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Abstract: To address issues involving inconsistencies, this paper proposes a stochastic multi-criteria
group decision making algorithm based on neutrosophic soft sets, which includes a pair of asymmetric
functions: Truth-membership and false-membership, and an indeterminacy-membership function.
For integrating an inherent stochastic, the algorithm expresses the weights of decision makers and
parameter subjective weights by neutrosophic numbers instead of determinate values. Additionally,
the algorithm is guided by the prospect theory, which incorporates psychological expectations of
decision makers into decision making. To construct the prospect decision matrix, this research
establishes a conflict degree measure of neutrosophic numbers and improves it to accommodate
the stochastic multi-criteria group decision making. Moreover, we introduce the weighted average
aggregation rule and weighted geometric aggregation rule of neutrosophic soft sets. Later, this study
presents an algorithm for neutrosophic soft sets in the stochastic multi-criteria group decision making
based on the prospect theory. Finally, we perform an illustrative example and a comparative analysis
to prove the effectiveness and feasibility of the proposed algorithm.

Keywords: neutrosophic soft sets; inconsistent information; prospect theory; stochastic multi-criteria
group decision making

1. Introduction

Many complex issues in engineering, economics, environmental science and medical science
involve uncertainties. In order to address these issues, the theory of possibility, fuzzy set [1], rough set [2],
and interval mathematic [3] have been developed successively. However, the above theories have their
inherent defects, which are mainly reflected in the inadequacy of parameterization tools [4]. In 1999,
Molodtsov [4] initiated the soft set theory for modeling uncertainties from the parameterized point
of view.

After Molodtsov, the research interests in the soft set theory have been growing rapidly, such as
the algebraic structure [5,6], topology [7,8], normal parameter reduction [9], medical diagnosis [10],
game theory [4], and decision making under uncertainties [11,12]. In addition, the study of hybrid
models that are developed by combining the soft set theory with other mathematical tools, such as rough
sets [13], fuzzy sets [14], and intuitionistic fuzzy sets [15], has also been an important research topic.

Under uncertain environments, a mass of inconsistent information appears due to diversities
of source platforms and the differences in the acquisition time. To address issues involving
inconsistencies, Smarandache [16] initiated neutrosophic sets from the perspective of philosophy.
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Subsequently, Maji [17] integrated neutrosophic sets into soft sets to propose neutrosophic soft
sets, which retain the characteristics of neutrosophic sets and have adequate parameterization tools.
Neutrosophic soft sets are characteristic by three independent functions, including a pair of asymmetric
functions: Truth-membership and false-membership, and an indeterminacy-membership function.
Among them, the truth-membership and false-membership represent the degree of belongingness and
non-belongingness of an element with respect to parameters. The indeterminacy-membership shows
the neutrality degree of an element related to parameters.

In recent years, the theory extensions of neutrosophic soft sets have made a rapid progress.
Sahin and Küçük [18] constructed generalised neutrosophic soft sets. Deli and Broumi [19] refined
the concept and operations of Maji’s neutrosophic soft sets. In addition, they also studied the
neutrosophic soft matrix and their operators. Considering that the approximate range is usually
used to describe complex situations when there is no sufficient information, Deli [20] expanded the
values of the truth-membership, indeterminacy-membership, and false-membership to the form of
interval values to construct interval-valued neutrosiphic soft sets. Karaaslan [21] introduced the
possibility of neutrosophic soft sets by assigning probability to the three function values and defined
related properties and operations. In addition, the concepts of single-valued neutrosophic refined soft
sets [22], generalized neutrosophic soft expert sets [23], and neutrosophic soft rough sets [24] were
presented successively.

Meanwhile, neutrosophic soft sets are also employed in the fields of clustering, prediction and
decision making under uncertainties, among which decision making under uncertainties is the most
widely applied. Deli [20] proposed a decision making method of interval-valued neutrosophic soft
sets by level soft sets, and illustrated it by an example. Peng and Liu [25] constructed three decision
making algorithms of neutrosophic soft sets by evaluation based on the distance from average solution
(EDAS), similarity measure, and level soft sets, respectively. Abu Qamar and Hassan [26] presented
the similarity, distance, and fuzzy degree measures of Q-neutrosophic soft sets, and put forward the
corresponding decision rule. Karaaslan [21] constructed a decision making method for the possibility
of neutrosophic soft sets based on the and-product.

However, the existing studies mainly focus on decision making methods under a single decision
maker, few scholars have studied group decision making problems by neutrosphic soft sets. At the
same time, we also noticed that the existing methods have the following defects. On one hand,
the above methods are mainly based on the expected utility theory, which assumes that decision
makers are completelyrational. Actually, in decision making processes, decision makers do not make
decisions in a complete rational manner, mainly showing that psychological expectations will greatly
affect the actual decision making behavior. On the other hand, the parameter subjective weights are
directly given determinate values [25], which do not fully reflect the hesitancies of decision makers’
judgments under uncertain environments.

