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Abstract: In this article, we analyze the spectrum of discrete magnetic Laplacians (DML) on an infinite
covering graph G̃ → G = G̃/Γ with (Abelian) lattice group Γ and periodic magnetic potential β̃.
We give sufficient conditions for the existence of spectral gaps in the spectrum of the DML and
study how these depend on β̃. The magnetic potential can be interpreted as a control parameter for
the spectral bands and gaps. We apply these results to describe the spectral band/gap structure of
polymers (polyacetylene) and nanoribbons in the presence of a constant magnetic field.
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1. Introduction

It is a well-known fact that the spectrum of Laplacians or, more generally, Schrödinger operators
with periodic potentials, on Abelian coverings, have band structure. These properties of the Laplacians
are discussed, e.g., in [1,2] and the references therein. The spectrum consists of a continuous part
(which is the union of intervals or spectral bands separated by gaps) and a set of eigenvalues with
infinite multiplicity. The spectrum is described in terms of a so-called Floquet (or Bloch) parameter.
This parameter is the dual of the Abelian group acting on the structure. If two consecutive spectral
bands of a bounded self-adjoint operator T do not overlap, then we say that the spectrum has a spectral
gap, i.e., a maximal nonempty interval (a, b) ⊂ [−‖T‖, ‖T‖] that does not intersect the spectrum
of the operator. The study of the spectral bands/gaps is a quite natural situation in several fields
of mathematics and physics. In solid-state physics, where—for example in semiconductors or its
optical counterparts, photonic crystals—the operators modeling the dynamics of particles have some
forbidden energy regions (see, e.g., [3,4]). In band-gap engineering, a process to control de band/gap
of some materials, for semiconductors is controlled for example with the composition of alloys [5],
and for the nanoribbons with temperature [6], etc. Depending on the type of the periodic structure
involved, spectral gaps may be produced by deformation of the geometry (cf., [7–9]) or by a suitable
periodic decoration of the metric or the discrete covering graph (see, e.g., [10–14] and ([15], Section 4)).

The study of energy-gaps has been widely studied. The gaps in nanoribbons as a function of
the width can be found in [16]. The gaps in the armchair structure can appear because quantum
confinement and for the zigzag structure can appear because of an edge magnetization [17].

In this article, we study the spectrum of discrete magnetic Laplacians (DMLs for short) on infinite
discrete coverings graphs

π : G̃→ G = G̃/Γ ,
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where Γ is an (Abelian) lattice group acting freely and transitively on G̃ (also the graph G̃ is called
as Γ-periodic graph with finite quotient G). We will present our analysis for graphs with arbitrary
weights m on vertices and arcs although the graphs presented in the examples of the last section will
initially have standard weights which are more usual in the context of mathematical physics. Also,
we consider a periodic magnetic potential β̃ on the arcs of the covering graph G̃ modeling a magnetic
field acting on the graph.

We denote a weighted graph as W = (G, m), and a magnetic weighted graph (MW-graph for
short) is a weighted graph W together with a magnetic potential acting on its arcs. Any MW-graph
W = (G, m) with magnetic potential β has canonically associated a DML denoted as ∆W

β . We say that

W̃ = (G̃, m̃) with magnetic potential β̃ is a Γ-periodic MW-graph if G̃ → G = G̃/Γ is a Γ-covering
and m̃ and β̃ are periodic with respect to the group action.

In this article, we generalize the geometric condition obtained in ([18], Theorem 4.4) for β̃ = 0 to
non-trivial periodic magnetic potentials. In particular, if W̃ = (G̃, m̃) is a Γ-periodic MW-graph with
magnetic potential β̃, we will give in Theorem 3 a simple geometric condition on the quotient graph
G = G̃/Γ that guarantees the existence of non-trivial spectral gaps on the spectrum of the discrete
magnetic Laplacian ∆W̃

β̃
. To show the existence of spectral gaps, we develop a purely discrete spectral

localization technique based on the virtualization of arcs and vertices on quotient G. These operations
produce new graphs with, in general, different weights that allow localizing the eigenvalues of the
original Laplacian inside certain intervals. We call this procedure discrete bracketing, and we refer
to [18] for additional motivation and proofs.

One of the new aspects of the present article is the generalization of results in [18] to include
a periodic magnetic field β̃ on the covering graph π : G̃→ G = G̃/Γ. In this sense, β̃ may be used as
a control parameter for the system that serves to modify the size and the regions where the spectral
gaps are localized. We apply our techniques to the graphs modeling the polyacetylene polymer as
well as to graphene nanoribbons. The nanoribbons are Z-periodic strips of graphene either with an
armchair or zig-zag boundaries (see, e.g., Figure 5). The graphic in Figure 1 corresponds to an armchair
nanoribbon with a width 3. It can be seen how a periodic magnetic potential with constant value
β̃ ∈ [0, 2π) on each cycle (and plotted on the horizontal axis) affects the spectral bands (gray vertical
intervals that appear as the intersection of the region with a line β̃ = const) and the spectral gaps
(white vertical intervals). We refer to Section 5.2 for additional details of the construction.

In the case of the polyacetylene polymer, we find a spectral gap that is stable under perturbation
of the (constant) magnetic field. Moreover, if the value of the magnetic field is π, then the spectrum of
the DML degenerates to four eigenvalues of infinite multiplicity. This discrete model suggests that
a varying uniform magnetic field may drastically change the conductance of a material arranged as
a periodic planar graph.

The article is structured in five sections as follows. In Section 2, we collect the basic definitions
and results on discrete weighted multigraphs (graphs which may have loops and multiple arcs).
We consider discrete magnetic potentials on the arcs and define the discrete magnetic Laplacian on
the graph, which will be the central operator in this work. In Section 3, we present a spectral relation
between finite MW-graphs based on an order relation between the eigenvalues of the corresponding
DMLs. Moreover, we will present the basic arc and vertex virtualization procedure that will allow one
to localize the spectrum of the DML on the infinite covering graph. In Section 4, we extend the discrete
Floquet theory considered in ([18], Section 5) to the case of covering graphs with periodic magnetic
potentials. In Section 5, we apply the spectral localization results developed before in the example
of Z-periodic graphs modeling the polyacetylene polymer as well as graphene nanoribbons in the
presence of a constant magnetic field.
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Figure 1. The structure of the bracketing intervals J is represented with gray bands and the spectral
gaps with white bands. Both bands depend on the constant (periodic) magnetic potential β̃ acting on
3-aGNR.

2. Weighted Graphs and Discrete Magnetic Laplacians

In this section, we introduce the basic definitions and results concerning MW-graphs and also
define discrete magnetic Laplacians. For further motivation and results, we refer to [12,18,19] and
references cited therein.

We denote by G = (V, E, ∂) a (discrete) directed multigraph which in the following we call simply
a graph; here V = V(G) is the set of vertices and E = E(G) the set of arcs. The orientation map is given
by ∂ : E→ V×V and ∂e = (∂−e, ∂+e) is the pair of the initial and terminal vertices. Graphs are allowed
to have multiple arcs, i.e., arcs e1 6= e2 with (∂−e1, ∂+e1) = (∂−e2, ∂+e2) or (∂−e1, ∂+e1) = (∂+e2, ∂−e2)

as well as loops, i.e., arcs e1 with ∂−e1 = ∂+e1. Moreover, we define

Ev := E+
v ·∪ E−v (disjoint union), where E±v := {e ∈ E | v = ∂±e} .

