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Abstract: In this paper, we present the optimization of a vibration mitigation system for railway bridges.
These structures are subjected to significant moving loads, whose dynamic characteristics may produce
resonance effects, compromising the integrity of the bridge and the security of the passengers if the speed
or the load of the train is not controlled. The study focuses on the Auxiliary Beam system. It consists of
a beam located under the bridge and connected to the slab by viscous dampers. The symmetry of the
problem allowed for the use of a 2D Finite Element model of the system. This model was used together
with a genetic algorithm in order to evaluate the behaviour of different candidates and to optimize the
design parameters: the inertia of the beam and the damper coefficient. The goal of the optimization
process is to minimize the acceleration of the bridge while adding the lightest mitigation system possible.
The combination of a Finite Element Model and Genetic Algorithm helps to address the complex problem
and to find an optimized set of structural parameters. The system finally shows good behaviour for
optimal parameters.

Keywords: vibration mitigation; railway bridges; finite elements; genetic algorithms

1. Introduction

Effective transport worldwide demands for reduction of the time spent travelling, and high-speed
railway lines have nowadays become of uttermost importance. Increasing train speed is technically possible
with recent advances in vehicles, such as better propulsion systems and optimized aerodynamics [1].
However, in order to reach the full velocity range, railway infrastructures must tolerate these speeds,
while preserving all the safety specifications. One of the most critical infrastructures, and the one that
will be analysed in this paper, are bridges. Moving trains produce periodical forces. This periodicity is
caused by the constant separation between axles, which induces a vibrational response on the bridge [2–7].
The acceptable values for the amplitude and acceleration of these vibrations are regulated to preserve
the integrity of the infrastructure. To follow the demand of increasing speeds in conventional railway
infrastructures, while following all the safety regulations, several vibration mitigation systems have been
proposed and, sometimes, implemented in existing bridges.
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The Tuned Mass Damper (TMD) system is probably the most studied method for vibrational
response reduction in bridges and buildings. Its popularity is due to its simplicity and cost-efficient
implementation [8–12]. However, TMD systems are designed and tuned to a specific frequency
value—typically, the first flexural mode of the structure. This may cause problems, since the added
mass of different trains to the main structure modifies its natural frequencies.

An alternative method for bridges is the Auxiliary Beam (AB) or double beam system [13–16]. The AB
system consists of an extra beam installed under the bridge deck, being both connected by a viscous
damper; see Figure 1. The viscous damper of the system will dissipate part of the energy generated by
the moving loads, reducing both the vertical acceleration and the displacement of the bridge. The tuning
problem of TMDs is now avoided, since the viscous damper is capable of working properly in a wider range
of frequencies. Also, this system is particularly interesting for the retrofitting of existing infrastructures,
since it can be installed while the bridge is in use.

Figure 1. Scheme of an Auxiliary Beam (AB) system. The bridge deck (upper beam) is simply supported at
both ends by the bridge pillars. The AB (lower beam) is also simply supported at the pillars, and connected
to the bridge deck by a viscous damper.

The design parameters for the AB system are the damper characteristics and the dimensions of the
auxiliary beam. In this work, we study a generic AB system in order to optimize its parameters. The aim
is to obtain the maximum reduction of the vibrations caused by the passing train at the mid-span of
the bridge (the critical section). To characterise the dynamic behaviour of the system with a moving
train, a Finite Element (FE) model was designed. With a full transient implicit analysis, acceleration and
displacement values were obtained at any time.

To perform this optimization process, we implemented a Genetic Algorithm (GA) in MATLAB
R2016b (MathWorks, MA USA) [17], which is a valuable tool for problems involving several parameters,
especially if analytical solutions or simplifications can be hardly developed [18]. Evolutionary algorithms
provide the additional advantage of working without derivatives (useful for the fitting of non-smooth
functions) and being easily adapted to multi-objective problems. These techniques are especially
useful when combined with reduced models, which allow for a fast evaluation of each individual
(or parametrized) case [19].

