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Abstract: The present study’s objective is to focus on some developments in the field of statistical
models of a complex system, like nanoparticles responses in the environmental media. An important
problem that still needs to be studied and interpreted is the relations between physicochemical
parameters of the nanoparticles like primary size, primary hydrophobic diameter, zeta potential, etc.
with respective toxicity values. It holds true especially for silver nanoparticle systems due to their
known bactericidal effect and wide distribution in practice. The present study deals with the data for
physicochemical and toxicity parameters of 94 different silver nanoparticle systems in order to reveal
specific relations between physicochemical properties and acute toxicity readings using multivariate
statistical methods. Searching for these specific relationships between physicochemical parameters
and toxicity responses is the novel element in the present study. This has focused our study toward
developing a model that describes the relationship between physicochemical properties and toxicity
of silver NPs based on a dataset gathered from the literature. It is shown that the systems studied
could be divided into four patterns (clusters) of similarity depending not only on the physicochemical
indicators related to particles size but also by their acute toxicity. The acute toxicity is strongly
correlated to the zeta potential of the particles if the whole data set is considered.
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1. Introduction

With the increasing interest and application of nanosystems as advanced materials, the questions
about their environmental and health impact is respectively growing. The principal question that
needs to be answered is: Whether there is a connection between the specific size of the nanomaterials
and their influence on the ecological and health status of the nature and humans.

Nanoparticle pollution is an evolving problem currently for aquatic and soil environments.
Nanoparticles can enter the environment after relief from a vast number of uses in the commercial
and pharmaceutical product through disposal, weathering, application of sewage sludge or with
sewage effluent waters. In the soil environments and as well the aquatic once, expected to collect
increasing amounts of nanoparticle pollution. The question and concern are how nanoparticle
pollution will distress the processes mediated in a bacterial level, because of their antibacterial actions.
Silver nanoparticles (AgNP) are frequently used for these antibacterial properties. The major factors
controlling nanoparticle toxicity to bacteria are size, charge, shape, number of nanoparticles per cell,
aggregation, nature if the capping agents and interaction with UV light. Numerous modes in a
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different level of action have been applied for the antibacterial activities prediction and classification
including membrane destabilization, generation of damaging oxygen radical species, intracellular
nanoparticle-DNA or protein interactions and release of metal ions.

Based on the original data sources, on recently published articles explores several specific problems
of the environmental and health effects of AgNPs, for example: Nanoparticle size depending properties
and measurement of acute toxicity and ecotoxicity by different biological test organisms. Despite the
vivid interest in these issues there are not satisfactory experimental efforts to carry out complex studies
that have the heterogeneity of the available literature sources tends to many missing values and
different quality levels.

An important task is to study the transformation of the silver nanoparticles in the environment.
This transformation leads to modification of the properties of the nanoparticles and affects their toxicity.
This review discusses the major transformation processes of Ag-NPs in various aqueous environments,
particularly transformations of the metallic Ag cores caused by reactions with (in)organic ligands,
and the effects of such transformations on physical and chemical stability and toxicity. Toxicology
studies of Ag-NP transformation products, including different states of aggregation and sulfidation,
are also required. In addition, there is the need to characterize the surface structures, compositions,
and morphologies of Ag-NPs. That is why it is important to have information on the possible
links between physicochemical parameters of Ag-NPs and their toxicity before the processes of
transformation in the environment. As an application example, we have applied cluster analysis to
automatically determine the optimal number of clusters in a cluster analysis approach for such a
complex system.

Another task is to elucidate the mechanism of toxicity of AgNPs. These nanosystems are often used
as antimicrobial agents, due to the release of either the AgNPs themselves or silver ions. The mechanism
of the biological activity is not fully understood yet. In the study cited, Pseudomonas aeruginosa (a model
for Gram-negative bacteria) was treated with AgNPs, and its proteomic response was characterized to
clarify the antimicrobial mechanism of AgNPs. Bioinformatic analysis revealed that interference with
the cell-membrane function and generation of intracellular reactive oxygen species (ROS) were the
main pathways for the antibacterial effect. The pattern of membrane proteins regulated by AgNPs
was similar to that found for silver ions. In addition, the same silver-binding proteins were obtained
with both AgNPs and silver ions, which indicated that AgNPs probably affect the cell membrane
and react with proteins by releasing silver ions. The results indicate that antimicrobial activity of
AgNPs is due to the synergistic action of release of dissolved silver ions and particle-specific effects.
Overall, the proteomic and bioinformatic analysis of silver-binding and silver-regulated proteins in the
present study provides new insight into the mechanism of antimicrobial activity of such nanomaterials.
Research performed shows one of the possible ways for revealing the effect of toxicity of AgNPs.
However, no specific links to particle size parameters are yet sought.