With this notation, the degree of a vertex is deg(v) = |Ev| and a loop increases the degree by 2.
Given subsets A, B ⊂ V, we define

E+(A, B) := {e ∈ E | ∂−e ∈ A, ∂+e ∈ B} and E−(A, B) := E+(B, A).

Moreover, we put E(A, B) := E+(A, B) ∪ E−(A, B) and E(A) := E(A, A).
To simplify the notation, we write E(v, w) instead of E({v}, {w}) etc. Note that loops are not

counted double in E(A, B), in particular, E(v) := E(v, v) is the set of loops based at the vertex v ∈ V.
The Betti number b(G) of a finite graph G = (V, E, ∂) is defined as

b(G) := |E| − |V|+ 1. (1)

To study the virtualization processes of vertices, arcs and the structure of covering graphs, we will
need to introduce the following substructures of a graph.

Definition 1. Let G = (V, E, ∂) be a graph and denote by H = (V0, E0, ∂0) a triple such that V0 ⊂ V, E0 ⊂ E
and ∂0 = ∂ �E0 .
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(a) If E0 ∩ E(V \V0) = ∅, we say that H is a partial subgraph in G. We call

B(H, G) :=E(V0, V \V0)

= {e ∈ E | ∂−e ∈ V0, ∂+e ∈ V \V0 or ∂+e ∈ V0, ∂−e ∈ V \V0} (2)

the set of connecting arcs of the partial subgraph H in G.
(b) If E0 ⊂ E(V0), then H is a subgraph of G

Note that, in general, a partial subgraph H = (V0, E0, ∂0) is not a graph as defined above, since
we may have arcs e ∈ E with ∂±e /∈ V0. We do exclude though the case that ∂+e /∈ V0 and ∂−e /∈ V0.
The arcs not mapped into V0 × V0 under ∂0 are precisely the connecting arcs of H in G. Partial
subgraphs appear naturally as fundamental domains of covering graphs (cf., Section 4) (Note that we
use the name partial subgraph in a different sense as in usual combinatorics literature).

Let G = (V, E, ∂) be a graph; a weight on G is a pair of functions denoted by a unique symbol m
on the vertices and arcs m : V → (0, ∞) and m : E→ (0, ∞) such that m(v) is the weight at the vertex v
and me is the weight at e ∈ E. We call W = (G, m) a weighted graph. It is natural to interpret m as
a positive measure and consider m(E0) := ∑e∈E0

me for any E0 ⊂ E. The relative weight is ρ : V → (0, ∞)

defined as

ρ(v) :=
m(Ev)

m(v)
=

m(E+
v ) + m(E−v )

m(v)
. (3a)

In order to work with bounded discrete magnetic Laplacians, we will assume that the relative
weight is uniformly bounded, i.e.,

ρ∞ := sup
v∈V

ρ(v) < ∞. (3b)

The most important and intrinsic examples of weights are

• Standard weight: m(v) = deg(v), v ∈ V, and me = 1, e ∈ E, so that ρ(v) = ρ∞ = 1.
• Combinatorial weight: m(v) = me = 1, v ∈ V, e ∈ E hence ρ(v) = deg(v) and ρ∞ = supv∈V deg(v).

Giving a weighted graph W = (G, m), we associate the following two natural Hilbert spaces
which we interpret as 0-forms and 1-forms, respectively.

`2(V, m) :=
{

f : V → C | ‖ f ‖2
V,m = ∑

v∈V
| f (v)|2m(v) < ∞

}
and

`2(E, m) :=
{

η : E→ C | ‖η‖2
E,m = ∑

e∈E
|ηe|2me < ∞

}
,

with corresponding inner products

〈 f , g〉`2(V,m) = ∑
v∈V

f (v)g(v)m(v) and 〈η, ζ〉`2(E,m) = ∑
e∈E

ηeζeme .

Let G be a graph; a magnetic potential α acting on G is a T-valued function on the arcs as follows,
α : E(G) → T = R/2πZ. We denote the set of all vector potentials on E(G) just by A(G). We say
that two magnetic potentials α1 and α2 are cohomologous, and denote this as α1 ∼ α2, if there is
ϕ : V → T with

α1 = α2 + dϕ.

Given a E0 ⊂ E(G), we say that a magnetic potential α has support in E0 if αe = 0 for all
e ∈ E(G) \ E0. We call the class of weighted graphs with magnetic potential MW-graphs for short.

It can be shown that any magnetic potential on a finite graph can be supported in b(G) many arcs.
For example, if G is a cycle, any magnetic potential is cohomologous to a magnetic potential supported
in only one arc. Moreover, if G is a tree, any magnetic potential acting on G is cohomologous to 0.
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The twisted (discrete) derivative is the following linear operator mapping 0-forms into 1-forms:

dα : `2(V, m)→ `2(E, m) with (dα f )e = eiαe/2 f (∂+e)− e−iαe/2 f (∂−e). (4)

Now, we present the following geometrical definition of Laplacian with magnetic field as
a generalization of the discrete Laplace-Beltrami operator.

Definition 2. Let W = (G, m) be a weighted graph with α : E→ T a vector potential. The discrete magnetic
Laplacian (DML for short) ∆α : `2(V)→ `2(V) is defined by ∆α = d∗αdα, i.e., by

(∆α f ) (v) = ρ(v) f (v)− 1
m(v) ∑

e∈Ev

ei
y
αe(v) f (ve)me,

where y
αe(v) is the oriented evaluation and ve is the vertex opposite to v along the arc e, i.e.,

y
αe(v) =

{
−αe, if v = ∂−e,

αe, if v = ∂+e,
and ve =

{
∂+e, if v = ∂−e,

∂−e if v = ∂+e.

If we need to stress the dependence of the operator of the weighted graph W = (G, m), we will denote the
DML as ∆W

α .

From this definition, it follows immediately that the DML ∆α is a bounded, positive and
self-adjoint operator. Its spectrum satisfies σ(∆α) ⊂ [0, 2ρ∞] and, in contrast to the usual Laplacian
without magnetic potential, the DML depends on the orientation of the graph. If α ∼ α′, then ∆α and
∆α′ are unitary equivalent; in particular, σ(∆α) = σ(∆α′). Moreover, if α ∼ 0 then ∆α

∼= ∆ where ∆
denotes the usual discrete Laplacian (with vector potential 0). For example, if W = (G, m) and G is
a tree, then ∆W

α
∼= ∆W for any magnetic potential α.

3. Spectral Ordering on Finite Graphs and Magnetic Spectral Gaps

In this section, we will introduce a spectral ordering relation 4, which is invariant under unitary
equivalence of the corresponding operators. Moreover, we will introduce two operations on the graphs
(virtualization of arcs and vertices) that will be used later to develop a spectral localization (bracketing)
of DML on finite graphs. This technique will finally be applied to discuss the existence of spectral
gaps for magnetic Laplacians on covering graphs. We refer to [11,12,18] for additional motivation and
examples. For proofs of the results stated in this section see ([18], Sections 3 and 4).