Consequently, in this paper, a new methodology for tackling this problem is presented, applying
an optimization tool to a computationally affordable model. To allow for the use of FE models (which can
be as realistic and complicated as the computational resources permit), a classic commercial FE software
was employed together with an heuristic technique for the optimization, implemented in a different
software. The FE model used at this point is a very simplified one, the most important simplification being
the reduction to a two-dimensional case. This is possible since the geometries of the bridge and the train,
as well as the loads of the train, are essentially symmetrical about the longitudinal plane. Once the tool
has proven its viability, more complex models can be added.
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The paper is organized as follows. The problem is fully described in the next section. In Section 3,
the FE model is presented and validated with published results. In Section 4, the genetic algorithm used is
described in detail. Finally, the results and discussion are presented in Section 5, and the conclusions in
Section 6.

2. Problem Definition

To demonstrate the methodology that we present in this paper, a particular problem was studied.
However, this methodology can be extended to any problem of interest simply by modifying the FE model.
Also, more dampers can be added, increasing the number of variables for the optimization if we allow for
different damper coefficients. In conclusion, any configuration is susceptible of being optimized as long as
it can be parametrized to define the variables of interest.

The FE model developed for this study consists of a generic AB system connected to a 20 m single
span bridge. The bridge was considered to be a simply supported slab of homogeneous concrete with
a rectangular section of 5 m width and 1.2 m thickness (moment of inertia of 0.72 m4), according to the
data provided in a national regulation technical note [20]. The material chosen for the auxiliary beam was
steel. This element is also simply supported at both ends. Both elements were connected by one viscous
damper, as described before.

One of the design parameters was the size of the auxiliary beam. More specifically, the moment of
inertia was selected as the parameter for variance, and the dimensions of the beam were computed from it.
In order to simplify this calculation, the cross-section of the beam was considered to be squared, although
the results can be generalized to any cross-section. The second design parameter involves the viscous
damper. The damping coefficient was selected to be the other variable, since it is a direct input to the
FE model.

Both parameters—the moment of inertia and the damping coefficient—were normalized in order to
get more generalizable results. The moment of inertia of the AB was normalized to the moment of inertia
of the bridge itself, obtaining a relation between both cross-sections (γ):

γ =
IAB

Ibridge .

The damper coefficient was also normalized, in this case with the structural damping of the bridge.
Therefore, the normalized damping θ results in:

θ =
C

Cbridge ,

where the structural damping of the bridge is obtained from

Cbridge = β · k,

k being the flexural stiffness of the bridge and β a Rayleigh coefficient that allows to define the damping
matrix [21]. Only β was used because the vibrations occur in the vicinity of the first natural frequency of
the bridge, and β was computed using such a frequency and the value of the structural damping coefficient
(2% according to [20]). Furthermore, a comparative analysis (using both Rayleigh parameters and only β)
provided identical acceleration responses over time, and the maximum value only differs for less than
0.7 percent. Then, these non-dimensional parameters are the variables to optimize in our study.

In order to select a train type and a velocity to study, we performed a parametric study of seven
European high-speed trains whose data was available in [20]. In this study, all the trains were simulated
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passing the bridge (without an AB system) at speeds ranging from 100 to 400 km/h, and the maximum
acceleration (in modulus) that appeared in the middle of the span of the bridge was recorded. The results
of this analysis are shown in Figure 2.

Figure 2. Maximum acceleration values as a function of the train speed, computed with the Finite Element
(FE) model for the bridge with no vibration mitigation system coupled. Each line (colour) corresponds to
a different European train model, according to the legend.

It can be seen that the train EUROSTAR 373/1 travelling at 330 km/h produces the biggest acceleration
peak below 350 km/h. The Virgin train produces a greater acceleration value at 400 km/h; however,
the evolution of this acceleration with velocity is smoother at lower speeds. Thus, the case study will be
the EUROSTAR train at 330 km/h with the bridge-beam configuration described previously.

