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Abstract: We examine some aspects of the use of Simple Additive Weighting method to evaluate
decision alternatives. Decision alternative attributes may be evaluated by verbal assessments which
by their nature are imprecise. This means that for the purposes of Simple Additive Weighting method,
any verbal assessment is represented by a fuzzy number being an imprecise approximation of a
number. In this paper, all verbal assessments are represented by ordered fuzzy numbers. This
approach is justified in the way that any ordered fuzzy number is additionally equipped with
orientation, i.e., information about the location of the approximated number. The family of all ordered
fuzzy numbers is divided into centrally symmetric families of positively oriented fuzzy numbers and
of negatively oriented fuzzy numbers. The main purpose of this paper is to examine the consequences
of omitting orientation of criterion ratings. We restrict all considerations to the case of trapezoidal
oriented fuzzy numbers. We prove the mathematical theorem that an orientation omission can result
in an increase in risk when choosing the right decision alternative. We study an empirical example
of the Simple Additive Weighting method application to rank some negotiation offers. From the
discussion, it follows that an orientation omission results in an increase in risk.

Keywords: ordered fuzzy number; linguistic order scale; Simple Additive Weighting method;
disorientation; fuzzy ranking; decision alternative; negotiation problem

1. Introduction

Arrangement of decision alternatives is necessary for any rational decision-making process.
Therefore, decision alternatives are ordered before making the actual decision. Because decision
alternatives are characterized by various attributes, multi-criteria techniques are useful for ordering
these alternatives [1]. The decision alternatives are ordered with the use of a chosen multi-criteria
technique which takes into account the decision-maker’s preferences with respect to all given issues as
well as their relative importance. Among the different multi-criteria techniques, we have some scoring
techniques which determine a ranking of decision alternatives as order of assigned scoring values.
The most popular scoring techniques are:

• The Simple Additive Weighting method (SAW) [2,3];
• Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [4].

The SAW method is also known as the Simple Multi Attribute Rating Technique [2,3].
In real decision-making problems, the criteria are usually assessed in a qualitative form. This

implies the linguistic approach for decision assessing. Then, any criterion is evaluated by linguistic
values which are words or sentences in a natural language. Therefore, the meaning of any linguistic
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value is imprecise. For these reason, linguistic values may be represented with use of fuzzy set
theory [5–7]. In line with suggestions given in [8], any criterion evaluation is approximated by some
kind of imprecise number.

A commonly used model of an imprecise number is fuzzy number (FN) [9]. An important
disadvantage of FN theory is that subtraction of FNs is the inverse operator to addition of FNs.
The notion of OFN is proposed by Kosiński et al [10] as a model of such an imprecise number that
subtraction of OFNs is the inverse operator to addition of OFNs. Therefore, OFNs can help with
the interpretation of specific improper fuzzy arithmetic results. The major drawback of Kosiński’s
theory is the existence of OFNs which are not linked to any membership function [11]. Therefore, the
Kosiński’s theory is revised in [12]. From the point-view of symmetry theory, the space of all OFNs
may be considered as centrally symmetric closure of an isomorphic image of the space of all FNs.

Any criteria may be valued by OFNs. The main goal of our article is to examine the impact of
criteria ranking orientation on a decision-making process. Thus we focus on such scoring techniques
which use scoring function with arguments’ values given by OFNs.

To our best knowledge, OFNs are so far only used in the scoring functions describing the SAW
method or TOPSIS [13]. In TOPSIS, we always used a scoring function valued with crisp real numbers.
For this reason, the values of the TOPSIS scoring function always are ordered in a natural way like real
numbers. Thanks to this, if we order decision alternatives with the use of TOPSIS then the obtained
arrangement is independent of the orientation of values of scoring function arguments. On the other
hand, the SAW scoring method uses a weighted average of criterion ratings. Therefore, if arguments of
SAW scoring function are valued by OFNs then any SAW scoring function is also valued by OFNs. Only
then we can obtain a decision alternatives arrangement which may be dependent on an orientation of
values of scoring function arguments. Thus, our focus should be restricted to effects of applications of
the SAW method equipped with scoring function determined for argument valued by OFN.

The basic SAW method is related to scoring function with arguments evaluated by real numbers.
The fuzzy SAW method is introduced by Chou and Chang [8] in such way that each argument of scoring
function is valued by Trapezoidal FN (TrFN). This proposition is justified in this way that TrOFNs
are more realistic representation of linguistic assessments. For the needs of the scoring negotiation
offers, Roszkowska and Kacprzak [13] tentatively introduced the Oriented Fuzzy SAW (OF-SAW)
with arguments of scoring function valued by trapezoidal OFN (TrOFN). The replacement of TrFN by
TrOFN is justified by the fact that TrOFNs contain more information than TrFN. In [14], the OF-SAW
method is modified in a way that is compatible with revised theory of OFNs [12]. In [15] it is justified
that the OF-SAW method equipped with the fuzzy initial preorder is significantly better than the
OF-SAW methods equipped with any crisp initial preorder outlined with the use of any defuzzification
method. There it is shown that the use of defuzzification procedures can totally blur the true picture
of a real order of decision alternatives. So, we should avoid the defuzzification stage in ordering
decision alternatives.

Summing up, since the main goal of our paper is to examine the impact of criteria ranking
orientation on a decision-making process, our focus will be on the OF-SAW equipped with fuzzy
initial preorder. In this way, we can compare linguistically evaluated decision alternatives without
losing information about the imprecision and orientation of linguistic evaluation. This approach is
more realistic.

This paper is organized as follows. Section 2 describes the elements of fuzzy sets theory. We
restrict our considerations to the case of TrOFNs. There, FNs, TrFNs, OFNs, TrOFNs, disorientation
map, and fuzzy order relations between TrFNs or between TrOFNs are discussed. Moreover, the central
symmetry phenomenon of the space of all TrOFNs is explained there. The OF-SAW method equipped
with fuzzy initial preorder is presented in Section 3. In Section 4, we discuss disorientation impact on
ordering of decision alternatives. Original mathematical theorems show that an orientation omission
can result in increase in risk of choosing the right decision alternative. Section 5 presents here some
new results obtained for the example of the OF-SAW empirical application for ranking negotiation
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offers. Here we study the effects of replacing the oriented criteria raking with a disoriented one. In with
way we show that an orientation omitting causes noticeable increase in risk burdening the decision
making process. Section 6 contains final conclusions. For the convenience of readers, all acronyms
used are defined in Nomenclature section. Appendices A and B contain full proofs of applied original
mathematical theorems. Appendix C presents membership functions of initial preorders considered in
Section 5.

2. Elements of Fuzzy Sets Theory

Let X be given space of all considered states. The symbol B(X) denotes the family of all crisp
sets in the space X. Any precise information about considered states may be described by crisp set
A ∈ B(X).

A fuzzy subset A ⊂ X is determined as the set of ordered pairs

A =
{
(x,µA(x)) : x ∈ X

}
(1)

where µA ∈ [0, 1]X is its membership function. Multi-valued logic interprets the membership function
in this way that each value µA(x) is equal to the ‘truth value’ of the sentence “x ∈ A”. The symbol F (X)
denotes the family of all fuzzy subsets of the space X. Any imprecise information about considered
states may be described by fuzzy set A ∈ F (X).

Basic set theory operations and relations are defined in the usual way, suggested by Zadeh [16].
Among other things, we have here the inclusion relation{

∀x∈X : µA(x) ≤ µB(x)
}
⇔ A ⊂ B (2)

After Klir [17] we understand ambiguity as a lack of an explicit recommendation between one
alternative amongst various others. Therefore, if condition (2) is met then we say that the fuzzy set B is
more ambiguous than the fuzzy set A.

For any fuzzy set A ∈ F (X) we can distinguish its support S(A) ∈ B(X), determined as follows:

S(A) =
{
x ∈ X : µA(x) > 0

}
. (3)

2.1. Fuzzy Numbers

An usually applied model of imprecise number is a fuzzy number (FN) which is most generally
defined as a some kind of a fuzzy set in the real line R [9]. In the fuzzy SAW method [8], the FN
applications are restricted to following their kind.

Definition 1. For any non-decreasing sequence (a, b, c, d) ⊂ R, the trapezoidal FN (TrFN) is the fuzzy set
T = Tr(a, b, c, d) ∈ F (R) determined by its membership functions µT ∈ [0, 1]R as follows:

µT(x) = µTr(x|a, b, c, d) =


0, x < [a, d],

x−a
b−a , x ∈ [a, b[ ,
1, x ∈ [b, c],

x−d
c−d , x ∈ ] c, d].