Let W = (G, m) be a weighted graph. Throughout this section, we will assume that |V(G)| =
n < ∞. We denote the spectrum of the DML by σ(∆W

α ) := {λk(∆W
α ) | k = 1, . . . , n} ⊂ [0, 2ρ∞], where

we will write the eigenvalues in ascending order and repeated according to their multiplicities, i.e.,

0 ≤ λ1(∆W
α ) ≤ λ2(∆W

α ) ≤ · · · ≤ λn(∆W
α ).

Definition 3. Let W− and W+ be two finite MW-graphs of order n− and n+, respectively, and magnetic
potential α±. Consider the eigenvalues of the DMLs ∆W±

α written in ascending order and repeated according to
their multiplicities.

(a) We say that W− is spectrally smaller than W+ (denoted by W− 4W+), if

n− ≥ n+ and if λk(∆
W−
α− ) ≤ λk(∆

W+

α+ ) for all 1 ≤ k ≤ n− ,

where we put λk(∆W+

α+
) := 2ρ∞ for k = n+ + 1, . . . , n− (the maximal possible eigenvalue).
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(b) Consider W± as above with W− 4 W+. We define the associated k-th bracketing interval Jk =

Jk(W−, W+) by
Jk :=

[
λk(∆

W−
α− ), λk(∆

W+

α+ )
]

(5)

for k = 1, . . . , n−.

Given an MW-graph, we introduce two elementary operations that consist of virtualizing arcs
and vertices. The first one will lead to a spectrally smaller graph.

Definition 4 (virtualizing arcs). Let W = (G, m) be a weighted graph with magnetic potential α and E0 ⊂
E(G). We denote by W− = (G−, m−) the weighted subgraph with magnetic potential α− defined as follows:

(a) V(G−) = V(G) with m−(v) := m(v) for all v ∈ V(G);
(b) E(G−) = E(G) \ E0 with m−e := me and ∂G−

± e = ∂G
±e for all e ∈ E(G−);

(c) α−e = αe, e ∈ E(G−).

We call W− the weighted subgraph obtained from W by virtualizing the arcs E0. We will sometimes
denote the weighted graph simply by W− = W− E0 and we write the corresponding discrete magnetic Laplacian
as ∆W−

α− .

The second elementary operation on the graph will lead now to a spectrally larger graph.

Definition 5 (virtualizing vertices). Let W = (G, m) be a weighted graph with magnetic potential α and
V0 ⊂ V(G). We denote by W+ = (G+, m+) the weighted partial subgraph with magnetic potential α+ defined
as follows:

(a) V(G+) = V(G) \V0 with m+(v) := m(v) for all v ∈ V(G+);
(b) E(G+) = E(G) \⋃v0∈V0

E(v0) with m+
e = me for all e ∈ E(G);

(c) α+e = αe, e ∈ E(G+).

We call W+ the weighted partial subgraph obtained from W by virtualizing the vertices V0. We will
denote it simply by W+ = W−V0. The corresponding discrete magnetic Laplacian is defined by

∆W+

α+ = (dα+)
∗dα+ , where dα+ := dα ◦ ι

with

ι : `2(V(G+), m+)→ `2(V(G), m), (ι f )(v) =

{
f (v), v ∈ V(G+),

0, v ∈ V0.

It can be shown that the operator ∆W+

α+
is the compression of ∆W onto a (|V| − |V0|)-subspace.

The previous operations of arc and vertex virtualization will be used to localize the spectrum of
intermediate DMLs. Before summarizing the technique in the next theorem, we need to introduce the
following notion of vertex neighborhood of a family of arcs.

Definition 6. Let G be a graph and E0 ⊂ E(G). We say that a vertex subset V0 ⊂ V(G) is in the
neighborhood of E0 if E0 ⊂

⋃
v∈V0

Ev, i.e., if ∂+e ∈ V0 or ∂−e ∈ V0 for all e ∈ E0.

Later on, E0 will be the set of connecting arcs of a covering graph, and we will choose V0 to be as
small as possible to guarantee the existence of spectral gaps (this set is in general not unique).

Theorem 1. Let W = (G, m) be a finite MW-graph with magnetic potential α and E0 ⊂ E(G). Then, for any
subset of vertices V0 in a neighborhood of E0 we have

W− 4W 4W+ , (6)
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where W− = (G−, m−) with G− = G− E0 and W+ = (G+, m+) with G+ = G− V0. In particular, we
have the spectral localizing inclusion

σ(∆W
α ) ⊂ J := J(W−, W+) =

|V(G)|⋃
k=1

[
λk(∆

W−
α− ), λk(∆

W+

α+ )
]
; . (7)

By construction, it is clear that the bracketing J = J(α) depends on the magnetic potential α.
In Section 5, we show in some examples how the localization intervals Jk change under the variation
of the magnetic potential (see, e.g., Figure 3). However, if the magnetic potential α has support on the
virtualized arcs E0, then J will not depend on α because α± ∼ 0.

Next, we make precise some notions concerning spectral gaps that will be needed when we study
covering graphs. Recall that σ(∆G

α ) ⊂ [0, 2ρ∞], where ρ∞ denotes the supremum of the relative weight,
(cf., Equation (3)).

Definition 7. Let W = (G, m) be a weighted graph.

(a) The spectral gaps set of W is defined by

SW = [0, 2ρ∞] \ σ(∆W) = [0, 2ρ∞] ∩ ρ(∆W) ,

where ρ(∆W) denotes the resolvent set of the operator ∆W.
(b) The magnetic spectral gaps set of W is defined by

MSW = [0, 2ρ∞] \
⋃

α∈A(G)

σ(∆W
α ) =

⋂
α∈A(G)

ρ(∆W
α ) ∩ [0, 2ρ∞].

where the union is taken over all the magnetic potential α acting on G.

The following elementary properties follow directly from the definition: MSW ⊂ SW.
In particular, if SW = ∅, thenMSW = ∅ or, equivalently, ifMSW 6= ∅, then SW 6= ∅. Moreover,
if G is a tree, thenMSW = SW, as all DMLs are unitary equivalent with the usual Laplacian ∆W.

Up to now, we have seen that arc/vertex virtualization will produce graphs W± that allows
localizing the spectrum of the DML of any intermediate MW-graph W satisfying

W− 4W 4W+.

4. Periodic Graphs and Spectral Gaps

In this section, we will study the spectrum of the DML of an infinite covering graph with periodic
magnetic potential in terms of its Floquet decomposition. In Proposition 2 the Floquet parameter
of the covering graph is identified with a suitable set of magnetic potentials α on the quotient (cf.,
Definition 10). This approach generalizes results in ([18], Section 5) to include Laplacians on the infinite
covering graph with a periodic magnetic potential β̃. Finally, in Theorem 2, we state a bracketing
technique to localize the spectrum.

4.1. Periodic Graphs and Fundamental Domains

Let Γ be an (Abelian) lattice group and consider the Γ-covering (or Γ-periodic) graph

π : G̃→ G = G̃/Γ .
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We assume that Γ acts freely and transitively on the connected graph G̃ with finite quotient
G = G̃/Γ (see also ([20], Chapters 5 and 6) or [18,21]). This action (which we write multiplicatively) is
orientation preserving, i.e., Γ acts both on Ṽ and Ẽ such that

∂+(γe) = γ(∂+e) and ∂−(γe) = γ(∂−e) for all γ ∈ Γ and e ∈ Ẽ.