3. Finite Element Model

The dynamic problem involved in this optimization process can be solved with different techniques.
One approach is the modal superposition method [13]. However, this approach simplifies the dynamic
loads (caused by train traffic) to harmonic loads, which are then projected into the modal space to solve the
problem. Furthermore, this method is not suitable to solve non-linearities in the problem. (Although they
are not addressed in this work, we also provide the possibility of using them in the future, for example,
with the addition of non-linear dampers).

On the other hand, the full integration methodology presented in this paper allows for the inclusion
of non-linear dampers and other kinds of non-linearities in a straightforward way.

In this work, the structural problem is solved as a FE model, with an implicit integration in time.
Since the execution of the optimization algorithm requires a large number of simulations in order to
evaluate the partial results, the model must be lightweight. To obtain a reliable and robust model with
limited CPU requirements, one-dimensional elements were employed. As it is shown later, this model has
been validated with current regulations and bibliography results.

The model was constructed with the software ANSYS v17 (ANSYS Inc., Canonsburg, PA, USA).
Both the deck of the bridge and the auxiliary beam were modelled as beam elements. In particular, we
used the element BEAM188 provided by the program, which is based on Timoshenko beam theory with
shear-deformation effects [22]. The number of elements was determined with a mesh sensitivity analysis,
concluding that eleven elements (for each beam) were sufficient to produce consistent results. To model
the damper, the element COMBIN14 was employed. The only value needed for this element was the
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damping coefficient. Given the symmetry of the model, the study was two-dimensional (in the plane
containing both beams).

There are several ways to model the moving train, particularly the train–bridge interactions. The most
common ones are the moving loads, moving mass, and moving suspension mass models. For our purpose,
the train was modelled as a set of moving loads, since it is the easiest and fastest model. Although this
model is a simplification of the real behaviour, the solution is not critically changed. As stated in [10],
the mass that the train would add to the structure only causes a change in the resonant frequencies below
3%. Also, in [13], the authors show that that added mass does not affect the optimization process of the
AB. Furthermore, in [23] the moving loads model was selected, since it causes a more adverse case (the
suspension system of the train can absorb part of the vibrations).

Regarding the numerical integration, the time-step was defined following the guidelines of the railway
bridge regulation [20]; in this reference, it is stablished that every vibration with a frequency lower than
30 Hz must be considered. In [24], the authors recommend the use of a time-step at least ten times lower
than the smallest period to be studied. In this work, the time-step was considered to be 20 times lower
than the minimum period required by the regulation, thus increasing the accuracy while maintaining
a reasonable computing time.

3.1. Validation of the Bridge Model

In order to validate the proposed FE model, we used results from the literature. First, the bridge
model was checked without any mitigation devices. This validation took as reference values the ones
provided in [20], which were obtained for the ICE-2 train and a specific bridge geometry. All the cases
presented in the reference were performed. Here, we present a parametric study of the passing train
for different velocities. In Figure 3, the maximum displacement and acceleration values (at any time) at
the mid-span of the bridge for each train speed are plotted. Good agreement is shown for both cases.
Only local discrepancies below 5% appear for the acceleration comparison (right panel) at 250 km/h.
No bigger discrepancies were found in the other validation cases performed.

Figure 3. Maximum values for displacement (left) and acceleration (right) as a function of the speed of the
train for the validation case provided in [20]. The reference values are plotted as asterisks.

3.2. Validation of the AB System

To ensure that the AB system was correctly modelled, a validation study was also performed with
the complete model. We used the parametric results of [13] to contrast our model. In that work, the
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system was studied using classical harmonic analysis, studying the Frequency Response Function (FRF)
varying several model parameters. Therefore, the same analysis was performed for our model, instead of
a full integration.

