The initial state of u is roughly estimated based on the
camera pose, the swimming speed of the fish, and the direction of the fish head. F is the state transition
matrix, which is a conjecture model for the transformation of the target state. The state transition
matrix is used to model the moving target. For fish, it may be uniform motion or uniform acceleration
motion. We assume that the fish are moving at a uniform speed under normal water quality, and the
fish are uniformly accelerated under abnormal water quality. In the Kalman filter tracking system, P is
the predicted covariance matrix, which indicates our trust in the current prediction state. The smaller
it is, the more we believe the current prediction state. Its value determines the initial convergence
speed, generally starting with a smaller value in order to obtain a faster convergence speed. With the
iteration of the Kalman filter, the value of P will change continuously. When the tracking system enters
the steady state, the P value will converge to a minimum estimated variance matrix. The Q value is
process noise. The smaller the tracking system is, the easier it is to converge. The higher the value
of the model predicts the value, but the smaller the value, the easier it is to diverge. If Q is zero,
then we only believe the predicted value. The larger the Q value, the lower the trust we have for the
prediction, and the higher the confidence in the measured value; if the Q value is infinite, then we only
trust the measured value. R value is the measurement noise, too small too mostly is not appropriate.
If R is too large, the Kalman filter response will be slower because it reduces the trust in the newly
measured values. The smaller the R, the faster the system converges, but when it is too small, it is
prone to shocks. Therefore, in the process of debugging parameters, first adjust Q from small to large,
and adjust R from large to small. First fix a value to adjust another value to see the convergence speed
and waveform output.

2.2.2. KM Algorithm

The KM algorithm is a data matching algorithm. What we need to solve the tracking target is
the feature point matching problem between t− 1 frame and t frame. All feature points between the
phase difference frames can form two sets X and Y, there are m feature elements in the set set X, and n
feature elements in the set Y. The function of the KM algorithm is to match the feature elements in X
and the feature elements in Y by weights. What we have to do in this experiment is to match the bbox
of the t− 1 frame target fish and the bbox of the t frame target fish by weights to complete the tracking.

2.2.3. Correlation Filtering

The KCF divides the target area and the background area of the current frame into positive
samples and negative samples, and uses the machine learning method to train the positive and
negative samples to obtain the classification model. In the next frame, the trained classification model
is used to find the optimal region for tracking. In the experiment, if the continuous multi-frame
does not achieve the IOU matching of the predicted target fish predicted position and the detection
frame position, the target fish is considered to disappear. Disappearing target fish is tracked and
compensated by KCF, thus avoiding the problem of tracking loss, incorrect counting, and improving
tracking efficiency.
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2.2.4. IOU Calculation

According to the experimental results, it can be concluded that the use of IOU can solve the
error caused by the occlusion between the illumination and the target during the target tracking
process.When the target is occluded or exposed to light, an obstruction is detected or nothing is
detected. That is, the original target is not detected, and it is assumed that the occlusion is associated
with the original target.Then, after the occlusion or illumination ends, because the target IOUs of
similar size tend to be large, the correct association can be quickly restored. Figure 3 shows the
relationship between the predicted border and the detected border in the IOU :

Detection Box

Detection Box

IOU  =

Prediction Box

Prediction Box

area1

area2

area1

area

(X21,Y21)

(X12,Y12)

(X21,Y21)

area

area2

(X12,Y12)

Figure 3. Intersection over Union (IOU) calculation diagram.

It can be seen that the IOU calculates the ratio of the intersection and the union of the “predicted
border” and the “detected border” which is:

IOU =
PredictionResult∩DetectionResult
PredictionResult∪DetectionResult

=
area

area1 + area2− area
(9)

Among them, the width of area1 is: W1 = X12 − X11; High is: H1 = Y12 −Y11; the width of area2
is: W2 = X22 − X21; high is: H2 = Y22 − Y21; the width of the area is: W = W2 + W1 − (X22 − X11);
high is: H = H2 + H1 − (Y22 −Y11).

When IOU = 0, which is X12 < X21 or Y12 < Y21, there is no public area for the predicted border
and the detection border.When IOU < 0.4, the match fails.When IOU > 0.4, the current match is
maintained and the state is updated using Kalman filtering. Figure 4 shows the tracking effect.