In particular, we have Ẽγv = γẼv, γ ∈ Γ, v ∈ Ṽ.
In addition, we will study weighted covering graphs with a periodic weight m̃ and periodic

magnetic potential β̃, i.e., we consider W̃ = (G̃, m̃, β̃) an MW-graph such that for any γ ∈ Γ we have

m̃(γv) = m̃(v) , v ∈ Ṽ , m̃γe = m̃e , e ∈ Ẽ and β̃γe = β̃e , e ∈ Ẽ .

Note that, by definition, the standard or combinatorial weights on a covering graph satisfy the
invariance conditions on the weights. A Γ-covering weighted graph W̃ = (G̃, m̃) naturally induces
a weight m and a magnetic potential β on the quotient graph G = G̃/Γ, given by m = m̃ ◦ π−1 and
β = β̃ ◦ π−1.

We define next some useful notions in relation to covering graphs (see, e.g., [18], Section 5 as well
as ([22], Sections 1.2 and 1.3) and [8]).

Definition 8. Let G̃ = (Ṽ, Ẽ, ∂̃) be a Γ-covering graph.

(a) a vertex, respectively arc fundamental domain on a Γ-covering graph is given by two subsets DV ⊂ Ṽ
and DE ⊂ Ẽ satisfying

Ṽ =
⋃

γ∈Γ
γDV and γ1DV ∩ γ2DV = ∅ if γ1 6= γ2,

Ẽ =
⋃

γ∈Γ
γDE and γ1DE ∩ γ2DE = ∅ if γ1 6= γ2

with DE ∩ E(Ṽ \ DV) = ∅ (i.e., an arc in DE has at least one endpoint in DV). We often simply write
D for a fundamental domain, where D stands either for DV or DE.

(b) a (graph) fundamental domain of a covering graph G̃ is a partial subgraph (cf., Definition 1)

H = (DV , DE, ∂ �DE),

where DV and DE are vertex and arc fundamental domains, respectively. We call

B(H, G̃) := E(DV , V \ DV)

the set of connecting arcs of the fundamental domain H in G̃.

Remark 1.

(a) Fixing a fundamental domain on the covering graph and the group Γ will be used to give coordinates (to
the arcs and vertices) on the covering graph G̃.

In fact, given a specific fundamental domain DV in a Γ-covering graph G̃, we can write any v ∈ V(G̃)

uniquely as v = ξ(v)v0 for a unique pair (ξ(v), v0) ∈ Γ× DV . This observation follows from the fact
that the action is free and transitive. We call ξ(v) the Γ-coordinate of v (with respect to the fundamental
domain DV). Similarly, we can define the coordinates for the arcs: any e ∈ E(G̃) can be written as
e = ξ(e)e0 for a unique pair (ξ(e), e0) ∈ Γ× DE. In particular, we have

ξ(γv) = γξ(v) and ξ(γe) = γξ(e), for all γ ∈ Γ.
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(b) Once we have chosen a fundamental domain H = (DV , DE, ∂), we can embed H into the quotient
G = G̃/Γ of the covering π : G̃→ G = G̃/Γ by

DV → V(G) = V/Γ, v 7→ [v] and DE → E(G) = E/Γ, e 7→ [e],

where [v] and [e] denote the Γ-orbits of v and e, respectively. By definition of a fundamental domain,
these maps are bijective. Moreover, if ∂±e = v in H, then also ∂±([e]) = [v] in G, i.e., the embedding is
a (partial) graph homomorphism.

Definition 9. Let G̃ = (Ṽ, Ẽ, ∂) be a Γ-covering graph with fundamental graph H = (DV , DE, ∂). We define
the index of an arc e ∈ Ẽ as

indH(e) := ξ(∂+e) (ξ(∂−e))−1 ∈ Γ.

In particular, we have indH : Ẽ 7→ Γ, and indH(e) 6= 1Γ iff e ∈ ⋃γ∈Γ γB(H, G̃), i.e., the index is
only non-trivial on the (translates of the) connecting arcs. Moreover, the set of indices and its inverses
generate the group Γ.

Since the index fulfils indH(γe) = indH(e) for all γ ∈ Γ by (a) in Remark 1, we can extend the
definition to the quotient G = G̃/Γ by setting indG([e]) = indH(e) for all e ∈ E(G). We denote also
[B(H, G̃)] := {[e] | e ∈ B(H, G̃)}.

4.2. Discrete Floquet Theory

Let W̃ = (Ṽ, Ẽ, ∂̃, m̃) be a weighted Γ-covering graph and fundamental domain H = (DV , DE, ∂)

with corresponding weights inherited from W̃. In this context one has the natural Hilbert
space identifications

`2(Ṽ, m̃) ∼= `2(Γ)⊗ `2(DV , m) ∼= `2

(
Γ, `2(DV , m)

)
.

Floquet theory uses a partial Fourier transformation on the Abelian group that can be understood
as putting coordinates on the periodic structure and allows to decompose the corresponding operators
as direct integrals. Concretely, we consider

F : `2(Γ)→ L2(Γ̂), (Fa) (χ) := ∑
γ∈Γ

χ(γ)aγ

for a = {aγ}γ∈Γ ∈ `2(Γ) and where Γ̂ denotes the character group of Γ. We adapt to the discrete context

of graphs with periodic magnetic potential β̃ the main results concerning Floquet theory needed later.
See, e.g., ([7], Section 3) or [22] for details, additional motivation and references.

For any character χ ∈ Γ̂ consider the space of equivariant functions on vertices and arcs

`χ
2 (V, m) := {g : V → C | g(γv) = χ(γ)g(v) for all v ∈ V and γ ∈ Γ} ,

`χ
2 (E, m) := {η : E→ C | ηγe = χ(γ)ηe for all e ∈ E and γ ∈ Γ} .

These spaces have the natural inner product defined on the fundamental domains DV and DE:

〈g1, g2〉 := ∑
v∈DV

g1(v)g2(v)m(v) and 〈η1, η2〉 := ∑
e∈DE

η1,eη2,eme .

The definition of the inner product is independent of the choice of the fundamental domain (due
to the equivariance). We extend the standard decomposition to the case of the DML with periodic
magnetic potential (see, for example, [22,23]).
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Proposition 1. Let W̃ = (G̃, m̃) be a covering weighted graph where G̃ = (Ṽ, Ẽ, ∂̃) and β̃ is a periodic
magnetic potential . Then there are unitary transformations

Φ : `2(Ṽ) →
∫ ⊕

Γ̂
`χ

2 (Ṽ, m̃)dχ given by (Φ f )χ (v) = ∑
γ∈Γ

χ(γ) f (γv)

Φ : `2(Ẽ) →
∫ ⊕

Γ̂
`χ

2 (Ẽ, m̃)dχ given by (Φη)χ (v) = ∑
γ∈Γ

χ(γ)ηγe ,

such that
σ
(

∆W̃
β̃

)
=
⋃

χ∈Γ̂

σ
(

∆W̃
β̃
(χ)
)

,

where equivariant Laplacian (fiber operators) are defined as ∆W̃
β̃
(χ) := ∆W̃

β̃
�`χ

2 (Ṽ).