The results obtained for our model and the formulation of the parameters were adapted to the
nomenclature used in [13], in order to compare the results directly. All the results presented in that
reference were replicated. In Figure 4, some FRF results obtained with our model are shown. These curves
compare directly with Figure 4 in [13]. No numerical differences appeared between both models for this
case and all the others studied.

Figure 4. Frequency response of the parameter AB as a function of Ω for our FE model, with parameters
defined as in [13]. These curves compare directly with Figure 4 in [13].

4. Genetic Algorithm

Overall, GAs work like nature, allowing a series of individuals to evolve with time and preserve the
best-adapted ones, which leads to better and better offspring. In this analogy, individuals represent a tuple
of parameters (γ, θ), and the adaptation is related to how the AB system performs. With the objectives that
were set in the second section, the fitness (or how well each individual adapts) is related to the reduction
of vibrations and the mass added to the system. Although the algorithm was implemented by the authors
from scratch in MATLAB, the detailed explanation of the algorithm is omitted, since it is a well-known
technique whose details can be found, for instance, in [25], and a similar algorithm is described by the
authors in [26].

To start the algorithm, it is necessary to define the bounds of the search space (parametric domain)
and an initial population. There are several techniques to start the population, the easiest one being
distributing random individuals along the parametric domain. Other techniques distribute the initial
individuals evenly along the parametric domain. For this work, the Latin Hypercube Sampling technique
was employed [27], which is a compromise between randomness and a good parametric domain coverage.
Regarding the parametric domain, the bounds were defined based on commercial dampers and beam
profiles in order to obtain realistic values. The limits resulted in γ ∈ [0.001, 0.035] and θ ∈ [0, 20].

After all individuals are defined, they have to be evaluated. For this, the FE model was constructed
with the individual parameters, and the simulation was performed. Since the algorithm was implemented
in MATLAB and the model was constructed in ANSYS, an intermediate file to transfer the individual data
was used. With the output of the simulation (the maximum acceleration) and the computed added mass
value (according to the beam configuration), the adaptation (fitness) of that individual could be computed.

The specific definition of the fitness function (a function that maps the acceleration and added mass
values to a scalar) is critical to the behaviour of the algorithm. We decided to unify both objectives
in a single fitness value by first evaluating the results and mapping them to individual fitness values.
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The mapping of added mass and maximum acceleration is performed with the piecewise functions
depicted in Figure 5. Bigger accelerations and masses are penalised with lower fitness values, saturating at
certain unreasonable values.

Figure 5. Fitness functions for the individual objectives, added mass (left) and acceleration reduction (right).

Then, these individual values are combined into a single value with a weighted average:

Total Fitness = w ·Mass Fitness + (1− w) ·Accel. Fitness. (1)

The influence of the weighting parameter w will be studied in the results section.
With every individual evaluated and with a fitness value assigned, the selection of the best suited

individuals must be performed. The selection technique implemented was the Stochastic Universal
Sampling (SUS) method with elitism [28]. With this method, the best-suited individual is always preserved
to the next generation. Then, M individuals are selected with a probability proportional to their fitness
value (the details can be found in the previous reference). In this particular case, we found that selecting
four individuals plus the elite individual led to convergent results.

Once the individuals that will be preserved in further generations have been selected, they must
produce offspring. To perform this crossover, the genetic data (the parameter values) is encoded into
a 16 bit binary string, which improves the performance of the algorithm by making it independent of the
problem [29]. Then, individuals are coupled in all possible combinations, and offspring is produced by
a uniform crossover of the binary strings. This crossover consists of selecting each bit of the child binary
string randomly from one progenitor or the other.

Mutation is a powerful tool that can be used to better explore the parametric domain [30]. It is
performed by randomly changing one bit of the offspring. Both the mutated individual and the original
one are kept, in order to avoid losing a promising individual due to a dramatic change caused by mutation.
The probability of mutating a gene in an individual is set to 1%. We note that the influence of mutating or
randomly selecting the Most Significant Bit (MSB) or Less Significant Bit (LSB) is not discussed on this
paper, since it is out of our scope.