Figure 5 is a flow chart showing the effect of continuously updating the tracking state by Kalman
filter and tracking compensation of the target fish by using correlation filtering during the target fish
tracking process. Figure 5a shows the effect of assigning each fish to a trackID. Figure 5b shows when
one of the fish is continuously tracked in a continuous image of a sequence and its position in the
subsequent image is tracked, feature tracking is used to achieve a smoothing effect of the trajectory.
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Figure 5. Tracking effect when Kalman filter and Kernelized Correlation Filters (KCF) are combined.

3. 3D Trajectory Pixel Coordinate Reconstruction

In the experimental test, the fish will tend to swim along the cylinder wall. If a single camera is
used to collect video images, the swimming information of the fish is one-sided and some features
parameters will be ignored whether the camera is placed in front or above. Therefore, in order to obtain
more parameter features and improve the accuracy of water quality anomaly judgment, it is a key step
to obtain the basic data of fish spatial trajectory. Therefore, the experiment will have two-dimensional
images captured by two cameras, which will be transformed into the relationship between the research
objects in the three-dimensional space. During the shooting process, it must be ensured that both
cameras are activated at the same time with no time delay. During the conversion process, due to
the difference between the light refractive index of water and that of air, errors in three-dimensional
reconstruction may occur. In order to reduce this error, calibration must be used. In the experiment,
direct linear transformation (DLT) [23] was used to calculate the desired calibration coordinates by
combining the realistic coordinates with DLT parameters, and the average error was reduced by
comparing with the measured realistic world coordinates.
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In the experiment, the basic problem to be solved is to find out the mathematical relationship
between the coordinates of the three-dimensional point and its projection onto the image plane.
The specific algorithm flow is shown in Algorithm 1.

Algorithm 1 Camera calibration and point reconstruction based on direct linear transformation (DLT)

1:Camera calibration by DLT using known object points and their image points.
This code performs 2D or 3D DLT camera calibration with any number of views (cameras).
Iuput
nd is the number of dimensions of the object space: 3 for 3D DLT and 2 for 2D DLT.
xyz are the coordinates in the object 3D or 2D space of the calibration points.
uv are the coordinates in the image 2D space of these calibration points.
The coordinates (x,y,z and u,v) are given as columns and the different points as rows.
For the 2D DLT (object planar space), only the first 2 columns (x and y) are used.
There must be at least 6 calibration points for the 3D DLT and 4 for the 2D DLT.
Ouput
L:array of the 8 or 11 parameters of the calibration matrix
err:error of the DLT (mean residual of the DLT transformation in units of camera coordinates).

2:Reconstruction of object point from image point(s) based on the DLT parameters.
This code performs 2D or 3D DLT point reconstruction with any number of views (cameras).
For 3D DLT, at least two views (cameras) are necessary.
Input
nd is the number of dimensions of the object space: 3 for 3D DLT and 2 for 2D DLT.
nc is the number of cameras (views) used.
Ls (array type) are the camera calibration parameters of each camera (is the output of DLT
calib function). The Ls parameters are given as columns and the Ls for different cameras as
rows.
vs are the coordinates of the point in the image 2D space of each camera.
The coordinates of the point are given as columns and the different views as rows.
Ouput
xyz: point coordinates in space

3:Normalization of coordinates (centroid to the origin and mean distance of sqrt (2 or 3)
Iuput
nd:number of dimensions (2 for 2D; 3 for 3D)
x:the data to be normalized (directions at different columns and points at rows)
Ouput
Tr:the transformation matrix (translation plus scaling)
x:the transformed data

3D Trajectory Synthesis

Compared with the time series of traditional two-dimensional trajectory, the three-dimensional
trajectory motion can provide a more real fish swimming trajectory, it can reduce the potential
error of the lateral motion of fish facing the camera as much as possible, and converts the
three-dimensional data into a visual trajectory, to provides a visual representation method of fish
motion for experimental research.

If the stereo matching and tracking are treated as two mutually independent processes, when the
number of fish schools increases, the frequency of each fish approaching or blocking each other in
the swimming process is very high, resulting in a short slice of extracted two-dimensional trajectory
segments, and the uncertainty of stereo matching is difficult to eliminate in a short time using motion
features. If the centroid points of the extracted fish are superimposed on one another or move too
close to each other when swimming for too long, the trajectory synthesized by the centroid points will
be seriously missing, thus will cause errors in 3D reconstruction and affect the reconstruction effect.
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Therefore, it can be seen that the reconstruction process and the tracking process are interdependent.
In this study, three-dimensional point construction and real-time tracking are taken as a whole. In the
reconstruction process, two cameras are used to photograph the fish motion at different angles. If the
centroid points are close to or overlap at one angle of view, we can jump to another angle of view to
eliminate the uncertainty of trajectory tracking. In this way, the centroid coordinates of the fish can be
extracted at every time point, and the difficulty of matching the features is greatly reduced.