Proof. Consider the twisted derivative d
β̃

: `2(Ṽ)→ `2(Ẽ) specified in Equation (4) and the equivariant

twisted derivative on the fiber spaces defined by dχ

β̃
: `χ

2 (Ṽ)→ `χ
2 (Ẽ)

(dχ

β̃
g)e := eiβ̃e/2g(∂+e)− e−iβ̃e/2g(∂−e) , g ∈ `χ

2 (Ṽ) .

It is straightforward to check that if g ∈ `χ
2 (Ṽ), then dχ

β̃
g ∈ `χ

2 (Ẽ) and that ∆W̃
β̃
(χ) = (dχ

β̃
)∗dχ

β̃
.

Moreover, we will show that the unitary transformations Φ intertwine these two first order
operators, i.e.,

Φd
β̃

f =
∫ ⊕

Γ̂
dχ

β̃
(Φ f )χ dχ , f ∈ `2(Ṽ) .

In fact, this is a consequence of the following computation that uses the invariance of the magnetic
potential. For any f ∈ `2(Ṽ) and χ ∈ Γ̂(

Φ
(

d
β̃

f
))

χ,e
= ∑

γ∈Γ
χ(γ)

(
d

β̃
f
)

γe
= ∑

γ∈Γ
χ(γ)

[
eiβ̃γe/2 f (∂+γe)− e−iβ̃γe/2 f (∂−γe)

]
= ∑

γ∈Γ
χ(γ)

[
eiβ̃e/2 f (γ∂+e)− e−iβ̃e/2 f (γ∂−e)

]
=

(
dχ

β̃
(Φ f )χ

)
e

.

This shows that

∆W̃
β̃

=
∫ ⊕

Γ̂
∆W̃

β̃
(χ)dχ

hence, σ
(

∆W̃
β̃

)
=

⋃
χ∈Γ̂

σ
(

∆W̃
β̃
(χ)
)

.

4.3. Vector Potential as a Floquet Parameter

The following result shows that in the case of Abelian groups Γ, we can interpret the magnetic
potential α on the quotient graph partially as a Floquet parameter for the covering graph G̃→ G (see
(b) in Remark 1). Moreover, recalling the definition of coordinate giving in (a) in Remark 1) we can
define the following unitary maps (see also [24] for a similar definition in the context of manifolds):

UV : `2(V, m)→ `χ
2 (Ṽ, m̃),

(
UV f

)
(v) = χ(ξ(v)) f ([v]),

UE : `2(E, m)→ `χ
2 (Ẽ, m̃),

(
UEη

)
e
= χ(ξ(e)) (η)[e] .
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It is straightforward to check that UV and UE are well defined and unitary.

Definition 10. Let π : W̃ → W be a covering graph with periodic weights m̃, periodic magnetic potential β̃

and fundamental domain H. We denote by α a magnetic potential acting on the quotient G = G̃/Γ. We say
that α has the lifting property if there exists χ ∈ Γ̂ such that:

eiα[e] = χ (indH(e)) eiβ̃[e] for all e ∈ E. (8)

We denote the set of all the magnetic potentials with the lifting property as AH.

Proposition 2. Consider a Γ-covering graph π : W̃ → W with periodic magnetic potential β̃, where W̃ =

(G̃, m̃), W = (G, m) and H is a fundamental domain. Then

σ(∆W̃
β̃
) =

⋃
α∈AH

σ(∆W
α ) ⊂ [0, 2p∞] \MSW. (9)

Proof. By Proposition 1, it is enough to show

⋃
χ∈Γ̂

σ
(

∆W̃
β̃
(χ)
)
=

⋃
α∈AH

σ
(

∆W
α

)

To show the inclusion “⊂” consider a character χ ∈ Γ̂ and define a magnetic potential on G
as follows

eiα[e] := χ(indH(e)) eiβ̃[e] , e ∈ E . (10)

Then we have(
dχ

β̃
(UV f )

)
e

= eiβ̃e/2(UV f )(∂+e)− e−iβ̃e/2(UV f )(∂−e)

= eiβ̃e/2χ(ξ(∂+e)) f ([∂+e])− e−iβ̃e/2χ(ξ(∂−e)) f ([∂−e]).

On the other hand, we have

(UEdα f )e = χ(ξ(e))
(

eiα[e]/2 f ([∂+e])− e−iα[e]/2 f ([∂−e])
)

.

Therefore, the intertwining equation dχ

β̃
U = UEdα holds if

eiβ̃e/2χ(ξ(∂+e)) = χ(ξ(e))eiα[e]/2 and e−iβ̃e/2χ(ξ(∂−e)) = χ(ξ(e))e−iα[e]/2

or, equivalently, if

eiα[e] = χ(ξ(∂+e))χ(ξ(∂−e))−1 eiβ̃[e] = χ(indH(e)) eiβ̃[e] .

But this equation is true by definition of the magnetic potential on G given in Equation (10). Finally,
since ∆W̃

β̃
(χ) = (dχ

β̃
)∗dχ

β̃
and ∆W

α = d∗αdα, then it is clear that these Laplacians are unitary equivalent.

To show the reverse inclusion “⊃” let α ∈ AH and EH ⊂ E(G) is such that {indH(e) | [e] ∈ EH}
is a basis of the group Γ. Then define

χ(indH(e)) := eiα[e] e−iβ̃[e] , e ∈ EH (11)

and we can extend χ to all Γ multiplicatively, so that χ ∈ Γ̂. As before, we can show then σ
(

∆W̃
β̃
(χ)
)
=

σ
(
∆W

α

)
and the proof is concluded.
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4.4. Spectral Localization for the DML on a Covering Graph

We apply now the technique stated in Theorem 1 to covering graphs.

Theorem 2. Let W̃ = (G̃, m̃) be a Γ-covering graph and β̃ a periodic magnetic potential. Consider
a fundamental domain H = (DV , DE, ∂) and W = (G, m) with magnetic potential β, where G = G̃/Γ.
The functions m and β are induced by m̃ and β̃ respectively. Let

E0 := [B(H, G̃)]

be the image of the connectivity arcs on the quotient and V0 in the neighborhood of E0. Define by

W− := W− E0 and W+ := W−V0.

the corresponding arc and vertex virtualized graphs, respectively. Then

σ(∆W̃
β̃
) ⊂

|V(G)|⋃
k=1

[λk(∆
W−
β− ), λk(∆

W+

β+ )]︸ ︷︷ ︸
=:Jk

where the eigenvalues of σ(∆W−
β− ) and σ(∆W+

β+
) are written in ascending order and repeated according to

their multiplicities.

Proof. By Proposition 2 we have
σ(∆W̃

β̃
) =

⋃
α∈AH

σ(∆W
α ).

Now, by the bracketing technique of Theorem 1, we have for any potential with the lifting property
α ∈ AH (cf., Definition 6):

λk(∆
W−
α− ) ≤ λk(∆

W
α ) ≤ λk(∆

W
α+) for all k = 1, . . . , |V(G)| .