(4)

We denote the space of all TrFNs by the symbol FTr. The TrFN Tr(a, a, a, a) = represents the crisp
number a ∈ R. In this way we get R ⊂ FTr. For any z ∈ [b, c], TrFN Tr(a, b, c, d) is a formal model of
linguistic variable “about z”.

Let us take into account any arithmetic operation ∗ defined on R. By ~we denote an extension
of arithmetic operation ∗ to FTr. In [9], arithmetic operations on FN are introduced with use of the
Zadeh’s Extension Principle. In line with it, for any pair (K ,L) ∈ F2

Tr represented by their membership
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functions µK,µL ∈ [0, 1]R, the FNM = K ~L is described by its membership function µM ∈ [0, 1]R

determined by means of the identity:

µM(z) = sup
{
min

{
µK(x),µL(y)

}
: z = x ∗ y, (x, y) ∈ R

}
. (5)

In line with above, the dot product � and the sum ⊕ determined on FTr are given as follows

β� Tr(a, b, c, d) =
{

Tr(β·a, β·b, β·c, β·d) β ≥ 0,
Tr(β·d, β·c, β·b, β·a) β < 0.

(6)

Tr(a, b, c, d) ⊕ Tr(e, f , g, h) = Tr(a + e, b + f , c + g, d + h) (7)

All above arithmetic operations are executed in the standard order. Moreover, let us note that

Tr(a, b, c, d) ⊂ Tr(e, f , g, h)⇔ e ≤ a∧ f ≤ b ≤ c ≤ g∧ d ≤ h (8)

We can argue about these TrFNs, that Tr(e, f , g, h) is more ambiguous than Tr(a, b, c, d).

2.2. Ordered Fuzzy Numbers

The notion of OFN is intuitively introduced by Kosiński [10] as a model of such an imprecise
number that the subtraction of OFNs is the inverse operator to the addition of OFNs. Therefore, OFNs
can contribute to specific problems concerning the solution of fuzzy linear equations of the form or
help with the interpretation of specific improper fuzzy arithmetic results. The main disadvantage of
Kosiński’s theory is the existence of OFNs which cannot be linked to any membership function [11].
For this reason, the Kosiński’s theory is revised in [12]. Due to high complexity of arithmetic operations,
an application of OF-SAW method [13] restricts the use of OFNs only to their kind distinguished below.

Definition 2 [12]. For any monotonic sequence (a, b, c, d) ⊂ R, the trapezoidal ordered fuzzy number (TrOFN)
←→

Tr (a, b, c, d) =
↔

T is the pair of the orientation
−→

a, d = (a, d) and fuzzy subset T ∈ F (R) determined explicitly
by its membership functions µT ∈ [0, 1]R as follows

µT(x) = µTr(x|a, b, c, d) =


0, x < [a, d] ≡ [d, a],

x−a
b−a , x ∈ [a, b[ ≡ ]b, a]
1, x ∈ [b, c] ≡ [c, b]
x−d
c−d , x ∈ ] c, d] ≡ [d, c[ .

(9)

The identity (9) additionally describes numerical intervals in way which is applied in this paper.
The symbol KTr denotes the space of all TrOFNs. Any TrOFN describes an imprecise number

with additional information about the location of the approximated number. This information is given

as orientation of TrOFN. If a < d then TrOFN
←→

Tr (a, b, c, d) has the positive orientation
−→

a, d. For any

z ∈ [b, c], the positively oriented TrOFN
←→

Tr (a, b, c, d) is a formal model of linguistic variable “about
or slightly above z”. The symbol K+

Tr denotes the space of all positively oriented TrOFN. If a > d,

then TrOFN
←→

Tr (a, b, c, d) has the negative orientation
−→

a, d. For any z ∈ [c, b], the negatively oriented

TrOFN
←→

Tr (a, b, c, d) is a formal model of linguistic variable “about or slightly below z”. The symbol

K−Tr denotes the space of all negatively oriented TrOFN. If a = d, OFN TrOFN
←→

Tr (a, a, a, a) describes an
unoriented number a ∈ R. Summing up, we see that

KTr = K+
Tr ∪ R∪ K−Tr. (10)
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The arithmetic operations on KTr are not consistent with Zadeh’s Extension Principle. Kosiński [1]
formulated the postulate that the subtraction of OFNs is the inverse operator to the addition of OFNs.
For this reason, Kosiński [10] introduces the arithmetic operators of dot product � for TrOFNs by
the identity

β�
←→

Tr (a, b, c, d) =
←→

Tr (β·a, β·b, β·c, β·d). (11)

Then, the unary minus operator “–” on R is extended to the minus operator – on KTr in the
following way

Ψ(
←→

Tr (a, b, c, d)) = �
←→

Tr (a, b, c, d) = (−1) �
←→

Tr (a, b, c, d) =
←→

Tr (−a,−b,−c,−d). (12)

Kosiński defines OFNs addition with use of formulas proven by Goetschel and Voxman [18] for
FNs addition. Furthermore, Kosiński [11] have shown that there exists such pair of OFNs that their
sum does not exist. Therefore, Kosiński’s addition is replaced by addition � defined on KTr by the
identity [12]

←→

Tr (a, b, c, d) �
←→

Tr (p− a, q− b, r− c, s− d) =

=


←→

Tr (min
{
p, q

}
, q, r, max{r, s}) (q < r)∨ (q = r∧ p ≤ s)

←→

Tr (max
{
p, q

}
, q, r, min{r, s}) (q > r)∨ (q = r∧ p > s)

.
(13)

In [12], the definition of addition operator � is justified in detail. The difference � between OFNs
is defined in usual way

←→

Tr (a, b, c, d) �
←→

Tr (e, f , g, h) =
←→

Tr (a, b, c, d) � (�
←→

Tr (e, f , g, h)). (14)

Using (13), we get

←→

Tr (a, b, c, d) �
←→

Tr (a− p, b− q, c− r, d− s) =

=


←→

Tr (min
{
p, q

}
, q, r, max{r, s}), (q < r)∨ (q = r∧ p ≤ s),

←→

Tr (max
{
p, q

}
, q, r, min{r, s}), (q > r)∨ (q = r∧ p > s).

(15)

All above arithmetic operations are executed in the standard order. In [19] it is proven that the
subtraction � is the inverse operator for the addition operators �. Therefore, we can say that revised
theory of OFNs meet the intuitive postulate put forward by Kosiński.

On the other hand, the additive semigroup FTr, ⊕ and the additive semigroup KTr, � cannot
be considered as homomorphic algebraic structures [19]. Therefore, any theorems on FNs cannot
automatically extended to the case of OFNs.

2.3. Disorientation Map

For the case a ≥ d the membership function of TrFN Tr(a, b, c, d) is equal to the membership

function of TrOFN
←→

Tr (a, b, c, d). This fact implies the existence of isomorphism Ψ : (K+
Tr ∪ R)→ FTr

given for any nondecreasing sequence (a, b, c, d) ⊂ R by the identity

Tr(a, b, c, d) = Ψ(
←→

Tr (a, b, c, d)). (16)

This isomorphism may be extended to the space KTr by disorientation map
=
Ψ : KTr → FTr given

by the identity

=
Ψ(
↔

K) =

 Ψ(
↔

K)
↔

K ∈ K+
Tr ∪ R,

	Ψ(�
↔

K)
↔

K ∈ K−Tr.
(17)



Symmetry 2019, 11, 1104 6 of 23

The disorientation map
=
Ψ : KTr → FTr may be equivalently determined by the identity

=
Ψ(
←→

Tr (a, b, c, d)) = Tr(min{a, d}, min{b, c}, max{b, c}, max{a, d}). (18)

Moreover, it is very easy to check that for any pair (
↔

K ,α) ∈ KTr ×R we have

=
Ψ(α�

↔

K) = α�
=
Ψ(
↔

K). (19)

Let us examine the disorientation map property that interests us. At the beginning, let’s follow
the example below.

Example 1. We compare the effect of “disorientation before addition” and the effect of “disorientation after
addition”. Let us look on the following numerical case

=
Ψ(
←→

Tr (1, 2, 3, 4) �
←→

Tr (12, 10, 8, 6)) =
=
Ψ(
←→

Tr (13, 12, 11, 10)) = Tr(10, 11, 12, 13) (20)

=
Ψ(
←→

Tr (1, 2, 3, 4)) ⊕
=
Ψ(
←→

Tr (12, 10, 8, 6)) = Tr(1, 2, 3, 4) ⊕ Tr(6, 8, 10, 12) = Tr(7, 10, 13, 16) (21)

Figure 1 presents the diagram of the membership functions of above results. We see that we have

=
Ψ(
←→

Tr (1, 2, 3, 4) �
←→

Tr (12, 10, 8, 6)) ⊂
=
Ψ(
←→

Tr (1, 2, 3, 4)) ⊕
=
Ψ(
←→

Tr (12, 10, 8, 6)). (22)
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=
Ψ(
←→

Tr (1, 2, 3, 4) �
←→

Tr (12, 10, 8, 6)) and
=
Ψ(
←→

Tr (1, 2, 3, 4)) ⊕
=
Ψ(
←→

Tr (12, 10, 8, 6)).