After all the new individuals are generated, they are evaluated once more, and a fitness value is
assigned repeating the loop for a predefined number of generations. For this work, the number of
generations was set to 20.
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Validation of the GA

In order to crosscheck the implementation of the GA, a validation case must be solved. We took,
as reference, the analytical optimization of an AB system proposed in [13]. In that reference, the authors
obtained an analytical expression for a parameter related to the acceleration at the mid-span of the bridge
(AB). Then, the value for the parameter related to the damping coefficient ζ that minimizes AB was
computed. The theoretical model proposed in the paper is given by:

AB =

√
4Ω2ζ2 + µ2(η2 −Ω2)2

(1−Ω2)2 µ2 (η2 −Ω2)2 + 4Ω2ζ2 [1−Ω2 + µ(η2 −Ω2)]2
,

where Ω is the excitation frequency ratio normalized to the first natural frequency of the bridge, µ is the
mass ratio, and η the frequency ratio; all defined in [13].

We performed the optimization with the GA of this theoretical model for the case where η = 1.9
and µ = 0.1, and the domain for the damping coefficient is ζ ∈ [0, 1]. We note that the parameter Ω
is a variable that changes between 0.5 and 1.5 and the maximum amplitude appears in that range (see
Figure 4). The optimal value obtained with the genetic algorithm is ζ = 0.11173, whereas the analytical
solution obtained is ζ = 0.11176. The algorithm converges with a relative difference below 0.0035. This
test shows the ability of the GA to provide good optimization solutions.

5. Results and Discussion

According to the selected case (EUROSTAR train at 330 km/h), the parameters of the AB system
(γ and θ) were optimized. Each set of values produced a dynamic response given by the results of the
FE model, and was evaluated in terms of the maximum acceleration. Also, some additional mass was
included in the structure, due to the mitigation system.

Each individual of any generation defines a possible configuration of the AB system, according to
the defining parameters (γ, θ); we remark that the fitness of each individual is related to the acceleration
reduction it produces and the mass it adds to the system.

The first study was performed by allowing the individuals to until convergence was achieved (typically
within 20 generations), and weighting the acceleration reduction at 90% and the mass addition at 10%, as
defined in Equation (1). In Figure 6, all the individuals have been plotted in the parametric domain, with its
fitness value represented as a colour ranging from blue (low fitness) to red (high fitness). We can see that
penalising the mass results in a concentration of good individuals around the value of inertia γ = 0.008,
regardless of the damping value. However, the best individuals tended to the damping value of θ = 0.5.

The three best candidates found by the algorithm are listed in Table 1. The parameters of the system
differed only for γ, with a maximum difference of 10%. For θ, the differences are minimum. The algorithm,
therefore, outputs stable results within narrow ranges.

Table 1. Values associated to the three best fitness values, for the first case studied.

γ θ Max. Acel. [m/s2] Mass [103kg] Fitness [m/s2]

Individual 1 5.207× 10−3 0.0494 9.0541 33.299 68.601
Individual 2 5.215× 10−3 0.0494 9.0525 33.325 68.601
Individual 3 4.684× 10−3 0.0494 9.1651 31.582 68.581
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Figure 6. Results for 20 generations of individuals with weighting factors of 10% for mass and 90% for
inertia. Each individual was located according to the parameter set (θ, γ) it represents, and the fitness value
is shown as a colour going from blue (less fitted) to red (more fitted).

5.1. Dependency on the Weighting Factors

As mentioned previously, the definition of the fitness function depends on the weight given to the
mass penalty and the complementary weight of the acceleration reduction, cf. Equation (1). This weighting
factor heavily affects the result of the algorithm. For instance, in Table 2, we show the best candidate that
the algorithm outputs for different weighting factors.

Table 2. Parameter set values of the best individual found by the genetic algorithm for different mass
weighting factors.