Therefore, by Equation (7)

σ(∆W̃
β̃
) =

⋃
α∈AH

σ(∆W
α ) ⊂

⋃
α∈AH

|V(G)|⋃
k=1

[
λk(∆

W−
α− ), λk(∆

W+

α+ )
]

;

since α has the lifting property, Equation (8) implies that there exists χ ∈ Γ̂ such that:

eiα[e] = χ (indH(e)) eiβ̃[e] for all e ∈ E.

But for all e ∈ E \ E0 = E \ [B(H, G̃)] the index is trivial, i.e., indH(e) = 1Γ (see Remark 1). Thus
by Γ-periodicity we obtain that βe = αe for all arcs e ∈ E \ E0. Since α and β are magnetic potentials
acting on G, and G− = G − E0 then then α− = β−. Similarly, for G+ = G − V0 with V0 in the
neighborhood of E0, we have that α+ = β+. We obtain finally

σ(∆W̃
β̃
) ⊂

⋃
α∈AH

|V(G)|⋃
k=1

[λk(∆
W−
β− ), λk(∆

W+

β+ )]︸ ︷︷ ︸
=:Jk

.

Note that the last union does not depend anymore of α and this fact concludes the proof.

Note that the bracketing intervals Jk depends on the fundamental domain H. a right choice is one
where the set of connecting arcs is as small as possible, providing high contrast between the interior
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of the fundamental domain and its boundary. In this case, we have a good chance that the localizing
intervals Jk do not cover the full interval [0, 2ρ∞]. This choice is a discrete geometrical version of
a “thin–thick” decomposition as described in [12], where a fundamental domain of the metric and
discrete graph has only a few connections to its complement.

The next theorem gives a simple geometric condition on an MW-graph W for the existence of
gaps in the spectrum of the DML on the Γ-covering graph. We will specify which arcs and vertices
should be virtualized in W to guarantee the existence of spectral gaps. This result generalizes the
Theorem 4.4 in [18].

Theorem 3. Let W̃ = (G̃, m̃) be a Γ-covering graph with a Γ-periodic magnetic potential β̃. Denote by
W = (G, m) the quotient graph with induced magnetic potential β and induced weights m, respectively.

The spectrum of the DML has spectral gaps, i.e., σ(∆W̃
β̃
) 6= [0, 2ρ∞], if the following condition holds: there

exists a vertex v0 ∈ V(G) and a fundamental domain H such that the connecting arcs [B(H, G̃)] contain no
loops, [B(H, G̃)] ⊂ Ev0 and

δ := ρ(v0)− ∑
e∈[B(H,G̃)]

me

m((v0)e)
− m([B(H, G̃)])

m(v0)
− λ1(∆W−

β− ) > 0 , (12)

where ρ(v0) = m(Ev0))/m(v0) is the relative weight at v0 and W− = (G−, m−) with G− = G− [B(H, G̃)].

Proof. Consider the following arc and vertex virtualized weighted graphs:

W− := W− [B(H, G̃)] and W+ := W− {v0} .

Then by Theorem 2, we obtain

σ(∆W̃
β̃
) ⊂

|V(G)|⋃
k=1

[λk(∆
W−
β− ), λk(∆

W+

β+ )]︸ ︷︷ ︸
=:Jk

= J ⊂ [0, 2ρ∞].

To prove that σ(∆W̃
β̃
) 6= [0, 2ρ∞], it is enough to show that the measure of [0, 2ρ∞] \ J is positive

and it can be estimated from below by:

n−1

∑
k=1

(
λk+1

(
∆W−

β−
)
− λk

(
∆W+

β+
))

=
n

∑
k=2

λk
(
∆W−

β−
)
−

n−1

∑
k=1

λk
(
∆W+

β+
)

= Tr
(
∆W−

β−
)
− Tr

(
∆W+

β+
)
− λ1

(
∆W−

β−
)
. (13)

Therefore it is enough to calculate Tr(∆G+

β+
) and Tr(∆G−

β− ) (see [18], Proposition 3.3).

Step 1: Trace of ∆G−
β− . We define W− = (G−, m−) where G− = G − [B(H, G̃)]. Recall that

V(G−) = V(G), E(G−) = E(G) \ [B(H, G̃)]; the weights on V(G−) and E(G−) coincide with the
corresponding weights on W. The relative weights of W− are

ρ−(v) =



ρW(v)−
m
(
[B(H, G̃)]

)
m(v)

, if v = v0,

ρW(v)−
m
(
[B(H, G̃)] ∩ Ev

)
m(v)

, if v ∈ Bv0 ,

ρW(v), otherwise,
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where
Bv0 = {v ∈ V(G) | v = (v0)e for some e ∈ [B(H, G̃)] with v 6= v0}.

The trace of ∆G−
β− is now

Tr
(
∆G−

β−
)
=

n

∑
k=1

λk
(
∆G−

β−
)
= ∑

v∈V(G)

ρ−(v)

= ∑
v∈V(G)

ρW(v)−
m
(
[B(H, G̃)]

)
m(v)

− ∑
v∈Bv0

m
(
[B(H, G̃)] ∩ Ev

)
m(v)

. (14)

Step 2: Trace of ∆W+
. Let W+ = (G+, m+), then the trace of ∆W+

β+
is given by

Tr
(
∆W+

β+ ) =
n−1

∑
k=1

λk
(
∆W

β

)
= ∑

v∈V(G)
v 6=v0

ρW(v). (15)

Combining Equations (13)–(15) we obtain

Tr
(
∆W−

β−
)
− Tr

(
∆W+

β+
)
− λ1

(
∆W−

β−
)
= ρW(v0)−

m([B(H, G̃)])

m(v0)
− ∑

v∈Bv0

m([B(H, G̃)] ∩ Ev)

m(v)
− λ1

(
∆W−

β−
)

= ρW(v0)−
m
(
[B(H, G̃)]

)
m(v0)

− ∑
e∈[B(H,G̃)]

me

m((v0)e)
− λ1

(
∆W−

β−
)
= δ

as defined in Equation (12). This shows that if δ > 0, then the spectrum of the DML is not the full
interval.

Remark 2.

(a) If the graph has the standard weights, the condition becomes:

δ = 1− ∑
e∈[B(H,G̃)]

1
deg((v0)e)

− |[B(H, G̃)]|
deg(v0)

− λ1(∆W−
β− ) > 0 , (16)

where |[B(H, G̃)]| denote the cardinality of the set [B(H, G̃)].
(b) If we have the combinatorial weights, the condition becomes simply:

δ = deg(v0)− 2 |[B(H, G̃)]| − λ1(∆W−
β− ) > 0 . (17)

5. Examples

In this final section, we consider some examples of covering graphs used as models of important
chemical compounds, like the polyacetylene and the graphene nanoribbons. The bracketing technique
of Theorem 2 is used to localize the spectrum bands and gaps of the infinite covering graphs under the
action of a periodic magnetic potential β̃. In particular, we show the dependence of the spectral gaps
on the periodic potential β̃.

Let G̃ be a periodic graph. For simplicity, we consider here planar periodic magnetic potentials β̃

with the property that the flux through all cycles on G̃ is constant and equal to s for some s ∈ [0, 2π).
Two magnetic potentials are cohomologous if and only if they induce the same flux through all the
cycles on the graph. Then, any periodic β̃ function on the arcs is identified with one unique value
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in s ∈ T. We call β̃ as a constant magnetic field with value s. a similar analysis could be done for
non-constant magnetic potentials.