In this case, the the sum of disoriented OFNs is more ambigous than disoriented sum of the same OFNs.
It implies that the actions of disorientating and additing are not permutable. �

The above conclusions can be generalized to the following theorem proven in Appendix A.

Theorem 1. For any sequences(
↔

K1,
↔

K2, . . . ,
↔

Kn) ⊂ KTr and (α1, α2, . . . ,αn) ⊂ R we have

=
Ψ(α1 �

↔

K1 � α2 �
↔

K2 � . . .� αn �
↔

Kn) ⊂ α1 �
=
Ψ(
↔

K1) ⊕ α2 �
=
Ψ(
↔

K2) ⊕ . . .⊕ αn �
=
Ψ(
↔

Kn). (23)

We see that the disorientation map is subadditive.
The space of all TrOFNs may be equivalently defined with use of basic notions of the symmetry

theory. We take into account the space FTr of all TrFNs and isomorphism Ψ−1 : FTr → L determined
by (16). The central symmetric relation is determined by the unary minus operator Φ defined on L by
(12). Then space KTr is the centrally symmetric closure of the set Ψ−1(FTr). This fact may be useful in
proving some mathematical theorems about TrOFNs.
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2.4. Relation “Greater than or Equal to” for Trapezoidal Fuzzy Numbers

We consider the pair (K ,L) ∈ FTr × FTr of TrFNs described by their membership functions
µK,µL ∈ [0, 1]R. On the set FTr, we determine the relationK .GE. L read as follows:

“TrFN K is greater than or equal to TrFN L” (24)

In agreement with the Zadeh’s Extension Principle, the relation (24) is a fuzzy preorder [GE] ∈
F ((FTr)

2) described by its membership function ν[GE] ∈ [0, 1]FTr×FTr given as follows [20]:

ν[GE](K ,L) = sup
{
min

{
µK(u),µL(v)

}
: u ≥ v

}
. (25)

Theorem 2 [19]. For any TrFNs Tr(a, b, c, d), Tr(e, f , g, h) ∈ FTr we have

ν[GE](Tr(a, b, c, d), Tr(e, f , g, h)) =


0, 0 < a− h,

a−h
a+g−b−h , a− h ≤ 0 < b− g,

1, b− g ≤ 0.
(26)

The following theorem is proven in Appendix B.

Theorem 3.
∀(K ,L,M,N)∈F4

Tr
: {K ⊂ M & L ⊂ N} ⇒ ν[GE](K ,L) ≤ ν[GE](M,N) (27)

2.5. Relation “Greater than or Equal to” for Trapezoidal Oriented Fuzzy Numbers

For any pair (
↔

K ,
↔

L) ∈ (KTr)
2, the symbol

↔

K .G̃E.
↔

L denotes the relation

“TrOFN
↔

K is greater than or equal to TrOFN
↔

L.” (28)

which is introduced in [19]. This relation is a fuzzy preorder G̃E ∈ F ((KTr)
2) defined by its

membership function νGE ∈ [0, 1](KTr)
2
. In [19], it is additionally assumed that any membership

function νGE ∈ [0, 1](KTr)
2

meets the following well-known conditions:

• for any pair (
↔

K ,
↔

L) ∈ (K+
Tr ∪ R)2, the extension principle

νGE(
↔

K ,
↔

L) = ν[GE](Ψ(
↔

K),Ψ(
↔

L)), (29)

• for any pair (
↔

K ,
↔

L) ∈ (K−Tr ∪ R)2, the sign exchange law

νGE(
↔

K ,
↔

L) = νGE(�
↔

L,�
↔

K ), (30)

• for any pair (
↔

K ,
↔

L) ∈ (K+
Tr ∪ R) × (K−Tr ∪ R), the law of subtraction of parties of inequality

νGE(
↔

K ,
↔

L) = νGE(
↔

K �
↔

L, 0). (31)

Theorem 4 [19]. For any pair (
↔

K ,
↔

L) ∈ (KTr)
2 we have

νGE(
↔

K ,
↔

L) = ν[GE](
=
Ψ(
↔

K),
=
Ψ(
↔

L)). (32)
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Finally, when taken together, we get the dependency

ν[GE](Tr(a, b, c, d), Tr(e, f , g, h)) =

=


0, 0 < min{a, d} −max{e, h},

min{a,d}−max{e,h}
min{a,d}+max{ f ,g}−max{e,h}−min{b,c} , min{a, d} −max{e, h} ≤ 0,< min{b, c} −max

{
f , g

}
1, min{b, c} −max

{
f , g

}
≤ 0.

(33)

3. Oriented Fuzzy SAW vs. Disoriented Fuzzy SAW

In decision-making, we meet situations dealing with imprecision resulting from linguistic
assessment of decision alternatives. This assessment is made with use fixed Linguistic Order Scale
(LOS) which contains ordered words of natural language. In information science, natural language
words are considered as values of related linguistic variable. From the perspective of decision-making
processes, the linguistic variable evaluation methodologies are reviewed in [1,21–23].

Understanding linguistic variables depends on the applied pragmatics of the natural language.
Due this, the semantic meaning of linguistic values may be imprecise. Thus, any linguistic variable
can be described by fuzzy sets [5–8]. In line with suggestions given in [8], any linguistic value is
represented by some type of FN. Then, each decision alternative is evaluated with the use of the
Numerical Order Scale (NOS) given as a sequence of some type of FNs.

In this paper, we will consider any NOS given as a sequence of TrOFNs. Such NOS is denoted by
o-NOS. An example of o-NOS is constructed and justified in [13].

Originally, the SAW method uses a NOS given as a finite subset of positive real numbers. The SAW
method was first associated with o-NOS in [13]. In this way, we obtain Oriented Fuzzy SAW (OF-SAW).
Then in [14], the OF-SAW method has been adapted to the requirements of the revised OFNs’ theory.

On the other hand, all elements of o-NOS may be disoriented by means of the disorientation map
(17). In this way we can obtain disoriented NOS (d-NOS). If we replace o-NOS by d-NOS then by
reducing the whole of our analysis to FN. The SAW method associated with d-NOS is denoted by the
acronym d-SAW. Using d-SAW method, we evaluate a decision alternative with losing information
about the orientation of criterion ratings.

We will compare results obtained by use of OF-SAW method with results obtained by use of
d-SAW method. In this way, we will examine impact of NOS orientation on a decision making process.

We consider here a multi-criteria decision-making problem with n evaluation criteria
C1,C2, . . . ,Cn ∈ D and m decision alternatives A1, A2, . . . , Am ∈ A ⊂ Y, where Y is an assumed
evaluation template. The OF-SAW and d-SAW methods are described by the following procedure:

Procedure 1:

Step 1: Define the set D = {C1,C2, . . . ,Cn} of evaluation criteria;
Step 2: Define the weight vector (w1, w2, . . . , wn) ∈ (R+

0 )
n fulfilling the condition

w1 + w2 + · · ·+ wn = 1, (34)

where weight w j describes the importance of this criterion C j in the evaluation of the alternatives.
Step 3: For each evaluation criterion C j ( j = 1, 2, . . . , n), determine its scope Y j;
Step 4: Determine the evaluation template Y = Y1 ×Y2 × . . . .×Yn;
Step 5: Define the o-NOS O ⊂ Ktr;
Step 6: Define the evaluation function X : Y×D→ O ⊂ Ktr fulfilling for each ( j = 1, 2, . . . , n) the condition

X(A,C j) G̃E X(B,C j)⇔ “From the perspective o f the criterion C j,
the decision alternativeA is not worse than the decision alternative B.”;

(35)

Step 7: Determine the set A = {A1, A2, . . . , Am} ⊂ Y of evaluated decision alternatives;
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Step 8: For the OF-SAW method, determine the scoring function
←→
saw : On

→ KTr given for any as an
aggregated evaluation index

←→
saw(Z) = w1 �

↔

Z1 �w2 �
↔

Z2 � . . .�wn �
↔

Zn, (36)

whereZ = (
↔

Z1,
↔

Z2, . . . ,
↔

Zn) ∈ On;
Step 9: Using OF-SAW method, evaluate each alternativeAi ∈ A(i = 1, 2, . . . , m) by a scoring value

←−−→
SAW (Ai) =

←→
saw(X(Ai)), (37)

where
X(Ai) = (X(Ai,C1),X(Ai,C2), . . . ,X(Ai,Cn) ) ∈ On; (38)

Step 10: For the d-SAW method, determine the scoring function saw : On
→ FTr given for any as an aggregated

evaluation index
saw(Z) = w1 �

=
Ψ(
↔

Z1) ⊕w2 �
=
Ψ(
↔

Z2) ⊕ . . .⊕wn �
=
Ψ(
↔

Zn), (39)

Step 11: Using d-SAW method, evaluate each alternativeAi ∈ A(i = 1, 2, . . . , m) by a scoring value

SAW(Ai) = saw(X(Ai)). (40)

From Equations (23), (36), and (39), we immediately obtain that

∀Ai∈A :
=
Ψ(
←−−→
SAW (Ai)) ⊂ SAW(Ai). (41)

It proves that if we omit the information about the orientation of criterion rating then it can
increase in the ambiguity of the calculated scoring value.