To make up for the gaps of existing researches, this study constructs an algorithm for the stochastic
multi-criteria group decision making based on neutrosophic soft sets. Stochastic means that the weights
of decision makers and parameters are uncertain or completely unknown under uncertainties. In this
paper, neutrosophic numbers rather than determinate values are adopted to express the stochastic
of the weights of decision makers and parameters. This method employs the prospect theory [27]
rather than the expected utility theory to integrate the hesitancies of alternatives by decision makers’
judgements. The prospect theory, a new theory of bounded rationality, is proposed from the point of
view of cognitive psychology. In addition, it integrates the influence of psychological expectations on
actual decision making behaviors into the decision making model. Therefore, the prospect theory is
more in line with actual decision making behaviors under uncertainties [28]. Then, to establish the
prospect decision matrix, we put forward the conflict degree measure of neutrosophic numbers and
modify it to adapt group decision making. Moreover, on the purpose of aggregating in group decision
making processes, this study proposes the weighted average aggregation rule and weighted geometric
aggregation rule of neutrosophic soft sets.
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To promote our discussion, some fundamental concepts of neutrosophic sets, soft sets, neutrosophic
soft sets, and prospect theory are reviewed in Section 2. In Section 3, we establish the measures of
determinacy degree and conflict degree, and construct the weighted average aggregation rule and
weighted geometric aggregation rule of a neutrosophic soft set. In Section 4, this paper presents an
algorithm for neutrosophic soft sets in the stochastic multi-criteria group decision making based on the
prospect theory. In Section 5, to demonstrate the feasibility and effectiveness of the proposed algorithm,
we perform an illustrative example and a comparative analysis.

2. Preliminaries

In this section, we briefly recall some basic concepts of neutrosophic sets, soft sets, neutrosophic
soft sets, and prospect theory. More detailed conceptual basics can be found in references [4,16,17,27]
(pp. 1–2).

2.1. Neutrosophic Soft Sets

Definition 1 [16] (p. 1). Let U be the initial universal set, a neutrosophic set A =
{
< u : TA(u), IA(u), FA(u) >, u ∈ U

}
consists of the truth-membership TA(u), the indeterminacy-membership IA(u), and false-membership FA(u)
of element u ∈ U to set A, where T, I, F : U→]−0, 1+[ . ]−0, 1+[ is a non-standard interval, and the
left and right borders of it are imprecise. Between them, (−0) = {0− x : x ∈ R∗, x is infinitesimal},
and (1+) = {1 + x : x ∈ R∗, x is infinitesimal}.

For convenience, we employ u =< T, I, F > to represent the element u in the neutrosophic set A,
and it can be called a neutrosophic number.

Considering that neutrosophic sets are proposed from the philosophical point of view, it is difficult
to apply to practical problems, such as management and engineering problems. Then, Haibin et al. [29]
developed single valued neutrosophic sets.

Definition 2 [29]. Let U be the universal set, a single valued neutrosophic set A over U can be defined as
A =

{
< u : TA(u), IA(u), FA(u) >, u ∈ U

}
, where T, I, F : U→ [0, 1] . Similarly, the values of TA(u), IA(u) and

FA(u) stand for the truth-membership, indeterminacy-membership, and false-membership of u to
A, respectively.

Definition 3 [30]. Let u =< T, I, F > be a neutrosophic number, then the score function, accuracy function and
certainty function are defined as follows, respectively.

s(u) =
2 + T − I − F

3
, (1)

a(u) = T − F, (2)

c(u) = T, (3)

The score function is an important index for evaluating neutrosophic numbers. For a neutrosophic
number R =< Tr, Ir, Fr >, the truth-membership Tr is positively correlated with the score function,
and the indeterminacy-membership Ir and false-membership Fr are negatively correlated with the score
function. In terms of the accuracy function, the greater the difference between the truth-membership
Tr and false-membership Fr is, the more affirmative the statement is. Additionally, in regard to the
certainty function, it positively depends on the truth-membership Tr.

On the basis of Definition 3, the comparison method between two neutrosophic numbers is
represented as follows.
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Definition 4 [30]. Let u1 =< T1, I1, F1 >, u2 =< T2, I2, F2 > be two neutrosophic numbers, the comparison
relationships between u1 and u2 are as follows:

1. If s(u1) > s(u2), u1 is superior to u2 and it can be denoted by u1 � u2;
2. If s(u1) = s(u2), a(u1) > a(u2), u1 is superior to u2 and is denoted by u1 � u2;
3. If s(u1) = s(u2), a(u1) = a(u2) and c(u1) > c(u2), u1 is superior to u2 and is denoted by u1 � u2;
4. If s(u1) = s(u2), a(u1) = a(u2) and c(u1) = c(u2), u1 is equal to u2, denoted by u1 � u2.

Example 1. For two neutrosophic numbers u1 =< 0.8, 0.2, 0.4 > and u2 =< 0.7, 0.4, 0.1 >, we can obtain that
s(u1) = 2.2/3, s(u2) = 2.2/3, a(u1) = 1.2/3, a(u2) = 1.8/3, c(u1) = 2.4/3 and c(u2) = 2.1/3 based on
Definition 3. Considering Definition 4, we can infer that u2 is superior to u1, as denoted by u2 � u1.