As shown in Figure 6, the experimental device belongs to monocular multi-view imaging, and the
geometric relationship between the two cameras and the fish tank was determined during the design.
According to these fixed geometric relations, it is possible to obtain the coordinates of the centroid
point positions in which the fish are consistent from two angles of view. According to the experimental
device shown in Figure 6, the pixel of the image captured by the front camera are (X1, Y1) and the
pixel coordinates of the image captured by the above are (X2, Y2). Among them, what is described by
X1 and X2 is pixel coordinates in the same direction, so the information of X axes of two camera is
overlapped. According to DLT, camera distortion is calibrated, and image corresponding points are
determined, then the corresponding points are taken as matching points to calculate three-dimensional
pixel coordinates of fish motion tracks.
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Figure 6. Three dimensional trajectory synthesis.

4. Establishment of Classification Model

4.1. The Model Structure of Pointnet

The trajectory of the fish obtained by the experiment consists of a set of points. We extract the
features of the point set through the model structure and determine the category to which the trajectory
belongs. Pointnet can learn a most favorable network model by learning the pose information of
the point set itself. From the data structure, by extracting the two-dimensional motion trajectory
of fish, they are combined into a three-dimensional motion trajectory. If the factors such as color,
edge, texture, etc., are not considered, only the coordinates of the point are considered, then the
motion trajectory is a set of points of n × 3. Then, when the n points are read in different orders,
the classification of the images must output the same result. Since the position of the point is fixed in
the two-dimensional image, there is no such problem, but in the three-dimensional trajectory data,
the input combination of the points has a total of n!, so processing must be performed. Pointnet uses
the maximum pooling. After the convolution operation on n points, an n× 1024-dimensional matrix is
generated, and 1024-dimensional 1024-global features are obtained. For each dimension, the maximum
value is solved, and the problem of disorder is solved.

In the classification problem, the pointnet only needs to process the global features, and the final
result can be obtained by performing MLP (Multi-Layer Perception) [24] or SVM classification on the
global features. Pointnet combines the extracted global features and point features through the fish
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trajectory to obtain the feature matrix, and then re-extracts the features of each point based on the
feature matrix to obtain the point information including local and global features.

For 3D images, when we target the classification, we should ensure that the results are unchanged
when we perform operations such as rotation and upshift. Pointnet performs affine transformation
on the original matrix by adding T-net (Transformation networks) [25]. It is equivalent to processing
directly in the data preprocessing stage to ensure the invariance of the results. T-net is a subnet
of the prediction feature space transformation matrix, which inputs a transformation matrix that is
consistent with the feature space dimension. The transformation matrix is then used to multiply the
raw data to effect a transformation of the input feature space such that each subsequent point has
a relationship with each point in the input data. Therefore, we use the pointnet network model to train
the three-dimensional motion trajectory of fish and establish a water quality positive anomaly classifier.

4.2. SVM Water Quality Classifier

Support vector machine is an excellent pattern classifier, which can solve practical problems such
as small samples, nonlinear, high dimensional and local minimum. From the perspective of pattern
recognition, fish with normal water quality and abnormal water quality have distinctly different motion
features, which can be regarded as two different types of exercise patterns. Therefore, abnormal water
quality monitoring is a classification problem. For the nonlinear inseparable problem of fish’s motion
feature parameters overlap, SVM transforms fish motion feature parameters into linear problems in
high-dimensional space by nonlinear transformation, and finds the optimal classification surface in
high-dimensional space. Therefore, computer vision and support vector machine can be combined to
monitor water quality anomalies.

4.3. XGBoost Water Quality Classifier

XGBoost adds a regular term to the cost function to control the complexity of the model.
The regular term reduces the variance of the model, making the trained model simpler and preventing
overfitting. This is a generalization of the training of fish motion parameters. Significant improvement
in capacity; In the process of collecting data, due to various artificial or experimental defects, data loss
will inevitably occur. XGBoost has a built-in rule for handling missing values. The user needs to
provide a different value from the other samples and pass it in as a parameter to use as the value
of the missing value. XGBoost uses different processing methods when different nodes encounter
missing values, and will learn the processing method when missing values are encountered in the
future, which provides a good solution for the missing character parameters of fish; XGBoost allows
cross-validation to be used in each round of boosting iterations. Therefore, the optimal number of
boosting iterations can be conveniently obtained; XGBoost can continue training in the last round of
results. This feature is a huge advantage in the application of fish characteristic parameter classification,
which can achieve the continuity of the model. So we used XGBoost to replace the previous classifier
and build a water quality classification model.