We understand the term risk as a possibility of negative consequences of performed actions [24,25].
The increase in the scoring value ambiguity suggests a higher number of decision alternatives to choose
from. This leads to an increase in the risk of choosing an incorrect alternative from recommended
ones. This may result in making a decision, which will be ex post associated with a profit lower than
maximal one, that is with a loss of chance. Described risk is called the ambiguity risk. In conclusion,
omitting information about criterion rating orientation can result in increase in ambiguity risk when
choosing the right alternative.

In the next sections, we will examine in more detail the impact of omission of NOS orientation on
a decision-making process.

4. Disorientation Impact on Decisions Ordering

Decision-making consists of choosing exactly one decision alternative. Therefore, every decision
made is precise. For this reason, the main goal of the application of any SAW method is to determine
crisp partial orderA.BE.B, which reads as follows:

The decision alternative A is not worse than the decision alternative B. (42)

Let be given the set A = {A1, A2, . . . , Am} of decision alternatives. To preserve the generality
of our discussion, we will consider generalized SAW (g-SAW) method determined by fixed scoring
function γ : A→ FTr . Each g-SAW method is pre-equipped with the initial preorder given for each
pair (Ai,Ak) ∈ A2 by the equivalency

Ai.BE(γ).A j ⇐⇒ γ(Ai).GE. γ(Ak) (43)
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The preorder (43) is a fuzzy relation BE(γ) ∈ F (A2) described by membership function ξ(·|γ) ∈

[0, 1]A
2

given as follows
ξ(Ai,Ak|γ) = ν[GE](γ(Ai),γ(Ak)). (44)

For any nonempty set A ∈ B(A), we set the best alternative Best(A|γ) ∈ F (A) given as follows:

Best(A|γ) =
{
Ai ∈ A : ∀Ak∈A: γ(Ai).GE.γ(Ak)

}
(45)

The best alternative Best(A|γ) is described by membership function µBest(A)(·|γ) ∈ [0, 1]A , given
by the identity

µBest(A)(Ai|γ) = min
{
ν[GE](γ(Ai),γ(Ak)) : Ak ∈ A

}
. (46)

Identity (45) defines the best alternative as an alternative characterized by the maximal value of
scoring function γ ∈ FTr

A. For any A , ∅, the support S(Best(A|γ)) is always nonempty.
In this paper, we study the OF-SAW method pre-equipped with the initial preorder given for each

pair (Ai,Ak) ∈ A2 by the equivalency

Ai.B̃E.A j ⇐⇒
←−−→
SAW (Ai).G̃E.

←−−→
SAW (Ak). (47)

It, together with (32), implies that the preorder (46) is a fuzzy relation B̃E ∈ F (A2) determined by

membership function % ∈ [0, 1]A
2

given in the following way:

%(Ai,Ak) = νGE(
←−−→
SAW (Ai),

←−−→
SAW (Ak)) =

= ν[GE](
=
Ψ(
←−−→
SAW (Ai)),

=
Ψ(
←−−→
SAW (Ak))) = ξ(Ai,Ak|

=
Ψ ◦
←−−→
SAW ).

(48)

It means that the OF-SAW method may be equivalently described as g-SAW method determined

by the scoring function (
=
Ψ ◦
←−−→
SAW ) ∈ FTr

A. Then OF-SAW method is equivalently equipped with

initial preorder BE(
=
Ψ ◦
←−−→
SAW ). This preorder includes all the gathered information on the imprecision

and orientation of linguistic evaluation. Thanks to that, it is the most faithful order of linguistic

evaluated alternatives. The fuzzy subset Best(A|
=
Ψ ◦
←−−→
SAW ) ∈ F (A) may be used as an imprecise

recommendation of the best alternative.
We compare OF-SAW method with d-SAW method which equivalently defined as g-SAW method

equipped with scoring function SAW ∈ FTr
A. The below theorem describes an important relationship

between OF-SAW and d-SAW methods.

Theorem 5.

∀A∈B(A) : Best�(A|
=
Ψ ◦
←−−→
SAW ) ⊂ Best(A|SAW). (49)

Proof. Let the fixed set be given as B(A) 3 A , ∅. For any Ai ∈ A, the inequalities (27) and (41)
imply that

µBest(A)(Ai|
=
Ψ ◦
←−−→
SAW ) = min

{
ν[GE](

=
Ψ(
←−−→
SAW (Ai)),

=
Ψ(
←−−→
SAW (Ak))) : Ak ∈ A

}
≤

≤ min
{
ν[GE](SAW(Ai), SAW(Ak)) : Ak ∈ A

}
= µBest(A)(Ai|SAW). �

The above theorem confirms our suspicions that omitting orientation of criterion ratings can result
in increase in ambiguity risk when choosing the right alternative.
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For any g-SAW method, the initial preorder BE(γ) ∈ F (A2) is applied to determine an induced
partial order BEIND(γ) ∈ B(A2). Any induced preorder may be used as order (42). An example of
induced partial order is faithful order BEIND introduced in [15] for OF-SAW method.

In this section, the faithful order BEIND will be generalized for the case of any g-SAW method
equipped with a scoring function γ ∈ FTr

A. Then the generalized faithful order BEIND(γ) ∈ B(A2) is
determined with use the following procedure:

Procedure 2:

Step 1: Perform the substitutions k := 0, A(1) := A;
Step 2: Perform the substitutions k := k + 1;
Step 3: Perform the substitutions

B(k)(γ) = S(Best(A(k)
|γ)), (50)

A(k+1) = A(k)
\B(k)(γ); (51)

Step 4: If the condition
A(k+1) , ∅, (52)

is satisfied then go back to Step 2. Otherwise, go to Step 5.

Step 5: We have a sequence (B(k)(γ))
m(γ)
k=1 in which each recommendation Ai ∈ A belongs only to one set

B(k)(γ). For any given numbers l > k, the value γ(Ai) ∈ B(k)(γ) dominates the values γ(A j) ∈ B(l)(γ) Thanks
to that, any pair (Ai, A j) ∈ B(k)(γ) × B(l)(γ) is ordered as follows:

l > k ⇒Ai. BEIND(γ).A j, (53)

k ≤ l ⇒A j. BEIND(γ).Ai. (54)

In this way, the partially ordered set (A, BEIND(γ)) is uniquely determined.
Let us notice that for any pair (Ai, A j) ∈ B(k)(γ) × B(l)(γ) we have

k = l ⇒Ai.BEIND(γ).A j andA j.BEIND.Ai, (55)

which is denoted as
k = l ⇒Ai.EQIND.A j. (56)

For better help audience to understand the modelling this procedure, it is additionally described by flowchart
given on Figure 2.

We see that any subset B(k)(γ) is an equivalence class determined by a partial order BEIND(γ).

Summing up all the above considerations, the sequence (B(k)(γ))
m(γ)
k=1 of equivalence classes uniquely

determines the partially ordered set (A, BEIND(γ)). This approach is especially useful in negotiating
problems when each negotiating party uses an opposite order.

In this paper, an amount of information is expressed in bits. A more numerous sequence of
equivalence classes sets a more detailed order on the set A of decision alternatives. This means that

along with the increase in the number m(γ) of elements of the sequence (B(k)(γ))
m(γ)
k=1 , the amount of

information described by the partially ordered set (A, BEIND(γ)) grows. Therefore, the number m(γ)
will be used in comparing the individual g-SAW methods equipped with different scoring function
γ ∈ FTr

A. In [15], the same approach was used for comparisons of individual OF-SAW methods with
different initial preorder.
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The main goal of this chapter is to study the effects of replacing the OF-SAW method by the
d-SAW method. In this way, we examine the consequences of omitting information about orientation of
criterion ratings. Above it is shown that the OF-SAW method is equivalently represented by the g-SAW

method equipped with scoring function (
=
Ψ ◦
←−−→
SAW ) ∈ FTr

A. The d-SAW method may be equivalently

defined as g-SAW method with scoring function SAW ∈ FTr
A. Moreover, Theorem 5 implies that

m(
=
Ψ ◦
←−−→
SAW ) ≥ m(SAW). (57)

It means that omitting orientation of criterion ratings can result in decrease in amount of
information described by inducted partial order. This can indirectly impact on a risk burdening the
decision-making process.