Definition 5 [31]. Let u1 =< T1, I1, F1 >, u2 =< T2, I2, F2 > be two neutrosophic numbers, then the
normalized Hamming distance between u1 and u2 is defined as follows:

D4(u1, u2) =
(|T1 − T2|+|I1 − I2|+|F1 − F2|)

3
. (4)

Definition 6 [4] (p. 1). Let U be the set of initial universe, E be the parameter set, and P(U) be the power set of
U. Then a pair (F, E)is called a soft set over U where F is a mapping given by F : E→ P(U) .

Remark 1 [32]. On account of the single valued neutrosophic set is an instance of the neutrosophic set, it is
natural to infer that a single valued neutrosophic soft set is an instance of the neutrosophic soft set. However,
Maji only considers neutrosophic soft sets, which take value from the standard subset of [0, 1] rather than
]−0, 1+[, so the definition of the single valued neutrosophic soft set is exactly the same as the concept of the
neutrosophic soft set defined by Maji.

Definition 7 [17] (p. 1). Let U be the initial universal set, E be a set of parameters, and P(U) be the set of all
neutrosophic subsets of U. The collection (F, E) is regarded as a neutrosophic soft set over U, where F refers to
the mapping F : E→ P(U) .

Example 2. Assume U = {u1, u2, u3} is a set of three cars under consideration, and E ={
e1 = cheap, e2 = equipment, e3 = fuel consumption

}
be the set of parameters for describing the three.

In this case, we can define a function F : E→ P(U) as a neutrosophic soft set (F, E), and it is represented
as follows:

(F, E) =


F(e1) = {< u1, 0.8, 0.4, 0.3 >,< u2, 0.5, 0.7, 0.3 >,< u3, 0.2, 0.5, 0.8 >}
F(e2) = {< u1, 0.5, 0.7, 0, 4 >,< u2, 0.7, 0.3, 0.2 >,< u3, 0.5, 0.8, 0.5 >}
F(e3) = {< u1, 0.4, 0.6, 0.3 >,< u2, 0.9, 0.3, 0.1 >,< u3, 0.4, 0.7, 0.5 >}

.

2.2. Prospect Theory

The prospect theory [27] (p. 2), proposed by Tversky and Kahneman, is a mainstream theory of
behavioral science, and it studies human judgments or decision making behaviors under uncertain
environments. The prospect theory mainly considers the value function and decision weight function.
It implies three characteristics: Reference dependence, diminishing sensitivity and lose aversion.
Reference dependence refers to the change of people’s perception depending on the change of the
relative value. Diminishing sensitivity means that utility decreases as income increases. Additionally,
loss aversion signifies that people value losses more than gains.
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The prospect theory states that decision makers choose the optimal alternative based on the
prospect value, which is determined by the value function and decision weight function. The prospect
value can be obtained as follows:

V =
∑

v(x− r)ω(pt). (5)

v(x− r) is the value function as defined follows:

v(x− r) =

(x− r)α, x ≥ r

−λ(x− r)β, x < r
, (6)

where x is the evaluation value of an object, r is the reference point, then (x − r) represents losses
or gains. x ≥ r means gains, and the value function is concave; x < r means losses, and the value
function is convex. So α, β stand for the concave degree and convexity degree of the value function,
respectively. λ is the risk aversion coefficient, and λ > 1 indicates that decision makers value risk
more. By experimental verification, Tversky and Kahneman took the value of parameters as follows:
α = β = 0.88, λ = 2.25.

ω(Pt) is the decision weight function as defined follows:

ω(pt) =
pt
γ

((ptγ) + ((1− pt)
γ))

1
γ

, (7)

where pt is the objective possibility, and Tversky and Kahneman took the value of parameter γ as 0.61.

3. The Measures of Determinacy Degree and Conflict Degree and Neutrosophic Soft Set
Aggregation Rules

In this section, we initiate the determinacy degree measure and conflict degree measure of
neutrosophic numbers, and then develop two kinds of aggregation rules of a neutrosophic soft set.

3.1. The Measures of Determinacy Degree and Conflict Degree

This paper employs the Hamming distance of information theory, which is a well-known
measure designed to provide insights into the similarity of information [33,34] and has been widely
employed in distance measures [26,35], to measure the determinacy degree and conflict degree.
Before this, we present the concept of a minimum conflict neutrosophic number and maximum conflict
neutrosophic number.

Definition 8. Let Minc =< 1, 0, 0 > be the minimum conflict neutrosophic number, which means that the
belongingness degree of an object is 1, and the non-belongingness degree and the neutrality degree of an object be
zero, respectively. That is, the conflict degree of information is the smallest.

Additionally, let Maxc =< 0.5, 1, 0.5 > be the maximum conflict neutrosophic number. That is,
the neutrosophic number, whose neutrality degree is one, and the belongingness degree and non-belongingness
degree is 0.5. In order words, the conflict degree of information is the greatest.