The third major task is to throw a new insight in the relationship “nanoparticle size/acute toxicity”.
As already known the basic idea of nanotechnologies is based on size-dependent properties of

particles in the 1–100 nm range. However, the relation between the particle size and biological effects
remains unknown. In studies carried out previously analyses a homogenous set of experimental
toxicity data on AgNPs of similar coating (citrate) but of five different primary sizes (10, 20, 40,
60 and 80 nm) to different types of organisms/cells commonly used in toxicity assays: Bacterial, yeast
and algal cells, crustaceans and mammalian cells in vitro were analyzed. The toxic effects of NPs to
different organisms varied vastly, the lowest is (approx. 0.1 mg Ag/L) for crustaceans and algae and
the highest is (approx. 26 mg Ag/L) for mammalian cells. The analysis showed that the toxicity of
20–80 nm Ag NPs could fully be explained by released Ag ions whereas 10 nm Ag-NPs proved more
toxic than predicted. Using Escherichia coli Ag-biosensor, the authors show that 10 nm Ag-NPs were
more bioavailable to E. coli than silver salt (AgNO3). Thus, one may conclude that 10 nm Ag-NPs had
more efficient cell-particle contact resulting in higher intracellular bioavailability of silver than in case
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of bigger NPs. Although the latter conclusion is initially based on one test organism, it may lead to an
explanation for size dependent biological effects of silver Ag-NPs [1–3].

The major goal of the present study is to reveal patterns of similarity due to the specific relationships
between the different nanoparticle systems collected from literature sources, on one hand, and between
the estimators of structural or ecotoxicity properties, on the other. There are studies dealing with
relationship between particle size parameters and particle properties but quite few using acute toxicity
as additional estimator of the nanoparticle applications and options within a common data set subject
to multivariate statistical analysis.

2. Experimental

2.1. Chemometric Methods

Chemometric tools have been frequently applied from analytical and pharmaceutical method
optimization problems and environmental issues to spectroscopy data analysis. The use of chemometric
for the treatment of different data sets provides a valuable tool for objective decision-making.

The intelligent data analysis uses cluster analysis (hierarchical and non-hierarchical mode) and
principal components analysis (Varimax rotation mode) for the data classification and interpretation.
The multivariate methods used in the present study are well known and developed chemometric
approaches for classification, modeling and interpretation of experimental datasets.

Hierarchical cluster analysis (joining tree mode) is an unsupervised pattern recognition method
whose aim is to construct patterns of similarity either between objects of interest described by various
features (variables) or between the different features related to the objects. The major steps in performing
hierarchical clustering from the data are: Data standardization (by z-transform) in order to eliminate
differences in the variable dimensions; determination of a similarity measure between the objects of
interest (normally squared Euclidean distances); linkage between the objects (among many options
Ward’s method is often preferred) and, finally, assessment of the clusters significance (e.g., by Sneath’s
criterion) [4]. The graphical output of the analysis is a tree-like plot called dendrogram. Very often
it is said that the unsupervised pattern recognition is a spontaneous classification method without
any preliminary training of the data set to follow a specific requirement to classify the data into a
preliminary chosen number of similarity groups.

Another clustering option is offered by non-hierarchical clustering (e.g., K-means methods),
which is a supervised technique requiring the division of the studied objects into a priori given
number of clusters (determined by some practical or theoretical reasons). K-means is a clustering
algorithm, which divides observations into k clusters. Since we can predetermine the number of
clusters, it can be easily used in classification where we divide data into clusters, which can be equal
to or more than the number of classes. This approach is suitable for solving classification problems
and resembles other traditional chemometric methods for classification as, for instance, partially least
squares regression-based discriminant analysis (PLS—DA).