Let W̃ = (G̃, m̃) be a periodic weighted graph with β̃ a constant magnetic field. The graph G̃
models polyacetylene in Section 5.1 as well as nanoribbons with different symmetries in Section 5.2.
In order to study the spectrum σ(∆W̃

β̃
), we will use the results in Section 4 to obtain bracketing intervals

localizing the spectrum and showing the existence of spectral gaps.

5.1. Polyacetylene with Magnetic Field

For the first illustration of the existence of spectral gaps for covering graphs with periodic magnetic
potential, we study the graph modeling polyacetylene. This compound is an organic polymer that
consists of a chain of carbon atoms (white circles) with alternating single and double bonds between
them, each with one hydrogen atoms (black vertex). We denote this MW-graph as W̃ = (G̃, m̃), where
G̃ is the graph in Figure 2a. The polyacetylene belongs to the family of polymers, a chemical compound
in long repeated chains modeled by covering graphs. The polymers have relevant electrical properties
(see, e.g., [25,26] and references therein). In particular, the polyacetylene is a simple polymer with
good electric conductance (cf., [27]). In [18] is studied the spectrum of the Laplacian in the infinite
polyacetylene graph without any magnetic field. Applying the results of Section 4, we can now study
the spectrum of the DML in the polyacetylene graph under the action of a periodic magnetic potential,
in particular, the size and localization of the spectral gaps. For the polyacetylene we will prove the
following facts:

• Fact 1. Let m̃ be the standard weights and β̃ a constant periodic magnetic potential. We show how
to apply the bracketing technique to localize the spectrum for a specific value of the magnetic
potential (equal to s = π/2) and then, how the bracketing intervals change as a function of β̃. We
will show the existence of spectral gaps.

• Fact 2. Let m̃ be the combinatorial weights and β̃ a periodic magnetic potential (not necessarily
constant). Using the condition on δ in Equation (17), we show the existence of spectral gaps.

• Fact 3. Let m̃ be the standard weights, we show the existence of periodic magnetic spectral gaps,
i.e., a spectral gap which is stable under any perturbation of the constant periodic magnetic field.

Fact 1. We define a periodic magnetic potential β̃ acting as in Figure 2a, i.e., the potential acts only
on the cycles defined by the double bonds. Observe that the action of any constant magnetic field on
the polymer can be described by putting a suitable value s for the magnetic potential as in Figure 2a.
To be concrete, we put first the value s = π

2 and want to specify the band/gap structure of the spectrum

σ(∆W̃
β̃
). The graph G̃ in Figure 2a is the infinite covering of the finite graph G in Figure 2b. This graph

is bipartite and has Betti number 2. In this case, if W = (G, m) with m the standard weights, we have
by Proposition 2 that

σ(∆W̃
β̃
) =

⋃
t∈[0,2π)

σ(∆W
αt ),

where αt is a magnetic potential acting on the quotient W with αt(e1) = t, αt(e2) = s and zero in all the
other arcs. Define E0 := {e1} and V0 := {v1}, so that V0 is in the neighborhood of E0 (see Definition 6).
Then we construct W+ and W− as before virtualizing arcs and vertices, i.e., G− := G − E0 and
G+ := G− V0 as in Figure 2c. The induced weights m− is defined as in Definition 4 and m+ as in
Definition 5. Using the notation of the Theorems 1 and 2 we get σ(∆G̃

β̃
) ⊂ J ⊂ [0, 2], where J is the

union of the localizing intervals Jk (see Figure 2d for the case of s = π/2). Since G is bipartite, we
have the symmetry of spectrum under the function κ(λ) = 2− λ (cf., [12], Proposition 2.3), hence we
also have σ(∆G̃

β̃
) ⊂ κ(J). Therefore, the intersection gives a finer localization of the spectrum, i.e., we
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obtain finally σ(∆G̃
β̃
) ⊂ J ∩ κ(J). In this example, our method works almost perfectly, since we can

determine almost precisely the spectrum:

J ∩ κ(J) \ {1} = σ
(

∆W̃
β̃

)
.

s

0

s

0

(a) Polyacetylene modeled by the covering graph G̃.
v1 v2e2

e1

(b) The quotient graph G.
v1 v2e2

e1

v1 v2e2

e1

(c) The graph G− and the graph G+ .

0 1 2

J
κ(J)

J ∩ κ(J)
σ(∆W̃

β̃
)

(d) s = π/2.
Figure 2. Spectral gaps of the polyacetylene graph for a constant magnetic potential β = s. Here, J is
the spectral localization for the pair G− {e1} and G− {v1}. Bipartiteness gives a finer localization
J ∩ κ(J). In this case, we obtain the spectrum almost exactly, except for the spectral value 1.

In conclusion, given a covering graph W̃ with a periodic magnetic potential β̃ (see Figure 2 for
s = π

2 ), we were able to determine σ(∆W̃
β̃
) just by specifying the localization of the spectrum given by

J ∩ κ(J) (and without computing explicitly the spectrum). It is clear that J depends on β̃ and therefore
of the value of s. Therefore for each value of β̃, we can construct a bracketing J(β̃) of intervals for
the spectrum of ∆W̃

β̃
and since in this case, we have the reflection symmetry specified by κ and using

the Cauchy’s theorem, it is proved [28] that the eigenvalues of W− and the eigenvalues of W are
interlaced, therefore we can give a much more precise localization of the spectrum. In Figure 3 we
plot the spectrum σ(∆G̃

β̃
) of the DML as a function of the periodic magnetic potential β̃ varying within

the interval [0, 2π]. Here one can appreciate how the size of the gaps and their localization within the
interval [0, 2] changes as a function of the external magnetic field.
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Figure 3. The horizontal axis represents the values of the magnetic potential β̃ ∈ [0, 2π) acting on the
polyacetylene polymer with standard weights. For any fixed β̃ we obtain the intervals J given by the
bracketing technique as we did in the case β̃ = π/2 in Figure 2 (and also using the symmetry given
by the bipartiteness). In the vertical axis, we represent the spectral bands and gaps for each constant
value β̃.

Fact 2. We have proved using the bracketing technique that the polyacetylene with standard
weights has spectral gaps for any constant periodic magnetic potential acting on it. Now, if we consider
the polyacetylene with combinatorial weight, we will prove more easily the existence of spectral
gaps for all periodic magnetic potentials (not necessarily constant). Formally, let W = (G̃, m̃) be
the MW-graph where G̃ is the polyacetylene (Figure 2a), m̃ are the combinatorial weights and β̃ any
periodic magnetic potential. Let G− as in Fact 1, but now m− are also the combinatorial weights. First,
we observe that λ1(∆W−

β− ) < 2, then we calculate δ from condition in Equation (17), i.e.,

δ = deg(v1)− 2 |[B(H, G̃)]| − λ1(∆W−
β− ) > 4− 2− 2 = 0,

then by Theorem 3 we have spectral gaps. Observe we do this without computing explicitly
any eigenvalue.