Definition 9. Let u =< T, I, F > be a neutrosophic number, the determinacy degree of u based on Equation (4)
can be defined as follows:

d∆(u) =
(|T − 1|+ I + F)

3
, (8)

which measures the normalized Hamming distance between u and the minimum conflict neutrosophic number.
Similarly, the conflict degree of u is determined by the normalized Hamming distance between u and the

maximum conflict neutrosophic number, and defined as follows:

c∆(u) =
(|T − 0.5|+ |I − 1|+ |F− 0.5|)

3
(9)
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Example 3. Considering Example 1, the determinacy degree and conflict degree of u1 can be computed as
follows: d∆(u1) = 0.8/3, c∆(u1) = 1.2/3.

3.2. Aggregation Rules of a Neutrosophic Soft Set

In this subsection, we define two kinds of aggregation rules of a neutrosophic soft set, namely the
weighted average aggregation rule and weighted geometric aggregation rule.

Definition 10. Weighted average aggregation rule. Let U be the initial universal set, E be the set of parameters,
(F, E) be a neutrosophic soft set over U, as represented by F(e j)(xi) =< FT(e j)(xi), FI(e j)(xi), FF(e j)(xi) >
(i = 1, 2, . . . , m; j = 1, 2, . . . , n). Then, the weighted average aggregation rule of (F, E) can be denoted by
(F, E)Γ =

{
FΓ(x1), FΓ(x2), . . . , FΓ(xm)

}
, and defined as

FΓ(xi) =
n∏

j=1

F(e j)(xi)ω j =< 1−
n∏

j=1

(1− FT(e j)(xi))

ω j

,
n∏

j=1

(FI(e j)(xi))

ω j

,
n∏

j=1

(FF(e j)(xi))

ω j

> (10)

where the vector ω = {ω1,ω2, . . . ,ωn} stands for the weights of parameters, and
n∑

j=1
ω j = 1.

Based on Definition 10, the weighted geometric aggregation rule of a neutrosophic soft set is constructed.

Definition 11. Weighted geometric aggregation rule. Considering the neutrosophic soft set (F, E) in Definition
10, we define the weighted geometric aggregation rule as (F, E)Θ = {FΘ(x1), FΘ(x2), . . . , FΘ(xm)}, and

FΘ(xi) =
n∏

j=1
(F(e j)(xi))

ω j =<
n∏

j=1
(FT(e j)(xi))

ω j

, 1−
n∏

j=1
(1− (FI(e j)(xi)))

ω j

, 1−
n∏

j=1
(1− (FF(e j)(xi)))

ω j

> (11)

where the vector ω = {ω1,ω2, . . . ,ωn}stands for the weights of parameters, and
n∑

j=1
ω j = 1.

Example 4. Consider Example 2. Assume that the weight vector of parameters isω = {0.4, 0.2, 0.3}, then we can
obtain the results of the weighted average aggregation and weighted geometric aggregation as follows, respectively.

(F, E)Γ = {< u1, 0.6077, 0.5537, 0.3584 >,< u2, 0.7015, 0.4749, 0.2244 >,< u3, 0.3169, 0.6512, 0.6467 >}.
(F, E)Θ = {< u1, 0.6049, 0.9905, 0.9987 >,< u2, 0.6837, 0.9973, 0.9998 >,< u3, 0.3474, 0.9798, 0.9885 >}

4. Algorithm for Neutrosophic Soft Sets in Stochastic Multi-Criteria Group Decision Making
Based on Prospect Theory

4.1. Problem Description

In this section, we give a concise description of a stochastic multi-criteria group decision
making problem under neutrosophic soft sets. Let U = {x1, x2, . . . , xm} be a set of m alternatives,
E = {e1, e2, . . . , en} be a set of n parameters and DM =

{
Z1, Z2, . . .Zp

}
be a set of p decision makers.

Assume that ω(t) =< ω
(t)
T ,ω(t)

I ,ω(t)
F > (t = 1, 2, . . . , p) is the neutrosophic weight of decision maker

Zt, δ
(t)
j =< δ

(t)
Tj , δ(t)I j , δ(t)Fj > is the neutrosophic subjective weight assigned for parameter e j by decision

maker Zt, and the evaluation value of alternative xi related to parameter e j by decision maker Zt

is expressed as F(t)(e j)(xi) =< F(t)
T (e j)(xi), F(t)

I (e j)(xi), F(t)
F (e j)(xi) >. Given p neutrosophic soft sets

(F(t), E) (t = 1, 2, . . . , p) of alternatives evaluated by decision makers, and the tabular representation of
(F(t), E) (t = 1, 2, . . . , p) is shown in Table 1.
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4.2. Determining the Determinacy Degree of Decision Makers

In stochastic multi-criteria group decision making problems, the weights of decision makers are
stochastic and indeterminate. Therefore, how to obtain the weights as determinate values has become
an important research topic. In this paper, we express the weights of decision makers as a neutrosophic
number, and then compute the determinacy degree of decision makers to replace traditional weights.