Principal component analysis (PCA) seems to be the most widespread multivariate chemometric
technique and is a typical display method (also known as eigenvector analysis, eigenvector
decomposition or Karhunen-Loéve expansion). It enables revealing the “hidden” structure of the data
set and helps to explain the influence of latent factors on the data distribution. PCA is done on the
covariance matrix when the data are centered or on correlation matrix when the data are standardized.
PCA transforms the original data matrix into a product of two matrices, one of which contains the
information about the objects the other about the variables [5].

Interpretation of the results of PCA is shown by visualization of the component scores and
loadings. In the score plot, the linear projection of objects is found, representing the main part of the
total variance of the data (in the plot PC1 vs. PC2). Other projection plots are also available (e.g.,
PC1 vs. PC3 or PC2 vs. PC3) but they represent less percentage of explained total variance of the



Symmetry 2019, 11, 1159 4 of 12

system in consideration. Correlation and importance of feature variables is to be decided from the
factor loadings plots.

All statistical analyses were carried out using STATISTICA 8.0 statistical software.

2.2. Subsection

The input data (Supplementary Materials) set consists 94 different nanoparticle systems (complete
dataset – S1) described by four physicochemical variables (primary size (PS), primary hydrodynamic
parameter (PHD), primary hydrodynamic parameter in test media (DLS), zeta potential in test media
(ZP) and, additionally, by the acute toxicity measure (AT) presented as value of EC50 (acute toxicity is
measured using crustacean organisms (Daphnia magna), bacteria (Thamnocephalus platyurus, Escherichia
coli K12, Pseudomonas fluorescens OS8, Pseudokirchneriella subcapitata, P. putida KT2440, P. aeruginosa
DS10-129 and Staphylococcus aureus RN2440), mammalian cells, algae, yeast and fungi. The input
data set for AgNPs based on literature data is presented in Table 1. The references used for the data
collection are presented in the reference list [6–21].

Table 1. The input data set for silver nanoparticles (Ag-NPs) based on literature data.

Object No. Test Organism Test Media Surface Coating Ref.

1–6 D. magna Synthetic fresh water Citrate [6]

7–13 D. magna Moderately hard
reconstituted water

Uncoated Citrate Coffee
Sigma Organic [7]

14–33 D. magna,
T. platyurus Artificial fresh water Protein PVP [8]

34–63

D. magna,
E. coli,
P. fluorescens,
S. cerevisiae,
P. subcapitata,
Murine fibroblasts

Artificial fresh water Citrate [3]

64–69 D. magna,
E. coli Moderate hard water BPEI PVP Citrate [9]

70 E. coli M9 medium protocol Bovine Serum Albumin [10]

71–73
D. magna,
D. pulex,
D. galatea

M4 medium without
EDTA PVP [11]

74–76 D. magna SM7 MEDIUM Lactate, PVP Sodium
dodecylbenzene sulfonate [12]

77–94

E. coli,
P. fluorescens,
P. putida,
P. aureginosa,
B. subtilis,
S. aureus

Distilled water Uncoated PVP Casein [13]

3. Results

The input data set was standardized by the z-transform procedure in order to eliminate the
parameter dimension impact on the classification and interpretation results.

The study started with the application of PCA in order to reveal the specific data set structure and
to identify the latent factors responsible for this structure.

As already mentioned, one of the goals of this study was to find relationships between the features
used for description of the nanoparticle systems. Principal components analysis (PCA) was used also
in order to search for similarity between features. Two latent factors were identified, which explain
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nearly 65% of the total variance. In Table 2 the factor loadings (in bold are marked the variables with
highest loadings) are presented giving a reliable explanation between features similarity.

Table 2. Factor loadings (varimax normalized; marked loadings are significant).