In the last two sections, we show the possibility that omitting orientation of criterion ratings can
result in increase in risk when choosing the right alternative. For this reason, we recommend the

partially ordered set (A, BEIND(
=
Ψ ◦
←−−→
SAW )) as a proper tool for analyzing decision-making alternatives.

The order BEIND(
=
Ψ ◦
←−−→
SAW ) includes all the gathered information on the imprecision and orientation

of linguistic evaluation. Therefore, we can say that partial order BEIND(
=
Ψ ◦
←−−→
SAW ) is the best crisp

approximation of real order of considered decision alternatives. Thanks to that, it is the faithful order
of linguistically evaluated decision alternatives. In the next section we intend to show the significance
of the effects of omitting the orientation of criterion ratings.
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5. Case Study

In this section, we consider an example of applications of OF-SAW methods for evaluation
of negotiation offers. The considered negotiation problem is fully described by Roszkowska and
Kacprzak [13] who tentatively introduced the OF-SAW in scoring negotiation offers. In this way, they
determine NOS as a sequence of TrOFNs. In [14], the considered negotiation offers are evaluated by
an OF-SAW method which is compatible with the revised theory of OFN [14]. In both papers, initial
preorders are crisp partial orders between defuzzified values [26] of scoring function. In this way, we
lose a lot of information about evaluated negotiation offers. Thus, in [15], considered negotiation offers
are arranged by initial preorder obtained without a defuzzification procedure.

The discussed negotiation problem was determined independently of later studies. This fact
raised the credibility of the subsequent case studies. Therefore, in this paper, we will apply a considered
negotiation problem for investigating the significance of the effects of omitting the orientation of
criterion ratings. In order to accomplish this task, we will evaluate all negotiation offers simultaneously
using OF-SAW and d-SAW methods. Comparison of the results obtained by both methods will allow us
to evaluate the effects of orientation omitting. To clarify our considerations, all calculations associated
with the use of OF-SAW method will be indicated in red. For the same reason, all calculations related
to the use of d-SAW method will be indicated in blue.

In this section, all negotiation offers are always evaluated using LOS and o-NOS introduced
in [13]. Moreover, using the disorientation map (17), we designate d-NOS. All these ordered scales are
presented in Table 1.

Table 1. Applied order scales (Source: [13] and own elaboration).

Linguistic Variable LOS o-NOS d-NOS

Very Bad VB
←→

Tr (1, 1, 1, 1) Tr(1, 1, 1, 1)

at least Very Bad L.VB
←→

Tr (1, 1, 1.5, 2) Tr(1, 1, 1.5, 2)

at most Bad M.B
←→

Tr (2, 2, 1.5, 1) Tr(1, 1.5, 2, 2)

Bad B
←→

Tr (2, 2, 2, 2) Tr(2, 2, 2, 2)

at least Bad L.B
←→

Tr (2, 2, 2.5, 3) Tr(2, 2, 2.5, 3)

at most Average M.AV
←→

Tr (3, 3, 2.5, 2) Tr(2, 2.5, 3, 3)

Average AV
←→

Tr (3, 3, 3, 3) Tr(3, 3, 3, 3)

at least Average L.AV
←→

Tr (3, 3, 3.5, 4) Tr(3, 3, 3.5, 4)

at most Good M.G
←→

Tr (4, 4, 3.5, 3) Tr(3, 3.5, 4, 4)

Good G
←→

Tr (4, 4, 4, 4) Tr(4, 4, 4, 4)

at least Good L.G
←→

Tr (4, 4, 4.5, 5) Tr(4, 4, 4.5, 5)

at most Very Good M.VG
←→

Tr (5, 5, 4.5, 4) Tr(4, 4.5, 5, 5)

Very Good VG
←→

Tr (5, 5, 5, 5) Tr(5, 5, 5, 5)

Let us consider the negotiation problem introduced in [13]. This negotiation problem is described
by decision making task with decision alternativesA j ( j = 1, 2, . . . , m) given as negotiation packages.
There an evaluation criterion is called a negotiation issue.

The Seller takes into account 15 negotiation packages discussed in detail in [13]. All these packages
are evaluated with the following negotiation issues:

• C1—unit price expressed in €,
• C2—complaint conditions described verbally,
• C3—time of payment determined in days.

The Seller’s linguistic rating of all negotiations packages is given in Table 2.
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Table 2. Linguistic rating of negotiations packages (Source; [12]).

Package
Negotiation Issues

C1 C2 C3

A1 VB L.B M.G
A2 B M.VG G
A3 L.VB G L.AV
A4 M.B AV L.AV
A5 B L.AV G
A6 L.B M.G M.VG
A7 AV M.G L.AV
A8 L.B AV M.VG
A9 M.AV L.VB VB
A10 AV M.B L.VB
A11 L.AV B
A12 L.AV L.B B
A13 G AV M.AV
A14 L.AV M.G M.AV
A15 VG B M.AV

Using the content of Table 1, we transform linguistic rating into numeric rating expressed in
o-NOS and d-NOS. The results of this transformation are presented in Table 3.

Table 3. Numeric rating of negotiations packages (Source: [13] and own elaboration).

Packages

Negotiation Issues

C1 C2 C3

o-NOS d-NOS o-NOS d-NOS o-NOS d-NOS

A1
←→

Tr (1, 1, 1, 1) Tr(1, 1, 1, 1)
←→

Tr (2, 2, 2.5, 3) Tr(2, 2, 2.5, 3)
←→

Tr (4, 4, 3.5, 3) Tr(3, 3.5, 4, 4)

A2
←→

Tr (2, 2, 2, 2) Tr(2, 2, 2, 2)
←→

Tr (5, 5, 4.5, 4) Tr(4, 4.5, 5, 5)
←→

Tr (4, 4, 4, 4) Tr(4, 4, 4, 4)

A3
←→

Tr (1, 1, 1.5, 2) Tr(1, 1, 1.5, 2)
←→

Tr (4, 4, 4, 4) Tr(4, 4, 4, 4)
←→

Tr (3, 3, 3.5, 4) Tr(3, 3, 3.5, 4)

A4
←→

Tr (2, 2, 1.5, 1) Tr(1, 1.5, 2, 2)
←→

Tr (3, 3, 3, 3) Tr(3, 3, 3, 3)
←→

Tr (3, 3, 3.5, 4) Tr(3, 3, 3.5, 4)

A5
←→

Tr (2, 2, 2, 2) Tr(2, 2, 2, 2)
←→

Tr (3, 3, 3.5, 4) Tr(3, 3, 3.5, 4)
←→

Tr (4, 4, 4, 4) Tr(4, 4, 4, 4)

A6
←→

Tr (2, 2, 2.5, 3) Tr(2, 2, 2.5, 3)
←→

Tr (4, 4, 3.5, 3) Tr(3, 3.5, 4, 4)
←→

Tr (5, 5, 4.5, 4) Tr(4, 4.5, 5, 5)

A7
←→

Tr (3, 3, 3, 3) Tr(3, 3, 3, 3)
←→

Tr (4, 4, 3.5, 3) Tr(3, 3.5, 4, 4)
←→

Tr (3, 3, 3.5, 4) Tr(3, 3, 3.5, 4)

A8
←→

Tr (2, 2, 2.5, 3) Tr(2, 2, 2.5, 3)
←→

Tr (3, 3, 3, 3) Tr(3, 3, 3, 3)
←→

Tr (5, 5, 4.5, 4) Tr(4, 4.5, 5, 5)

A9
←→

Tr (3, 3, 2.5, 2) Tr(2, 2.5, 3, 3)
←→

Tr (1, 1, 1.5, 2) Tr(1, 1, 1.5, 2)
←→

Tr (1, 1, 1, 1) Tr(1, 1, 1, 1)

A10
←→

Tr (3, 3, 3, 3) Tr(3, 3, 3, 3)
←→

Tr (2, 2, 1.5, 1) Tr(1, 1.5, 2, 2)
←→

Tr (1, 1, 1.5, 2) Tr(1, 1, 1.5, 2)

A11
←→

Tr (3, 3, 3.5, 4) Tr(3, 3, 3.5, 4)
←→

Tr (2, 2, 2, 2) Tr(2, 2, 2, 2)
←→

Tr (2, 2, 2, 2) Tr(2, 2, 2, 2)

A12
←→

Tr (3, 3, 3.5, 4) Tr(3, 3, 3.5, 4)
←→

Tr (2, 2, 2.5, 3) Tr(2, 2, 2.5, 3)
←→

Tr (2, 2, 2, 2) Tr(2, 2, 2, 2)

A13
←→

Tr (4, 4, 4, 4) Tr(4, 4, 4, 4)
←→

Tr (3, 3, 3, 3) Tr(3, 3, 3, 3)
←→

Tr (3, 3, 2.5, 2) Tr(2, 2.5, 3, 3)

A14
←→

Tr (3, 3, 3.5, 4) Tr(3, 3, 3.5, 4)
←→

Tr (4, 4, 3.5, 3) Tr(3, 3.5, 4, 4)
←→

Tr (3, 3, 2.5, 2) Tr(2, 2.5, 3, 3)

A15
←→

Tr (5, 5, 5, 5) Tr(5, 5, 5, 5)
←→

Tr (2, 2, 2, 2) Tr(2, 2, 2, 2)
←→

Tr (3, 3, 2.5, 2) Tr(2, 2.5, 3, 3)

Seller determines the validity of each of the negotiation issues using the following weight vector

w = (0.6, 0.2, 0.2). (58)

In the next step, we evaluate all negotiations packages with use OF-SAW and d-SAW methods.
All obtained values of scoring function are presented in Table 4.
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Table 4. Evaluations of negotiations packages (Source: own elaboration).