4.4. The Model Merging of SVM and XGBoost Classifiers

Firstly, in the classification process by using SVM and XGBoost, the parameter data about fish
behavior and movement characteristic that can reflect the change of water quality are calculated,
and the data are processed to make the movement parameter features more prominent. Secondly,
all the characteristic parameter samples are integrated to obtain the characteristic parameter set and
establish the model for monitoring the abnormality about water quality based on SVM and XGBoost.
Finally, to achieve the purpose of monitoring the abnormality about water quality, the model is used to
analyze and evaluate the characteristic parameters of fish behavior under the unknown water quality.

Through the experiments, we obtained the three-dimensional motion trajectory of the fish,
and further obtained the characteristic parameters of the fish’s motion behavior: velocity, acceleration,
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curvature, swimming distance of the center, dispersion and so on. The calculation formula is shown
in Table 2.

Table 2. Formula for calculating characteristic parameters.

Features Formula Description

Swimming Distance d =
√
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2

(x1, y1, z1) and (x2, y2, z2) are used to indicate
the coordinates of the start and end points on the

fish target tracking trajectory per unit time d
is the distance the fish swims in t time

Speed v = d
t d is the distance the fish swims in t time

Acceleration a = v2−v1
∆t

v1 and v2 represent the speeds of t1
and t2, respectively ∆t = t2 − t1

Curvature k = A(1+E2)+B(1+D2)−CDE

(1+D2+E2)
3
2

A = 1
2

d2z
dx2 B = d2z

dy2 C = d2z
dxdy D = dz

dx E = dz
dy

Dispersion LS2 =



n
∑

i=1
(xi − x̄)2

n
∑

i=1
(yi − ȳ)2

n
∑

i=1
(zi − z̄)2

The relationship between the overall center of
gravity of the fish school (x, y, z) and the position

of the center of gravity of each individual (xi , yi , zi)

4.5. Ensemble Learning

There are different feature extraction methods for images about fish trajectory, and each method
focuses on description of image in different aspects. Combined with these features, the feature
information can be expressed more comprehensively. We used the traditional monitoring method
for water quality based on the support vector machine and XGBoost, and integrated with the
present monitoring method named Deep Neural Network. That is, the learning task is completed by
constructing and combining multiple learners. The normal and abnormal monitoring method for water
quality can be regarded as a dichotomous problem. We use three classifiers (pointnet neural network
model, SVM, and XGBoost) to classify on test samples. As shown in Table 3, in the combination
strategy, we used MAIS, voting method, averaging method, and learning method to compare.

Table 3. Model integration approach.

Combination Strategy Test Sample 1 Test Sample 2 Test Sample 3

MAIS 0.012 0.015 0.008
Voting method 0.028 0.023 0.034

Average method 0.021 0.022 0.027
Learning method 0.031 0.030 0.028

MAIS is performed separately on the scores assigned to each class by the classifiers. Thus,
the multiclass problem is split into K binary classification problems; The voting method belongs to the
minority obeys the majority. The voting method combines the T base classifiers, assuming that the
error rates of each base classifier are independent of each other. If more than half of the base classifiers
are correct, the integrated classification is correct; The averaging method is a weighting operation
on different classifiers. The weights are generally obtained from the training data set. We estimate
the error of the individual learner, and then make the weight size inversely proportional to the error
size; The learning method first trains the primary learner from the initial data set and then generates
a new data set for training the primary learner. Then, using the cross-validation or leave-one method,
the training samples of the secondary learner are generated by training the samples that are not used
by the primary learner, and iteratively, until the end. It can be seen from Table 3 that the MAIS works
best and the output error is minimal. So in the integrated learning method we finally selected MAIS
for the final predicted output.
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5. Experiment

5.1. The Environment of Experiment

The water for experiment is dechlorinated tap water, which was fully aerated after 24 h.
The platform is a circular experimental tank with a diameter of 50 cm and a height of 40 cm to study
the movement of red crucian carp under the computer monitoring. The experiment was divided into
three groups, each with seven red crucian carp. Using the method of parallel experiments, except for
water pollutants being different in the three groups, other conditions are completely consistent.
The first group of experiments had two experimental tanks. To one was added a certain volume of
experimental water without any pollutants, and the other was added aqueous solution of trichlorfon
with concentration of 1.5% in the same volume; The second group also had two experimental tanks
.One was added experimental water only, and the other was added oxalic acid solution with a PH
value of 3.5 in the same volume; In the third group, one was added experimental water, and the other
was added K2Cr2O7 solution with concentration of 5.75 mg/L in the experimental water. In the process
of experiment, charge coupled device(CCD) camera was used to obtain video image of fish movement,
and fish video was collected five minutes after the beginning of experiment. The size of each frame is
480 × 640, and the frame rate is 25 frames per second. The experiment adopts the method of parallel
experiment. Only pollutants of the water quality are different in the three groups of experiments,
and other conditions are completely consistent.