Mass Weighting Factor γ θ

2.5% 10.580× 10−3 0.0555
5% 8.187× 10−3 0.0531

10% 5.207× 10−3 0.0494
20% 1.777× 10−3 0.0326
30% 1.135× 10−3 0.1569

In general terms, to reduce the maximum acceleration, it is of interest to increment the inertia of the
system, thus increasing the mass. This is shown in the increasing value of the inertia parameter when
the mass weighting factor reduces. Increasing this weighting factor will balance the results by preferring
lower masses with higher accelerations.

In Figure 7 (left), the evolution of the maximum acceleration and the added mass for the best candidate
found by the algorithm is plotted against the weighting factor. As expected, when the mass weighting
factor increases, the mass is reduced and the acceleration increases. To study the relation between both
objectives, in the right panel of that same Figure, the acceleration is plotted against the added mass
(for each weight factor). It can be seen that for the low mass values range, a small increment of mass
causes a big drop in the acceleration. When the added mass becomes bigger, the improvement in terms of
acceleration decreases for the same increase in mass. The best choice depends on the application and the
limitations of the particular case studied.
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Figure 7. Influence of the weighting factor of the fitness function in maximum acceleration and added mass
values (left). Relation between added mass and maximum acceleration (right). Increasing added mass
(reduced weight factor for mass penalty) leads to decreasing acceleration. The rate of acceleration reduction
is lower for bigger masses.

5.2. Dynamic Response

To conclude the study, here we present the dynamic response of the bridge simulated with the FE
model. In Figure 8, the acceleration over time has been plotted for four different cases. We took as reference
the response of the bridge without a damping system (black line) and compared it with three of the
solutions represented in Table 2. We observe that the AB system has no effect on the frequency values but
decreases the peak values of acceleration. Furthermore, with no optimization system, the acceleration peak
values increase for the first 4.3 s, while the AB system produces a more homogeneous acceleration envelope.

Figure 8. Dynamic response of the bridge for different configurations. The acceleration over time is plotted
for the bridge without a damping system, and three cases shown in Table 2.

The phenomenon discussed in the previous section is also visible. Reducing the weighting factor from
30% to 10% for the mass produces significant changes in the dynamic response. However, the reduction
from 10% to 2.5% has little effect on the response of the system. In this case, with an added mass from 1500
to 3300 kg, a significant reduction in the dynamic response is shown for the particular bridge studied.
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6. Conclusions

In this work, an optimization study of an auxiliary beam system which was used to reduce the
unintended vibrational behaviour of railway bridges was addressed. To evaluate the mechanical
characteristics of the system, an FE model was developed, comprising the bridge, the beam, and the
moving loads of train traffic. This simple model can be replaced by more accurate models in the future,
reproducing complex effects. Recent studies have made use of artificial intelligence techniques in order
to obtain reduced models. These reduced models (consisting of, for example, artificial neural networks)
allow for a faster execution of the genetic algorithm once they are trained.

A genetic algorithm was also implemented to perform the optimization process. This optimization
problem involved two parameters of the AB system, namely, the inertia of the beam and the damping
coefficient of the viscous damper. The analysis of each set of parameters involved the evaluation of the FE
model to obtain the maximum acceleration caused by the train with that configuration. After the evolution
process was finished, a set of optimal individuals was obtained. The behaviour of these individuals
was studied, paying special attention to the influence of the weighting parameter for the multi-objective
problem, and the minimization of the vibrations with the minimum addition of mass.

As expected, the more mass was added to the system, the reduction of the vibrations was bigger;
however, a point was reached where the addition of extra mass did not significantly affect the improvement
of the dynamic response. The results can be applied to particular railway cases to make realistic assessments
according to the train, maximum speed, and mitigation measures to be implemented.

The methodology presented in this work, combining a high-level programming language and
a specific software for FE analysis, showed their suitability for these kinds of processes. Furthermore, the
use of genetic algorithms in complex problems, such as the problems that appear in dynamics, proved to
be of interest.
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