Variable PC1 PC2

Primary size (PS) 0.89 0.03
Primary hydrodynamic diameter (PHD) 0.86 0.21
DLS Hydrodynamic diameter in the test media (DLS) 0.68 −0.37
Zeta potential of nanomaterial in the test (ZP) −0.19 −0.63
Acute Toxicity measure (AT) 0.19 −0.78
Explained Variance % 41.50 23.70

As seen, there was a close relationship between three of the physicochemical parameters (PS,
HPD and DLS), which have high factor loadings on PC1. It confirms that these three parameters
simultaneously were responsible for the structural identity of the nanoparticle systems in consideration
and could be (again simultaneously) a discriminating factor for every single nanoparticle composition.
The conditional name of PC1 could be the “structural” factor.

The acute toxicity and the zeta potential were negatively correlated to the rest of variables with
high negative factor loadings on PC2. It means that these two estimators were different discriminating
type of variables for the nanoparticle compositions studied. The conditional name of PC2 could be
“toxicity” factor.

These results were completely confirmed by application of non-hierarchical clustering by the
K-means method. As previously mentioned, the non-hierarchical clustering is a supervised pattern
recognition method and allows accepting or rejecting a priori presented hypotheses about data
classification. In the present case the a priori hypothesis states that the variables involved were
separated into two classes of similarity related with structural and toxic properties of the AgNPs.
The K-means analysis output gives the following two groups of variable similarity as follows:

Members of cluster 1 (zeta potential, acute toxicity);
Members of cluster 2 (primary size, primary hydrodynamic diameter, hydrodynamic diameter in

the test media);
This result confirms the PCA latent factors identification with a “toxic” and a “structural” cluster.
In Figure 1 the plot of average values for each of the clusters formed by non-hierarchical clustering

for each of the 94 AgNPs systems studied is presented.
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It is seen that the “toxicity” impact becomes more significant for systems with numbers higher
than 60 (dominantly algae, mammalian cells, bacteria as test organisms for toxicity testing), high zeta
potential values and lower primary size. The “structural” impact was significantly expressed for
systems with very higher primary size and primary hydrodynamic diameter. It confirmed previous
conclusions about the toxicity as a function of the primary size of AgNPs [3].

In the next step of chemometric analysis it was a substantial interest to find similarity patterns
between the nanosystems in consideration. In Figure 2 a hierarchical dendrogram for clustering of all
nanosystems is presented. The hierarchical clustering allows a spontaneous formation of similarity
groups within the objects of interest. Four major clusters were formed as indicated in the dendrogram.

The hierarchical clustering created spontaneously four major clusters as follows:
K1 (10, 11, 13, 70);
K2 (65, 66, 68, 69, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94);
K3 (7, 8, 9, 12, 36, 37, 38, 41, 42, 43, 46, 47, 48, 51, 52, 53, 56, 57, 58, 59, 60, 61, 62, 63);
K4 (1, 2, 3, 4, 5, 6, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 39,

40, 44, 45, 49, 50, 54, 55, 64, 67, 71, 72, 73).
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This classification of the nanosystems was confirmed by using a non-hierarchical clustering.
We were using the hypothesis that all systems should be divided into four clusters (patterns) depending
on the systems specificities—physicochemical features (all size measures PS, PHD, and DLS) zeta
potential ZP, acute toxicity AT and group of outliers.

K1 was the cluster whose members were typical outliers. From the input data set was seen,
for instance, that object 70 shows the highest acute toxicity level indicated by bacterial assay, highest
value for hydrodynamic diameter and very high negative zeta potential. The group of objects 10, 11 and
13 was characterized by very high values of the hydrodynamic diameter. The last three nanosystems
were tested for acute toxicity by crustacean organisms (Daphnia magna).

K2 included 26 members whose acute toxicity was determined either by crustacean or by bacterial
assays. The cluster was characterized by the lowest values of the particle size parameters and of the
toxicity readings.

Cluster K3 consisted of 23 members with relatively high values of the size parameters but with
respect to toxicity resembles the average value of cluster 2 and next cluster 4. There was no specificity
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to the bioassays applied for measuring acute toxicity (dominantly crustacean and bacteria; it should be
kept in mind that the majority of the acute toxicity measurements were performed by the use of these
two bioassay types).

The last cluster included the largest number of objects (totally 41). It was characterized by the
presence of nanoparticles with highest zeta potential. The acute toxicity was relatively high and was
determined by various test organisms (crustacean, bacteria, algae, yeast, mammalian cells and fungi).
It could be assumed that there was no specificity for the test organisms that were observed.