Considering Definition 9, let ωt =< ωT
t ,ωI

t,ω
F
t > (t = 1, 2, . . . , p) be the neutrosophic weight of

decision maker Zt, then the determinacy degree of Zt can be computed as follows by Equation (8):

d∆(t) =
1− 1

3 (|ω
T
t − 1|+ωI

t +ωF
t

)
p∑

t=1
1− 1

3

(∣∣∣ωT
t − 1|+ωI

t +ωF
t

) (t = 1, 2, . . . , p), (12)

Table 1. Tabular representation of neutrosophic soft sets (F(t), E) of alternatives.

(F(1), E)

e1 e2 . . .
en

x1 F(1)(e1)(x1) F(1)(e2)(x1) . . .
F(1)(en)(x1)

x2 F(1)(e1)(x2) F(1)(e2)(x2) . . .
F(1)(en)(x2)

...
...

. . .
...

xm F(1)(e1)(xm) F(1)(e2)(xm) . . .
F(1)(en)(xm)

(F(2),E)

e1 e2 . . .
en

x1 F(2)(e1)(x1) F(2)(e2)(x1) . . .
F(2)(en)(x1)

x2 F(2)(e1)(x2) F(2)(e2)(x2) . . .
F(2)(en)(x2)

...
...

...
. . .

...

xm F(2)(e1)(xm) F(2)(e2)(xm) . . .
F(2)(en)(xm)

...
...

...
...

...
(F(p),E)

e1 e2 . . .
en

x1 F(p)(e1)(x1) F(p)(e2)(x1) . . .
F(p)(en)(x1)

x2 F(p)(e1)(x2) F(p)(e2)(x2) . . .
F(p)(en)(x2)

...
...

...
. . .

...

xm F(p)(e1)(xm) F(p)(e2)(xm) . . .
F(p)(en)(xm)

4.3. Calculating the Comprehensive Weights of Parameters

In this paper, the parameter weights are determined by combining subjective weights with objective
weights. Among them, subjective weights are obtained by aggregating neutrosophic subjective weights
provided by decision makers, which is more accurate than the way directly given by determinate
values [25] (p. 2). The objective weights are calculated by the information entropy method [35]. Then,
the principle of minimum information entropy [36] is employed to obtain comprehensive weights
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of parameters by integrating subjective weights and objective weights. The system framework is
presented in Figure 1.
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4.3.1. Computing the Subjective Weights

Under the stochastic environment, the judgements of decision makers are full of hesitancies.
Considering this situation, instead of giving determinate values, this paper firstly aggregates
neutrosophic subjective weights of parameters to obtain subjective weights in the form of neutrosophic
numbers. Based on this, subjective weights are computed by the score function as Equation (1).

Assume parameter set E =
{
e1, e2, . . . , e j

}
is the initial universal set, the set of decision

makers Z = {z1, z2, . . . , zt} is the parameter set, and P(Z) is the set of all neutrosophic subsets of
E. The neutrosophic soft set (F, Z) over E can be integrated by the weighted geometric aggregation
rule as (F, Z)Θ =

{
FΘ(e1), FΘ(e2), . . . , FΘ(em)

}
, and

FΘ(e j) =

p∏
t=1

δ
(t)
j

ψt

=<

p∏
t=1

δ
(t)
Tj

ψt

, 1−
p∏

t=1

(1− δ(t)I j )

ψt

, 1−
p∏

t=1

(1− δ(t)Fj )

ψt

>, (13)

where δ(t)j =< δ
(t)
jT , δ(t)I j , δ(t)Fj > ( j = 1, 2, . . . , n) is the neutrosophic subjective weight assigned for

parameter e j by Zt, and ψt is the determinacy degree of Zt.
Then, the subjective weights can be computed by the score function as shown below:

SW j =

2 +
p∏

t=1
δ
(t)
Tj

ψt

− (1−
p∏

t=1
(1− δ(t)I j )

ψt

) − (1−
p∏

t=1
(1− δ(t)Fj )

ψt

)

3
. (14)

4.3.2. Obtaining the Objective Weights: Information Entropy Method

Considering that the computation of objective weights is not the focus of this paper, we obtain
objective weights by the information entropy method. The information entropy is used to measure the
uncertainty of events. The greater the information entropy is, the greater the uncertainty degree. That is,



Symmetry 2019, 11, 1085 9 of 17

the smaller the amount of information it carries, the smaller the weight is. Note that the uncertainty of
neutrosophic numbers consists of two factors, one is the truth-membership and false-membership,
and the other is the indeterminacy-membership.