Scoring Evaluations Induced Partial Orders

Packages ←−−−→
SAW (Ai)

=
Ψ(
←−−−→
SAW (Ai)) SAW(Ai)

BEIND

(
=
Ψ◦
←−−−→
SAW )

BEIND(SAW)

A15
←→

Tr (4.0, 4.0, 3.9, 3.8) Tr(3.8, 3.9, 4.0, 4.0) Tr(3.8, 3.9, 4.0, 4.0) 1 1

A13
←→

Tr (3.6, 3.6, 3.5, 3.4) Tr(3.4, 3.5, 3.6, 3.6) Tr(3.4, 3.5, 3.6, 3.6) 2 3

A7
←→

Tr (3.2, 3.2, 3.2, 3.2) Tr(3.2, 3.2, 3.2, 3.2) Tr(3.0, 3.1, 3.3, 3.4) 3.5 6.5

A14
←→

Tr (3.2, 3.2, 3.3, 3.4) Tr(3.2, 3.2, 3.3, 3.4) Tr(2.8, 3.0, 3.5, 3.8) 3.5 3

A6
←→

Tr (3.0, 3.0, 3.1, 3.2) Tr(3.0, 3.0, 3.1, 3.2) Tr(2.6, 2.8, 3.3, 3.6) 5 3

A2
←→

Tr (3.0, 3.0, 2.9, 2.8) Tr(2.8, 2.9, 3.0, 3.0) Tr(2.8, 2.9, 3.0, 3.0) 7 9

A8
←→

Tr (2.8, 2.8, 3.0, 3.2) Tr(2.8, 2.8, 3.0, 3.2) Tr(2.6, 2.7, 3.1, 3.4) 7 6.5

A12
←→

Tr (2.6, 2.6, 3.0, 3.4) Tr(2.6, 2.6, 3.0, 3.4) Tr(2.6, 2.6, 3.0, 3.4) 7 6.5

A11
←→

Tr (2.6, 2.6, 2.9, 3.2) Tr(2.6, 2.6, 2.9, 3.2) Tr(2.6, 2.6, 2.9, 3.2) 9 6.5

A5
←→

Tr (2.6, 2.6, 2.7, 2.8) Tr(2.6, 2.6, 2.7, 2.8) Tr(2.6, 2.6, 2.7, 2.8) 10 10.5

A3
←→

Tr (2.0, 2.0, 2.4, 2.8) Tr(2.0, 2.0, 2.4, 2.8) 11.5 10.5

A4
←→

Tr (2.4, 2.4, 2.2, 2.0) Tr(2.0, 2.2, 2.4, 2.4) Tr(1.8, 2.1, 2.5, 2.6) 11.5 13

A10
←→

Tr (2.4, 2.4, 2.4, 2.4) Tr(2.2, 2.3, 2.5, 2.6) 13 13

A9
←→

Tr (2.2, 2.2, 2.0, 1.8) Tr(1.8, 2.0, 2.2, 2.2) Tr(1.6, 1.9, 2.3, 2.4) 14 13

A1
←→

Tr (1.8, 1.8, 1.8, 1.8) Tr(1.8, 1.8, 1.8, 1.8) Tr(1.6, 1.7, 1.9, 2.0) 15 15
Amount of equivalence classes 11 7

We observe that the condition (41) is met for any negotiation package A j ( j = 1, 2, . . . , 15).
Moreover, for negotiation packagesA j ( j = 1, 4, 6, 7, 8, 9, 10, 14) we have

=
Ψ(
←−−→
SAW (Ai)) , SAW(Ai). (59)

It proves that the omitting information about criterion rating orientation noticeably increases
ambiguity risk of choosing the right negotiation offer.

The identities (44), (32), and (26), determine the initial preorders BE(
=
Ψ ◦
←−−→
SAW ) and BE(SAW).

The membership functions of these preorders are explicitly described in Appendix C. Then we

distinguish the set Best(A|
=
Ψ ◦
←−−→
SAW ) of the best negotiation packages. In the considered case, this set

is crisp one. We have

Best(A|
=
Ψ ◦
←−−→
SAW ) = {A15}. (60)

In the face of a low number of the set Best(A|
=
Ψ ◦
←−−→
SAW ), we proceed to the determination of

induced partial order BEIND(
=
Ψ ◦
←−−→
SAW ) of negotiation packages. To do so, we use Procedure 2 to

determine the following equivalence classes:

B(1)(
=
Ψ ◦
←−−→
SAW ) = {A15}, B(2)(

=
Ψ ◦
←−−→
SAW ) = {A13}, B(3)(

=
Ψ ◦
←−−→
SAW ) = {A7, A14}

B(4)(
=
Ψ ◦
←−−→
SAW ) = {A6}, B(5)(

=
Ψ ◦
←−−→
SAW ) = {A2, A8,A12}, B(6)(

=
Ψ ◦
←−−→
SAW ) = {A11}

B(7)(
=
Ψ ◦
←−−→
SAW ) = {A5}, B(8)(

=
Ψ ◦
←−−→
SAW ) = {A3, A4}, B(9)(

=
Ψ ◦
←−−→
SAW ) = {A10}

B(10)(
=
Ψ ◦
←−−→
SAW ) = {A9}, B(11)(

=
Ψ ◦
←−−→
SAW ) = {A1}.

(61)

The sequence (B(i)(
=
Ψ ◦
←−−→
SAW ))

11

i=1 explicitly determines the partial order BEIND(
=
Ψ ◦
←−−→
SAW ) which

describes the negotiating Seller’s preferences. These preferences are presented in Table 4 by means of
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tired ranks [27]. In order to highlight the results of our considerations, the rows of Table 4 are ordered
by determined partial order.

We will compare partial order BEIND(
=
Ψ ◦
←−−→
SAW ) with induced partial order BEIND(SAW). Using

Procedure 2, we obtain the following equivalence classes: B(1)(SAW) = {A15}, B(2)(SAW) = {A6, A13,A14}, B(3)(SAW) = {A7, A8,A11, A12}

B(4)(SAW) = {A2,}, B(5)(SAW) = {A3,A5}, B(6)(SAW) = {A4, A9,A10}, B(7)(SAW) = {A1}.
(62)

The sequence (B(i)(SAW))
7

i=1 explicitly determines the partial order BEIND(SAW) described in
Table 4 by tired ranks [27]. We notice that for amounts of equivalence classes we get

m(
=
Ψ ◦
←−−→
SAW ) = 11 > m(SAW). (63)

It means that in considered case orientation omitting noticeable decreases the amount
of information about negotiating Seller’s preferences. It impacts on a risk burdening the
negotiation process.

In considered case, applied tired ranks are not random. Therefore, we cannot use statistical tests

for Spearman’s coefficient rho [27]. Nevertheless, we observe that the orders BEIND(
=
Ψ ◦
←−−→
SAW ) and

BEIND(SAW) noticeably differ from each other. Look, for example, on the positions of offersA7,A2

andA11. We conclude that orientation omitting noticeably blurs the best approximation of a real order
of negotiation packages. It significantly increases the hazard of accepting wrong negotiation offer.

Summing up, in the analyzed case, orientation omitting noticeable increases the risk of accepting
wrong negotiation offer. In this way, we show that the OF-SAW method is more reliable than
d-SAW method.