Fact 3. Our method of virtualizing suitable arcs and vertices allows to proceed also alternatively.
Define now E1 := {e1, e2} and V1 := {v1} so that V1 is a neighborhood of E1 (see Definition 6).
We construct as usual the MW-graphs W+

1 and W−1 setting G+
1 = G− E1 and G−1 = G− V1 as in

Figure 4 and inducing the weights as in Definitions 4 and 5 (observe that in this case W+
1 = W+).

Using the notation of the Theorem 1 and Proposition 2 we observe now that the spectral localization
intervals do not depend on the periodic magnetic potential. In fact, using the same idea that before
we obtain

σ(∆W̃
β̃
) ⊂

[
0,

3
4

]
∪
[

5
4

, 2
]

for all periodic constant magnetic potential β̃,

in particular, the interval ( 3
4 , 5

4 ) is a spectral gap which is stable under any perturbation by the magnetic
field. Finally, we note that if the magnetic potential has a constant value equal to π then the spectrum
degenerates to four eigenvalues with infinity multiplicity, i.e., the gaps consist of the whole interval
[0, 2] except for the four eigenvalues. Under the influence of this particular value, the polyacetylene
acts like an insulator.
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v1 v2e2

e1

v1 v2e2

e1

Figure 4. Using this graph G−1 and G+
1 , we can find spectral gaps in common for all periodic magnetic

potential β̃ acting on the polyethylene, represented by the covering graph G.

5.2. Graphene Nanoribbons

In this subsection, we will apply our method to study the example of the graphene nanoribbons
(GNRs), also known as nano-graphene ribbons or nano-graphite ribbons. These are strips of graphene
with semiconductive properties which are very promising as nano-electronic devices (see, e.g., [29]).
One of the most interesting fields of research of the nanoribbons is the energy gaps as a function
of their widths. We refer, for example, to [6,16]. The GNRs repeat their geometry structure in two
different ways and are represented as Z-covering graphs (see Figure 5).16 JOHN STEWART FABILA-CARRASCO AND FERNANDO LLEDÓ

1

2

3

4

...

Na

Periodic direction
W

idth

(a) Armchair nanoribbons

Periodic direction

Nz

...

4

3

2

1

(b) Zigzag nanoribbons

Figure 5. Two structures of the graphene nanoribbons: armchair and zigzag. These
structures are covering graphs only in one direction.

Figure 6a is the finite quotient graph G = G̃/Z. Define in this case E1 = {e1} and V1 = {v1}
so that V1 is a neighborhood of E1 (see Definition 3.4). We construct W+

1 and W−
1 as before:

G+
1 = G−E1 and G−1 = G−V1 (cf., Figure 6b). The weights are induced as in Definitions 3.2

and 3.3. Using again the notation of the Theorem 3.5 and Proposition 4.6 we obtain now a
spectral localization J that depends on β̃. Finally, in Figure 6c, we plot the spectral bands
and gaps specified by J for the different values of the magnetic field within the interval [0, 2π].
Observe that in this case, we do not have a spectral gap common to all values of β̃ (as we had
for the polyacetylene).

A similar analysis could be done for any Na-aGNR under the action of any periodic magnetic
potential, and the bracketing technique will give good estimates of the intervals where the
spectrum lies.

Also, observe that for the combinatorial weights, we can show the existence of spectral gaps
using the condition of Eq. 4.10 as in Fact 2 in the polyacetylene example. We have in this
case,

δ = deg(v1)− 2 |[B(H, G̃)]| − λ1(∆W−
β− ) > 3− 2− 1 = 0.

(ii) The second variant is the so-called zigzag nanoribbon with a width equal to Nz are denoted
as Nz-zGNR (see Figure 5). Consider W = (G̃, m̃) the MW-graph with standard weights and
G̃ is the graph given by the zigzag nanoribbons for a fixed Nz, and β̃ ∼ 0 acting on G̃. In this
case, our spectral localization method does not specify spectral gaps (i.e., the spectral bands
overlap). The reason is that for any width Nz the spectrum of the zigzag nanoribbons satisfy
σ(∆W̃

0 ) = [0, 2], i.e., in this case there are no spectral gaps. This fact is also confirmed by our
method.

(a) Armchair nanoribbons (b) Zigzag nanoribbons

Figure 5. Two structures of the graphene nanoribbons: armchair and zigzag. These structures are
covering graphs only in one direction.

(i) The first variant is called armchair nanoribbon with a width equal to Na and denoted as Na-aGNR
(see Figure 5). Consider for example the case of a 3-aGNR which has a similar structure as the
poly-para-phenylene (PPP), one of the most important conductive polymers. Let W = (G̃, m̃) be
the MW-graph with standard weights where G̃ is the Z-covering graph representing the 3-aGNR
and β̃ is a constant (periodic) magnetic potential, the idea is to use the bracketing technique
to localize σ(∆W̃

β̃
) and we proceed as in the previous examples. Figure 6a is the finite quotient

graph G = G̃/Z. Define in this case E1 = {e1} and V1 = {v1} so that V1 is a neighborhood of
E1 (see Definition 6). We construct W+

1 and W−1 as before: G+
1 = G− E1 and G−1 = G−V1 (cf.,

Figure 6b). The weights are induced as in Definitions 4 and 5. Using again the notation of the
Theorem 1 and Proposition 2 we obtain now a spectral localization J that depends on β̃. Finally,
in Figure 6c, we plot the spectral bands and gaps specified by J for the different values of the
magnetic field within the interval [0, 2π]. Observe that in this case, we do not have a spectral gap
common to all values of β̃ (as we had for the polyacetylene).

A similar analysis could be done for any Na-aGNR under the action of any periodic magnetic
potential, and the bracketing technique will give good estimates of the intervals where the
spectrum lies.
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Also, observe that for the combinatorial weights, we can show the existence of spectral gaps using
the condition of Equation (17) as in Fact 2 in the polyacetylene example. We have in this case,

δ = deg(v1)− 2 |[B(H, G̃)]| − λ1(∆W−
β− ) > 3− 2− 1 = 0.

v1
e1

(a) The quotient graph G of 3-aGRN.

v1
e1 v1

e1

(b) The graph G− and the graph G+ .

π

�
π � π
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(c) Spectral bands and gaps as a function of the constant (periodic) magnetic potential β̃.

Figure 6. Spectral structure in bands/gaps of the magnetic Laplacian on the nanoribbons 3-aGNR .
a constant magnetic potential is acting on the graph with value β̃ = s. Here, the bracketing intervals J
gives a localization set of the spectrum, and this localization is given by the pair G− = G− {e1} and
G+ = G− {v1}, together with the bipartitness and interlacing.

(ii) The second variant is the so-called zigzag nanoribbon with a width equal to Nz are denoted as
Nz-zGNR (see Figure 5). Consider W = (G̃, m̃) the MW-graph with standard weights and G̃ is
the graph given by the zigzag nanoribbons for a fixed Nz, and β̃ ∼ 0 acting on G̃. In this case, our
spectral localization method does not specify spectral gaps (i.e., the spectral bands overlap). The
reason is that for any width Nz the spectrum of the zigzag nanoribbons satisfy σ(∆W̃

0 ) = [0, 2], i.e.,
in this case there are no spectral gaps. This fact is also confirmed by our method.
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