Based on the information entropy method, we can obtain that the information entropy of parameter
e j given by decision maker Zt is defined as:

Et
j = 1−

1
m

∑m

i=1

(
F(t)

T

(
e j
)
(xi) + F(t)

F

(
e j
)
(xi)

)
|F(t)

I

(
e j
)
(xi) − F(t)

I
c
(
e j
)
(xi)|( j = 1, 2, . . . , n). (15)

Then, the comprehensive information entropy of parameter e j is defined as follows:

E j =

p∑
t=1

ϕtEt
j( j = 1, 2, . . . , n) (16)

where ϕt is the determinacy degree of decision maker Zt computed by Equation (8).
So, the objective weights are obtained as:

OW j =
1− E j

n∑
j=1

1− E j

( j = 1, 2, . . . , n). (17)

4.3.3. Calculating the Comprehensive Weights

Based on the principle of the minimum information entropy, the comprehensive weight of
parameter $ j can be calculated as follows:

$ j =

√
OW j · SW j

n∑
j=1

√
OW j · SW j

, (18)

where SW j and OW j represent the subjective weight and objective weight of parameter e j, respectively.

4.4. Computing the Comprehensive Prospect Values

The comprehensive prospect values of alternatives are determined by the prospect decision matrix
and the comprehensive weights of parameters. Next, we expound how to generate the prospect
decision matrix and obtain comprehensive values of alternatives, respectively.

4.4.1. Constructing the Prospect Decision Matrix

The core of constructing the prospect decision matrix is to compute the value function and decision
weight function. In terms of the value function, we need to analyze the distance between the reference
point and the actual value. This paper regards the maximum conflict neutrosophic number as the
reference point, then the distance can be treated as the conflict degree of the actual value. Additionally,
actual values refer to the alternative evaluation values with respect to the parameters. As for the
decision weight function, the objective possibility is seen as the determinacy degree of the decision
makers. The system framework of constructing the prospect decision matrix is shown in Figure 2.
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We assume that the neutrosophic soft sets of alternatives and neutrosophic subjective weights of
parameters are both provided by decision makers. So, the conflict degree of the alternative evaluation
values with respect to the parameters should take the neutrosophic subjective weights of parameters
into account. Based on the conflict degree measure given by Definition 9, we develop a modified
conflict degree measure by introducing the neutrosophic subjective weights of parameters.

Assume F(e j)(xi) =< FT(e j)(xi), FI(e j)(xi), FF(e j)(xi) > is a neutrosophic number, which represents
the value of alternative xi related to parameter e j, and α j =< α jT,α jI,α jF > is the neutrosophic subjective
weight of parameter e j. Considering the sum of α jT,α jI and α jF may not be one, this paper normalizes
them to be more consistent with the reality. Therefore, the measure of the modified conflict degree of
F(e j)(xi) is defined as follows:

mc∆(F(e j)(xi)) =
α jT ·

∣∣∣FT(e j)(xi) − 0.5
∣∣∣

α jT + α jI + α jF
+
α jI ·

∣∣∣FI(e j)(xi) − 1
∣∣∣

α jT + α jI + α jF
+
α jF ·

∣∣∣FF(e j)(xi) − 0.5
∣∣∣

α jT + α jI + α jF
. (19)

Subsequently, calculate the prospect value of each alternative with respect to the parameters
as follows:

Vi j =

p∑
t=1

w(zt)v(F(t)(e j)(xi) − x0), (20)

where

v(F(t)(e j)(xi) − x0) =

(mc∆(F(t)(e j)(xi), x0))
0.88

, F(t)(e j)(xi) ≥ x0

−2.25(mc∆(F(t)(e j)(xi), x0))
0.88

, F(t)(e j)(xi) < x0
, (21)

ω(Zt) =
(ψt)

0.61

((ψt)
0.61 + (1−ψt)

0.61)
1

0.61

. (22)

Then, we can obtain the prospect decision matrix.
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4.4.2. Computing the Comprehensive Prospect Values

Based on comprehensive weights of parameters and the prospect decision matrix, we can compute
the comprehensive prospect values for alternatives as follows:

Vi =
n∑

j=1

$ jVi j. (23)

The system framework of computing the comprehensive prospect values is shown in Figure 3.
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4.5. Algorithm for Neutrosophic Soft Sets in Stochastic Multi-Criteria Group Decision Making Based on
Prospect Theory

In this section, a novel algorithm for neutrosophic soft sets in stochastic multi-criteria group
decision making based on the prospect theory is proposed. The detailed operation steps of Algorithm
1 are presented below.

Algorithm 1: Neutrosophic soft sets in stochastic multi-criteria group decision making based on the
prospect theory

Step 1: Input a neutrosophic set, which represents neutrosophic weights of decision makers and two
neutrosophic soft sets, including alternatives description as shown in Table 1 and neutrosophic subjective
weights of parameters evaluated by decision makers.
Step 2: Normalize the neutrosophic soft sets of alternatives as follows:

(
4

F(t), E) =

(F(t)T (e j)(xi), F(t)I (e j)(xi), F(t)F (e j)(xi)), e j is a benefit parameter

(F(t)F (e j)(xi), 1− F(t)I (e j)(xi), F(t)T (e j)(xi)), e j is a cos t parameter
(24)

Step 3: Compute the determinacy degree vector ψt = (ψ1,ψ2, . . . ,ψp) of decision makers by Equation (8);
Step 4: Construct the prospect decision matrix based on Equation (20).
Step 5: Obtain the comprehensive weight vector $ j = ($1,$2, . . . ,$n) by Equation (18);
Step 6: Calculate the comprehensive prospect value Vi for each alternative through Equation (23).
Step 7: Make a decision by ranking alternatives based on comprehensive prospect values.