6. Final Conclusions

In our approach, each decision criterion is evaluated with the use of the predefined o-NOS given
as a sequence of TrOFNs. In this paper we evaluate decision alternatives by the OF-SAW method
associated with o-NOS. In line with results obtained in [15], our attention was paid to OF-SAW
methods equipped with fuzzy initial preorder described by its membership function (48). In Section 3,
we justified the view that this preorder is the most faithful order of linguistic evaluation alternatives.

We examined impact of criterion rating orientation on decision-making processes. For this reason,
we also took into account d-NOS determined as the sequence of disoriented elements of o-NOS.
If we associate a SAW method with d-NOS, then we obtain d-SAW method. Using d-SAW method,
we evaluate a decision alternative with losing information about the orientation of criterion ratings.
Therefore, comparison of results obtained with OF-SAW with the results obtained by means of d-SAW
allowed us to examine the impact orientation omitting on ordering of decision alternatives.

In Section 3, using mathematical deduction we concluded that omitting information about criterion
rating orientation can result in increase in risk when choosing the right alternative. This is just an
application about the possibility of the impact of the orientation omission on the risk burdening
a decision-making process. Nevertheless, this application proves that omitting information about
criterion rating orientation does not decrease in decision-maker’s risk.

In Section 4, thanks to the use of mathematical deduction, we confirmed our suspicions that
omitting orientation of criterion ratings can result in increase in ambiguity risk when choosing the
right alternative. For analogous reasons, we concluded here that orientation omission may result in
decrease in amount of information about partial order of decisions alternatives. Of course, it means
that orientation omission does not increase in information about arrangement of decision alternatives.
It impacts on a risk burdening the negotiation process.
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Moreover, in Section 4 we proposed to accept Procedure 2 determining induced order of decision
alternatives. This is the same order as the decision alternatives order proposed in [15]. We justified
the view that if this induced order is determined with use of OF-SAW method then it is the best
approximation of real order of considered decision alternatives. Thanks to that, it is the faithful order
of linguistically evaluated decision alternatives.

In Section 5, we considered an example of applications of OF-SAW methods for evaluation of
negotiation offers. We applied considered negotiation problem for investigation the significance of the
effects of omitting the orientation of criterion ratings. In order to accomplish this task, we evaluated
all negotiation offers simultaneously using OF-SAW and d-SAW methods. Comparison of the results
obtained by both methods allowed us to evaluate the effects of orientation omitting. We noticed that:

• omitting information about criterion rating orientation noticeable increases ambiguity risk of
choosing the right negotiation offer;

• the orientation omission noticeable decreases the amount of information about negotiating
Seller’s preferences;

• the orientation omission noticeably blurs the best approximation of a real order of
negotiation packages.

So we found the case when the orientation omitting noticeable increases risk burdening decision
making process.

Taking into account all the results of our research, we formulate the final conclusion:

• If we use the OF-SAW method then omitting information about criterion rating orientation
significantly increases in risk burdening decision making process.

For this reason, we can say that the OF-SAW associated with o-NOS is significantly better than
d-SAW associated with d-NOS. Oriented Numerical Scale cannot be replaced by disoriented Numerical
Order Scale.

Obtained in this paper results cannot be automatically generalized to other scoring techniques.
It is necessary to undertake separate studies for each technique.

At present, the main disadvantage of OF-SAW method is the lack of well-justified o-NOS that
would be empirically verified. Such empirical verification should be carried out for substantively
different decision problems. We hope that further research progress on OF-SAW applications will solve
this problem.

Further, we should generalize OF-SAW method for the case of imprecise weights which may be
applicable in group decision making. We suppose that such imprecise weights will be represented
by FN. Then we should to discuss the product TrFN by TrOFN. This is a new original mathematical
problem. Its solution is a necessary condition for the correct generalization of the OF-SAW method for
imprecise weighing instruments.

It is advisable to undertake research on various orders induced by the OF-SAW method equipped
with fuzzy initial preorder. Then we should to propose different procedures determining induced
order of decision alternatives. Obtained in this way, induced orders and the faithful order will have to
be compared using the methodology used in this work.
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Nomenclature

For the convenience of readers, all acronyms used are briefly explained below:
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d-NOS disoriented NOS introduced in Section 3
d-SAW disoriented SAW method introduced in Section 3
FN Fuzzy Number defined in [9]
g-SAW generalized SAW method introduced in Section 4
LOS Linguistic Order Scale mentioned in Section 3
NOS Numerical Order Scale mentioned in Section 3
OFN Ordered Fuzzy Number defined in [10]
o-NOS oriented NOS introduced in Section 3
OF-SAW Oriented Fuzzy SAW method described in Section 3
SAW Simple Additive Weighting method [2,3]
TrFN Trapezoidal FN determined by its membership function (3)
TrOFN Trapezoidal OFN determined by its membership function (9)

Appendix A

Theorem A1. For any sequences (
↔

K1,
↔

K2, . . . ,
↔

Kn) ⊂ KTr and (α1, α2, . . . ,αn) ⊂ R we have

=
Ψ(α1 �

↔

K1 � α2 �
↔

K2 � . . .� αn �
↔

Kn) ⊂ α1 �
=
Ψ(
↔

K1) ⊕ α2 �
=
Ψ(
↔

K2) ⊕ . . .⊕ αn �
=
Ψ(
↔

Kn) (A1)

Proof. Let us consider the sequence (
↔

K1,
↔

K2) = (
←→

Tr (a, b, c, d),
←→

Tr (e, f , g, h)) ∈ KTr ×KTr. We will take into
account the following cases:

(
↔

K1,
↔

K2) ∈ (K+
Tr ∪ R) × (K+

Tr ∪ R), (A2)

(
↔

K1,
↔

K2) ∈ K−Tr ×K
−

Tr, (A3)

(
↔

K1,
↔

K2) ∈ (K+
Tr ∪ R) ×K−Tr ∧

↔

K1 �
↔

K2 ∈ K+
Tr ∪ R, (A4)

(
↔

K1,
↔

K2) ∈ (K+
Tr ∪ R) ×K−Tr ∧

↔

K1 �
↔

K2 ∈ K−Tr, (A5)

(
↔

K1,
↔

K2) ∈ K−Tr × (K
+
Tr ∪ R)∧

↔

K1 �
↔

K2 ∈ K+
Tr ∪ R, (A6)

(
↔

K1,
↔

K2) ∈ K−Tr × (K
+
Tr ∪ R)∧

↔

K1 �
↔

K2 ∈ K−Tr. (A7)

In [12] it is shown that for the cases (A2) or (A3) we

↔

K1 �
↔

K2 =
←→

Tr (a + e, b + f , c + g, d + h). (A8)

Moreover, from (13) we get:

• if (A4) or (A6) then

↔

K1 �
↔

K2 =
←→

Tr (min
{
a + e, b + f

}
, b + f , c + g, max

{
d + h, c + g

}
), (A9)

• if (A5) or (A7) then

↔

K1 �
↔

K2 =
←→

Tr (max
{
a + e, b + f

}
, b + f , c + g, min

{
d + h, c + g

}
). (A10)

On the other hand, from (18) and (7) we have:

• if (A2) then
=
Ψ(
↔

K1) ⊕
=
Ψ(
↔

K2) = Tr(a + e, b + f , c + g, d + h), (A11)

• if (A3) then
=
Ψ(
↔

K1) ⊕
=
Ψ(
↔

K2) = Tr(d + h, c + g, b + f , a + e), (A12)
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• if (A4) or (A5) then
=
Ψ(
↔

K1) ⊕
=
Ψ (
↔

K2) = Tr(a + h, b + g, c + f , d + e), (A13)

• if (A6) or (A7) then
=
Ψ(
↔

K1) ⊕
=
Ψ(
↔

K2) = Tr(d + e, c + f , b + g, a + h). (A14)

For the case (A2), the identities (A8) and (A11) imply that

=
Ψ(
↔

K1 �
↔

K2) = Tr(a + e, b + f , c + g, d + h) =
=
Ψ(
↔

K1) ⊕
=
Ψ(
↔

K2). (A15)

For the case (A3), the identities (A8) and (A12) imply that

=
Ψ(
↔

K1 �
↔

K2) = Tr(d + h, c + g, b + f , a + e) =
=
Ψ(
↔

K1) ⊕
=
Ψ(
↔

K2). (A16)

For the case (A4) we get:
b + f ≤ c + g, (A17)

b + g ≤ b + f , (A18)

c + f ≥ c + g, (A19)

a + h ≤ a + e, (A20)

a + h ≤ b + f , (A21)

d + e ≥ d + h, (A22)

d + e ≥ c + g. (A23)

The inequalities (A20) and (A21) imply that

a + h ≤ min
{
a + e, b + f

}
. (A24)

The inequalities (A22) and (A23) imply that

d + e ≥ max
{
d + h, c + g

}
. (A25)

Inequalities (8), (A17)–(A19), (A24), and (A25) imply that

Tr(min
{
a + e, b + f

}
, b + f , c + g, max{d + h}) ⊂ Tr(a + h, b + g, c + f , d + e). (A26)

Finally, from (A19), (18), (A26), and (A13) we have

=
Ψ (
↔

K1 �
↔

K2) =
=
Ψ (
←→

Tr (min
{
a + e, b + f

}
, b + f , c + g, max{d + h})) =

= Tr(min
{
a + e, b + f

}
, b + f , c + g, max

{
d + h, c + g

}
) ⊂ Tr(a + h, b + g, c + f , d + e) =

=
=
Ψ(
↔

K1) ⊕
=
Ψ(
↔

K2).