In next Table 3 the average values for each variable for each one of the identified by hierarchical
cluster analysis clusters of objects are shown.

Table 3. Averages for all variables for each cluster (input values, non-standardized).

Variable K1 K2 K3 K4

Primary size (PS) 142 42 64 12.17
Primary hydrodynamic diameter (PHD) 296 90.2 204.7 63.37
Hydrodynamic diameter in the test media (DLS) 780.12 123.15 84 89.11
Zeta potential of nanomaterial in the test (ZP) −15.95 −18.25 −17.7 −15.83
Acute Toxicity measure, EC50/LC50 (AT) 16.80 5.94 7.71 0.23

In general, the cluster of outliers K1 is characterized by the highest values of PS, PHD, DLS and
AT and relatively low negative value of ZP.

Cluster 4, the biggest one, indicated the lowest average acute toxicity related to the lowest level of
PS, PHD, ZP and to some extent DLS. The other two clusters had intermediate values.

It is interesting to note that K1 toxicity was determined dominantly by the crustacean (Daphnia
magna) while K4 used almost all test organisms for toxicity readings. No specificity with respect to for
the test organisms was found in K2 and K3. It could be assumed that the bioassay mode was not a
specific or discriminating factor.

The nonhierarchical clustering of the AgNPs followed the hypothesis for division of the 94
systems into four patterns of similarity depending probably on the structural and toxicity parameters.
Indeed, four clusters were calculated having the same members as in the case of hierarchical clustering.
This number of clusters proved to be optimal with respect to the minimal spread of distances (in
comparison with other options for non-hierarchical clustering) between the clusters.

In order to determine specific discriminating parameters for each cluster a plot of means (Figure 3)
is presented.

For the small cluster of objects K1 maximum values of PS, PHD and DLS were observed with low
levels of ZP and AT, which did not differ much from the values of the other clusters. It could be assumed
that the cluster represents relatively large nanoparticles with high primary hydrodynamic diameter
and hydrodynamic diameter in test media. Therefore, we could conditionally name this pattern of
silver nanoparticles systems “coarse nanosystems” with relatively high acute toxicity determined by
Daphnia magna.

K4 was the largest cluster characterized by the lowest primary size, primary hydrodynamic
diameter and hydrodynamic diameter in test media as well as by lowest acute toxicity. This pattern
could be conditionally being named as the “finest nanoparticles systems”.

The other two clusters had intermediate properties but possessing discriminators, which allowed
good separation into two independent patterns: K3 was very similar to K1 with one significant
exception—low hydrodynamic diameter in test media, so that it formed the pattern of “coarse
nanoparticle systems with low hydrodynamic diameter in test media”; K2 was characterized by the
highest values of the zeta potential and relatively good resemblance to the structural parameters of
the “fine nanoparticles systems” and its conditional name could be “fine nanoparticles systems with
high zeta potential” (it should be kept in mind that the ZP values were negative and “high” should be
understood as “highest negative value”).
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Since there was no specificity to the test organisms used for acute toxicity determination,
the separation of the whole set of silver nanoparticles systems into four patterns was the result of
different structural variations (primary size, primary hydrodynamic diameter, low hydrodynamic
diameter in test media and zeta potential) since the toxicity differences were relatively small.

4. Relationship between Size Parameters and Toxicity

As shown in Table 3 the four clusters were well separated by their particle size and hydrodynamic
parameters, on one side and the acute toxicity on the other. The ZP was not a satisfactory discriminant
factor for the whole system in consideration.

The results from Table 4 could be used for regression modeling of the dependence of the acute
toxicity on the different size parameters of the AgNPs, for the four identified patterns of similarity.

In Figures 4–7 the regression models for the relationships AT = f (PS), AT = f (PHD), AT = f (DLS)
and AT = f (ZP) are shown.Symmetry 2019, 11, x FOR PEER REVIEW 9 of 13 
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The linear regression found for the dependence of AT on the primary size parameter (Figure 4) is
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5. Multiple Regression Results

We used multiple linear regressions (MLR) to obtain the quick estimation of the MLR model and
to conduct the effect of toxicity to the structure properties of nanoparticles (Table 4).