The experimental environment for training and testing is Ubuntu16.04 operating system and
depth learning model built on depth learning library. The CPU is Intel’s sixth generation cool I7 6700K,
and the GPU is NVIDIA’s flagship graphics card GeForce GTX 1080 released officially.

5.2. Experimental Results and Analysis

Integrated learning is used to build the sample set and extract the characteristic parameters.
The specific steps for training and testing the sample set and feature parameters are as follows:
(1) The CCD camera is used to collect video frames under normal water quality and abnormal water
quality, and 1000 frames of fish trajectory images are selected to extract the feature parameters.
(2) The three-dimensional motion trajectory image is sent to pointnet model for training, and the
extracted feature parameters are put into SVM and XGBoost for training, then the water quality
evaluation base classifier is obtained. (3) Integrate the base classifier to obtain a strong water quality
evaluation classifier.

5.2.1. Use Trajectory to Identify Water Quality

Figure 7 shows a comparison figure of fish movement trajectories in different dimensions under
normal water quality and abnormal water quality. In the normal water quality, there are fewer pixel
points of fish trajectory. That is, the fish move more slowly, and there are fewer swimming states
of violent fluctuations and turns, and the trajectory of the fish follows a good arc. However, in the
abnormal water environment, there are many pixels of fish trajectory. That is, the fish move faster,
and the direction of movement of fish varies greatly. In addition to, the trajectory of the fish does not
follow a good arc, and the center of gravity of the fish is close to the center of the fish tank.
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Figure 7. Trajectory of fish movement under normal and abnormal water quality.

5.2.2. The Training and Optimization of Pointnet Model

The sample sets of normal and abnormal water quality were established, and they were input
into the model for training to obtain the evaluation model of water quality.

In this experiment, three groups of fish movement trajectory data obtained from experimental
water without any pollutants and water added with trichlorfon, oxalic acid solution and potassium
dichromate were used for training. As shown in Figure 8, Epoch was set as 100, and with the increase
of Epoch, the training accuracy increased gradually.

Figure 8. Training accuracy of different pollutants.

In the optimization algorithm, we use the stochastic gradient descent (SGD) [26], and one of the
key parameters of SGD algorithm is learning rate . As shown in Table 4, in the training process, we set
different learning rates. The highest accuracy can reach about 95%, that is, the pointnet model selected
meets the requirements of water quality evaluation fully.
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Table 4. Change of learning rate.

Epoch Learning Rate

0–65 1 × 10−3

66–85 1 × 10−4

86–99 1 × 10−5

5.2.3. Extraction of Feature Parameters

As shown in Figure 9, five sets of characteristic parameters including velocity (v), acceleration (a),
curvature (k), central swimming distance (d) and dispersion are extracted from the motion trajectory.
The blue graph on the left shows the variation trend of characteristic parameters under normal water
quality, and the red graph on the right shows the variation trend under abnormal water quality. As can
be seen from the figure, the velocity, acceleration and curvature present slight variation under normal
water quality, and the average swimming distance d is roughly the same, without drastic fluctuations.
The dispersion is relatively small and the situation is stable. Under abnormal water quality, it is
obvious that each parameter changes greatly. After the feature parameters are processed, input them
in the classification model of SVM and XGBoost for training. Then combined with pointnet to achieve
integrated classification, the accuracy is significantly improved.

5.2.4. Performance Evaluation

In order to evaluate the performance of the ensemble classifier, we select other 3d classification
models for comparison. The results are shown in Table 5.

Table 5. 3D model performance evaluation.