(A27)

For case (A5) we get
b + f ≥ c + g, (A28)

c + g ≤ b + g, (A29)

c + f ≥ b + f , (A30)

a + h ≤ d + h, (A31)

a + h ≤ c + g, (A32)

d + e ≥ a + e, (A33)

d + e ≥ b + f . (A34)

The inequalities (A31) and (A32) imply that

a + h ≤ min
{
d + h, c + g

}
. (A35)
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The inequalities (A33) and (A34) imply that

d + e ≥ max
{
d + h, b + f

}
. (A36)

Inequalities (8), (A28)–(A30), (A35), and (A36) imply that

Tr(min
{
d + h, c + g

}
, c + g, b + f , max

{
a + e, b + f

}
) ⊂ Tr(a + h, b + g, c + f , d + e). (A37)

Finally, from (A19), (18), (A37), and (A13) we have

=
Ψ(
↔

K1 �
↔

K2) =
=
Ψ(
←→

Tr (max
{
a + e, b + f

}
, b + f , c + g, min

{
d + h, c + g

}
)) =

= Tr(min
{
d + h, c + g

}
, c + g, b + f , max

{
a + e, b + f

}
) ⊂ Tr(a + h, b + g, c + f , d + e) =

=
=
Ψ (
↔

K1) ⊕
=
Ψ(
↔

K2).

(A38)

For the case (A6) we get (A17) and:
c + f ≤ b + f (A39)

b + g ≥ c + g (A40)

d + e ≤ a + e (A41)

d + e ≤ b + f (A42)

a + h ≥ d + h (A43)

a + h ≥ c + g (A44)

The inequalities (A39) and (A42) imply that

d + e ≤ min
{
a + e, b + f

}
. (A45)

The inequalities (A43) and (A44) imply that

a + h ≥ max
{
d + h, c + g

}
. (A46)

Inequalities (8), (A17), (A39), (A40) (A45), and (A46) imply that

Tr(min
{
a + e, b + f

}
, b + f , c + g, max

{
d + h, c + g

}
) ⊂ Tr(d + e, c + f , b + g, a + h). (A47)

Finally, from (A18), (18), (A47), and (A14) we have

=
Ψ (
↔

K1 �
↔

K2) =
=
Ψ(
←→

Tr (min
{
a + e, b + f

}
, b + f , c + g, max

{
d + h, c + g

}
)) =

= Tr(min
{
a + e, b + f

}
, b + f , c + g, max

{
d + h, c + g

}
) ⊂ Tr(d + e, c + f , b + g, a + h) =

=
=
Ψ (
↔

K1) ⊕
=
Ψ(
↔

K2).

(A48)

For the case (A7) we have (A28) and
c + g ≤ c + f , (A49)

b + g ≥ b + f , (A50)

d + e ≤ c + g, (A51)

d + e ≤ d + h, (A52)

a + h ≥ a + e, (A53)

a + h ≥ b + f . (A54)

The inequalities (A51) and (A52) imply that

d + e ≤ min
{
d + h, c + g

}
. (A55)

The inequalities (A53) and (A54) imply that

a + h ≥ max
{
a + e, b + f

}
. (A56)
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Inequalities (8), (A28), (A49), (A50), (A55), and (A56) imply that

Tr(min
{
d + h, c + g

}
, c + g, b + f , max

{
a + e, b + f

}
) ⊂ Tr(d + e, c + f , b + g, a + h). (A57)

Finally, from (A19), (18), (A57), and (A14) we have

=
Ψ(
↔

K1 �
↔

K2) =
=
Ψ(
←→

Tr (max
{
a + e, b + f

}
, b + f , c + g, min

{
d + h, c + g

}
)) =

= Tr(min
{
d + h, c + g

}
, c + g, b + f , max

{
a + e, b + f

}
) ⊂ Tr(d + e, c + f , b + g, a + h) =

=
=
Ψ(
↔

K1) ⊕
=
Ψ (
↔

K2).

(A58)

Taking together inequalities (A15), (A16), (A27), (A38), (A48), and (A58), we conclude that for any pair

(
↔

K1,
↔

K2) ∈ KTr ×KTr we have
=
Ψ(
↔

K1 �
↔

K2) ⊂
=
Ψ(
↔

K1) ⊕
=
Ψ(
↔

K2). (A59)

Applying mathematical induction now, we prove that for any sequence (
↔

K1,
↔

K2, . . . ,
↔

Kn) ⊂ KTr we have

=
Ψ(
↔

K1 �
↔

K2 � . . .�
↔

Kn) ⊂
=
Ψ(
↔

K1) ⊕
=
Ψ(
↔

K2) ⊕ . . .⊕
=
Ψ(
↔

Kn). (A60)

It, together with (19), implies that inequality (a1) is met for any pair of sequences (
↔

K1,
↔

K2, . . . ,
↔

Kn) ⊂ KTr
and (α1, α2, . . . ,αn) ⊂ R. �

Appendix B

Theorem A2.
∀(K ,L,M,N)∈F4

Tr
: {K ⊂ M & L ⊂ N} ⇒ ν[GE](K ,L) ≤ ν[GE](M,N) (A61)

Proof: We substitute

K = Tr(a, b, c, d) ⊂ M = Tr(a∗, b∗, c∗, d∗) & L = Tr(e, f , g, h) ⊂ N = Tr(e∗, f ∗, g∗, h∗) (A62)

Then from Definition 1 and identity (8), we obtain

a∗ − h∗ ≤ a− h ≤ b− g, (A63)

b∗ − g∗ ≤ b− g. (A64)

Therefore, we will only take into account the following cases:

0 ≤ a− h, (A65)

a− h < 0 < b∗ − g∗, (A66)

b∗ − g∗ ≤ 0. (A67)

For the case (A65), identity (26) implies

ν[GE](K ,L) = 0 ≤ ν[GE](M,N). (A68)

For the case (A66) we have

a∗ − h∗ = α∗ ≤ α ≤ a− h = α < 0 < b∗ − g∗ = β∗ ≤ b− g = β. (A69)

Let the function ϕ : R− ×R+
→ R be given by the identity

ϕ(x, y) =
x

x− y
. (A70)

It is very easy to check that this function is non-increasing one of both variables. It together with (26) and
(A69) implies that for (A66) we get
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ν[GE](K ,L) =
a− h

a + g− b− h
=

α
α− β

≤
α∗

α∗ − β∗
=

a∗ − h∗

a∗ + g∗ − b∗ − h∗
= ν[GE](M,N) (A71)

For the case (A67), identity (26) implies

ν[GE](K ,L) ≤ 1 = ν[GE](M,N). (A72)

Taking together (A68), (A71), and (a72) we obtain (A61). �

Appendix C

Table A1. Membership function of initial preorder BE(
=
Ψ ◦

←→

SAW) (Source: Own elaboration).

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

A1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0
A3 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0
A4 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0
A5 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0
A6 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0
A7 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0
A8 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0
A9 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0
A10 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0
A11 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0
A12 1 1 1 1 1 0.67 0.50 1 1 1 1 1 0 0 0
A13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
A14 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0
A15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table A2. Membership function of initial preorder BE(SAW) (Source: Own elaboration).

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

A1 1 0 0 0.50 0 0 0 0 1 0 0 0 0 0 0
A2 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0
A3 1 0 1 1 0.50 0.33 0 0.40 1 1 0.50 0.50 0 0 0
A4 1 0 1 1 0 0 0 0 1 0.67 0 0 0 0 0
A5 1 0 1 1 1 0.67 0 1 1 1 0.67 1 0 0 0
A6 1 1 1 1 1 1 1 1 1 1 1 1 0.50 1 0
A7 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0
A8 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0
A9 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0
A10 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0
A11 1 1 1 1 1 1 0.50 1 1 1 1 1 0 0.80 0
A12 1 1 1 1 1 1 0.80 0.89 1 1 1 1 0 1 0
A13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
A14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
A15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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In Methods of Artificial Intelligence; Burczyński, T., Cholewa, W., Moczulski, W., Eds.; PACM: Gliwice, Poland,
2002; pp. 231–237.
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