Table 4. Intercept and regression coefficients for toxicity descriptors (the significant coefficients are
marked; normalized values).

Ridge Regression Summary for Dependent Variable: AT

L = 0.10000 R = 0 0.86048962 R2 = 0.74044239 Adjusted R2 = 0.71291355

Beta Std. Err. t(66) p-level

Intercept 1.13 0.26

PS −0.20 0.15 −1.21 0.23

PHD 0.10 0.16 0.64 0.52

DLS 0.35 0.11 3.02 0.03

ZP 0.01 0.10 −0.09 0.9

Obtained data (Table 5) were statistically analyzed using analysis of variance (ANOVA) and
expressed as the mean with standard error. The obtained F-value was compared with the corresponding
critical value (p = 0.05). A value of p < 0.05 was considered statistically significant.

Table 5. ANOVA results.

ANOVA Results

Analysis of Variance

Ridge Regression, Lambda = 0.1000000

Sums of df Mean F p-level

Regress. 54.05 7 7.722 26.90 0.000
Residual 18.95 66 0.287

Total 73.00

The multivariate regression analysis has indicated that the model obtained was not satisfactory
for assessment of AT. Obviously, the relationship between AT and the physicochemical parameters of
the nanoparticles are of more complex character and non-linear. That is why we tried to estimate the
impact of each single parameter on AT. The results are commented below.

In the present study an effort is made to find relations between toxicity and size parameters but
not only by the primary size (PS) of AgNPs. It is evident that the different size patterns found by the
classification mode are size dependent and so is the link between AT and PHD or between AT and DLS.
However, this dependence is not linear any more but typically nonlinear (logarithmic or polynomial).
This is an indication for the different mechanism of the toxic effects, which has to be additionally
studied by specifically designed experiments including the size parameters as input factors and AT as
an output factor.

Our data analysis indicated that the relation AT/ZP is not very indicative for the toxic impact of
the AgNPs studied.

Next table (Table 6) is trying to summarize on a semi-qualitative level the relationship between
acute toxicity and size parameters for the identified four patterns of similarity of silver nanoparticle
systems. Since no specificity with respect to the bioassays used was found no special classification for
them was offered.
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Table 6. Relationship between size parameters and acute toxicity for 94 AgNPs systems.

Pattern PS Interval PHD Interval DLS Interval Expected AT

Coarse particles Over 100 nm Over 300 nm Over 750 nm Up to 20
Fine particles Less than 50 nm Between 50 and 100 nm Up to 150 nm Between 1 and 5

Medium particles Between 50 and 100 nm Between 100 and 300 nm Between 50 and 100 nm Between 5 and 10
Superfine particles Under 10 nm Under 50 nm Under 100 nm Under 1.00

An effort for validation of the models suggested by leave-one-out cross validation approach was
made. In all tested cases the correct classification was obtained. This is probably to be expected for our
data set but we did not have additional experimentally synthesized objects for model validation.

6. Conclusions

The multivariate statistical analysis applied to the data set of silver nanoparticles made it possible
to identify four different patterns of similarity between all 94 silver nanoparticles systems depending
on their physical and toxicity properties using hierarchical and non-hierarchical cluster analysis and
principal components analysis. For the group of four clusters regression models were constructed
showing the relationship between the AgNPs size parameters and the acute toxicity measured by
various bioassays. Relatively adequate models were found for the links between AT and PS, as well as
between AT and DLS and PHD. Based on the regression models and multivariate statistical analysis a
semi-qualitative classification is offered, which tries to order the toxicity readings with respect to size
parameters of the silver nanoparticles. The validity of the classification was checked by leave-one-out
cross validation procedure. The practical importance of the present study was its predictive ability in
relating readings of acute toxicity of the nanoparticles with their major physicochemical parameters.
We were aware of the fact that the relations found did not explain the mechanism of toxicity of the
nanoparticles but made it possible to detect the importance for the practice hints for toxicity dependence
of the particle size.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-8994/11/9/1159/s1,
Table S1: Input parameters.
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