Model Input Accuracy
Sample 1

Accuracy
Sample 2

Accuracy
Sample 3

Accuracy
Sample 4

Only SVM Parameters 87.2 86.5 89.1 90.9
Only XGBoost Parameters 88.3 91.6 92.3 90.0

SPH [27] Mesh 65.2 64.3 66.6 69.5
3DShapeNets [28] Volume 77.8 75.6 77.1 79.6

VoxNet [29] Volume 80.5 83.4 80.1 82.0
MVCNN [30] Volume 80.5 83.4 80.1 82.0

Ours Point 95.5 96.2 95.6 94.9

As can be seen from Table 5 that we use the integrated learning method to compare with other
methods, and there are clear advantages in terms of accuracy. If use SVM or XGBoost only to classify
by feature parameters, the accuracy is not optimal.

Compared the ensemble classifier with the classifier trained by two-dimensional parameters,
the results are shown in Table 6.

Table 6. Performance evaluation of 3d model and 2d model.

Model Input Accuracy
Sample 5

Accuracy
Sample 6

Accuracy
Sample 7

Accuracy
Sample 8

SVM Parameters 86.3 82.5 87.9 86.5
XGBoost Parameters 89.5 90.3 91.1 90.7

Inception v3 [31] Image 92.3 91.5 90.3 93.8
Vgg16 [32] Image 90.6 88.1 89.5 90.2

SVM and XGBoost Parameters 91.9 92.5 92.8 92.5
Ours Parameters and Point 94.5 95.2 94.6 93.9
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As can be seen from Table 6, the classifier formed by 2D motion trajectory of fish is not as accurate
as 3D. Feature parameters by 2D cannot describe the actual motion state of fish accurately, and 3D
image processing has deeper calculation features.

We also selected the Receiver Operating Characteristic (ROC) curve to evaluate the performance
of the classifier.The abscissa of the ROC curve is the false positive rate (FPR), which is called the false
positive rate, and the ordinate is the true positive rate (TPR), which is called the true positive rate.
Its calculation formula is:

TPR =
TP

TP + FN
(10)

FPR =
FP

FP + TN
(11)

In the above formula, P is the number of true positive samples, N is the number of true negative
samples, TP is the number of positive samples predicted by the classifier in P positive samples, and FP
is predicted by the classifier in N negative samples. The number of positive samples. By calculating the
Area under Curve (AUC), which is the area under the ROC curve (Figure 10), the classifier is evaluated.
When a positive sample and a negative sample are randomly selected, the current classification
algorithm will calculate the Score value based on the value. The probability that this positive sample
is in front of the negative sample is the AUC value. The larger the AUC value, the more likely the
current classification algorithm is to place the positive sample in front of the negative sample, so that
the classifier performance is better.

a) ROC curve of 3d model and 2dmodel b) ROC curve of 3D model
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Figure 10. Performance evaluation using Receiver Operating Characteristic (ROC) curves.

As can be seen from Figure 10, our method AUC has the largest value and the model performance
is significantly better than other algorithms

6. Conclusions

We use two cameras to track the fish body from different angles, and the trajectory is smooth, so as
to obtain the position coordinates of the center of mass point consistent with the fish body observed
from two perspectives. During the experiment, we combined Kalman filter with KCF to reduce the
influence of posture change and illumination change of fish target on tracking stability and realize
real-time robust tracking without occlusion. Moreover, in the track visualization, we performed track
smoothing while tracking, avoiding the centroid extraction of the image sequence and improving the
tracking efficiency. The 3D trajectory movement can provide fish swimming trajectory more real and
reduce the potential error in the lateral motion of the fish toward the camera as much as possible,
so we use DLT algorithm to determine the corresponding point of the centroid coordinates in the two
perspectives and calculate the 3D trajectory coordinates of fish motion. For model training, we use an



Symmetry 2019, 11, 1179 18 of 20

integrated learning approach that combines a deep model with a traditional machine learning model.
Finally, the primary classifier is integrated to obtain the final judgment model of water quality anomaly.
Compared to using a single classifier, the integration of the model is better than accuracy and stability.
But, due to more training times, the optimal solution has not been reached in time. Water quality
monitoring is a real-time process. In the following research, we will further optimize the model,
reduce training and test time, enrich the experimental environment, and enhance the robustness of
the system. At the same time, we also need to design a more sophisticated grade of water quality to
achieve real-time, efficient and stable effect.
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The following abbreviations are used in this manuscript:

KM Kuhn-Munkres
SVM support vector machine
XGBoost eXtreme Gradient Boosting
KCF Kernelized Correlation Filters
MAIS Multiclass Alpha Integration of Scores
FPS Frames Per Second
YOLO You only look once
IOU Intersection over Union
DLT Direct linear transformation
CCD charge coupled device
SGD stochastic gradient descent
ROC Receiver Operating Characteristic
AUC Area under Curve
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