5. An Application of the Proposed Algorithm

In order to verify the feasibility of the proposed algorithm, we discuss the investment decision of
a finance institution. Meanwhile, the existing five methods [17,25,37] (pp. 1–2) are employed for a
comparative analysis to prove the feasibility and superiority of the proposed algorithm.

5.1. Example Analysis

Credit scoring can help financial institutions reduce financial risks and non-performing loans.
Generally, financial institutions assess the credit score of borrowers based on basic information, such as
age, profession, education, income, capital gains, residence and borrowing frequency. Recently,
a financial institution wants to invest an amount of money in borrowers. The institution initially selects
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five borrowers as candidates. In addition, the institution makes a decision by analyzing the following
four parameters: Highly educated, higher borrowing frequency, higher income and higher capital
gains. Subsequently, the institution assembles a team composed of three decision makers to make
the investment decision. Suppose that U = {u1, u2, u3, u4, u5} is the set of candidates, E = {e1, e2, e3, e4}

is the parameter set, and DM = {Z1, Z2, Z3} is the set of decision makers. Let the neutrosophic soft
sets (F(t), E) (t = 1, 2, 3) be the alternative evaluation values with respect to the parameters given by
decision makers as follows.

(F(1), E) =



F(1)(e1) =
{
< u1

0.60,0.35,0.80 >,< u2
0.70,0.50,0.60 >,< u3

0.80,0.40,0.70 >,< u4
0.65,0.50,0.50 >,< u5

0.75,0.30,0.60 >
}

F(1)(e2) =
{
< u1

0.50,0.80,0.20 >,< u2
0.60,0.30,0.70 >,< u3

0.70,0.35,0.80 >,< u4
0.80,0.30,0.70 >,< u5

0.80,0.20,0.55 >
}

F(1)
1(e3) =

{
< u1

0.60,0.50,0.80 >,< u2
0.70,0.50,0.20 >,< u3

0.80,0.60,0.30 >,< u4
0.70,0.40,0.70 >,< u5

0.85,0.30,0.60 >
}

F(1)(e4) =
{
< u1

0.50,0.80,0.60 >,< u2
0.40,0.70,0.30 >,< u3

0.60,0.40,0.70 >,< u4
0.60,0.35,0.80 >,< u5

0.70,0.30,0.40 >
}



(F(2), E) =



F(2)(e1) =
{
< u1

0.60,0.35,0.80 >,< u2
0.70,0.50,0.60 >,< u3

0.80,0.40,0.70 >,< u4
0.65,0.50,0.50 >,< u5

0.75,0.30,0.60 >
}

F(2)(e2) =
{
< u1

0.50,0.80,0.20 >,< u2
0.60,0.30,0.70 >,< u3

0.70,0.35,0.80 >,< u4
0.80,0.30,0.70 >,< u5

0.80,0.20,0.55 >
}

F(2)(e3) =
{
< u1

0.60,0.50,0.80 >,< u2
0.70,0.50,0.20 >,< u3

0.80,0.60,0.30 >,< u4
0.70,0.40,0.70 >,< u5

0.85,0.30,0.60 >
}

F(2)(e4) =
{
< u1

0.50,0.80,0.60 >,< u2
0.40,0.70,0.30 >,< u3

0.60,0.40,0.70 >,< u4
0.60,0.35,0.80 >,< u5

0.70,0.30,0.40 >
}



(F(3), E) =



F(3)(e1) =
{
< u1

0.60,0.35,0.80 >,< u2
0.70,0.50,0.60 >,< u3

0.80,0.40,0.70 >,< u4
0.65,0.50,0.50 >,< u5

0.75,0.30,0.60 >
}

F(3)(e2) =
{
< u1

0.50,0.80,0.20 >,< u2
0.60,0.30,0.70 >,< u3

0.70,0.35,0.80 >,< u4
0.80,0.30,0.70 >,< u5

0.80,0.20,0.55 >
}

F(3)(e3) =
{
< u1

0.60,0.50,0.80 >,< u2
0.70,0.50,0.20 >,< u3

0.80,0.60,0.30 >,< u4
0.70,0.40,0.70 >,< u5

0.85,0.30,0.60 >
}

F(3)(e4) =
{
< u1

0.50,0.80,0.60 >,< u2
0.40,0.70,0.30 >,< u3

0.60,0.40,0.70 >,< u4
0.60,0.35,0.80 >,< u5

0.70,0.30,0.40 >
}


The neutrisophic set D represents the neutrosophic weights of decision makers, and the

neutrisophic soft set (F, Z) stands for neutrosophic subjective weights of parameters. They are
valued as follows:

D = {< Z1, 0.3, 0.5, 0.7 >,< Z2, 0.1, 0.4, 0.6 >,< Z3, 0.6, 0.5, 0.2 >}

(F, Z) =


F(Z1) =

{
< e1

0.40,0.60,0.50 >,< e2
0.35,0.70,0.60 >,< e3

0.40,0.60,0.55 >,< e4
0.40,0.60,0.75 >

}
F(Z2) =

{
< e1

0.70,0.45,0.30 >,< e2
0.50,0.80,0.60 >,< e3

0.70,0.55,0.40 >,< e4
0.70,0.40,0.65 >

}
F(Z3) =

{
< e1

0.65,0.70,0.40 >,< e2
0.60,0.35,0.75 >,< e3

0.40,0.65,0.70 >,< e4
0.35,0.60,0.50 >

}


Step 1: Input the neutrosophic soft sets (F(t), E)(t = 1, 2, 3), (F, Z) and the neutrosophic set D.
Step2: There is no need to normalize the neutrosophic soft sets (F(t), E)(t = 1, 2, 3) of alternatives,

because the parameters adopted in this study are benefit parameters.
Step 3: Compute the determinacy degree vector of decision makers based on Equation (8)

as follows:
ψt = {0.3478, 0.4130, 0.2391}

Step 4: Construct the prospect decision matrix based on Equation (20).

Vij =


0.3878 0.2846 0.3574 0.2274
0.3035 0.3751 0.3571 0.2712
0.4536 0.3834 0.3226 0.3180
0.3345 0.3294 0.3120 0.3776
0.3482 0.4482 0.4055 0.3481


.
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Step 5: Determine the comprehensive weight vector $ j = ($1,$2, . . . ,$n) for the parameters as
Equation (18), and the neutrosophic subjective weights are aggregated by the weighted geometric
aggregation rule as Equation (11).

$ j = (0.2991, 0.2260, 0.2898, 0.1851)

Step 6: Obtain the comprehensive prospect value Vi by Equation (23).

V1 = 0.3269, V2 = 0.3292, V3 = 0.3746, V4 = 0.3348, V5 = 0.3874.

Step 7: Make a decision by ranking the comprehensive prospect value of the five candidates.

x5 � x3 � x4 � x2 � x1

Therefore, we can see that the optimal candidate is x5. x3, x4 are suboptimal, and x2, x1 are
the worst.

Furthermore, we also utilize the weighted average aggregation rule to compute the subjective
weights of parameters. In addition, the computational procedure is shown as follows.

Step 1–4: Be consistent with the above steps 1–4.
Step 5: Determine the comprehensive weight vector $ j = ($1,$2, . . . ,$n) for the parameters

as Equation (18), and the neutrosophic subjective weights are aggregated by the weighted average
aggregation rule.

$ j = (0.2903, 0.2127, 0.2523, 0.2447).

Step 6: Obtain the comprehensive prospect value Vi by Equation (23).

V1 = 0.3254, V2 = 0.3295, V3 = 0.3744, V4 = 0.3348, V5 = 0.3876.

Step 7: Make a decision by ranking the five candidates.

x5 � x3 � x4 � x2 � x1.

So the best optimal is still x5, the following are x3, x4, and the worst are x2, x1.
Obviously, we can see that the ranking orders obtained by two aggregation rules of the neutrosophic

soft set are the same.

5.2. Comparative Analysis

A comparative analysis with existing methods is performed to justify the feasibility and superiority
of the proposed method. The existing methods include the method proposed by Maji [17] (p. 1),
the three methods carried out by Peng and Liu [25] (p. 2) and the aggregated neutrosophic set
method [37] (p. 11).

In the decision making method outlined by Maji [17] (p. 1), the final ranking is obtained based on
the comparison matrix through briefly comparing with three membership function values. The three
neutrosophic soft decision making methods [25] (p. 2) include the non-linear weighted comprehensive
method to determine parameter comprehensive weights by combining objective weights and subjective
weights. Objective weights are computed by the grey system method, and subjective weights are
directly given determinate values. Then, three neutrosophic soft decision making methods are
constructed based on EDAS, similarity measure, and the level soft set to rank alternatives in practical
problems. Among the three, EDAS and the similarity measure methods obtain the final ranking based
on the accurate calculation of alternative evaluation values. In addition, the level soft set method makes
a decision by roughly comparing the threshold value with alternative evaluation values. In terms of
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the aggregated neutrosophic set method [37] (p. 11), alternatives are aggregated using the arithmetic
average and sorted by TOPSIS.

Note that there are two crucial issues. On one hand, the above methods all make decisions under
a single decision maker. In order to successfully apply them to group decision making, this paper
employs the weighted average algorithm to the score of alternatives to all decision makers, based on the
decision maker determinacy degree of this study. On the other hand, the method in [17] (p. 1) and [37]
(p. 11) does not take parameter weights into consideration. Although the EDAS, similarity measure and
level soft set methods [25] (p. 2) comprehensively consider objective weights and subjective weights,
the subjective weights are directly given determinate values, which cannot reflect the hesitancies of
decision makers under uncertainties. Considering this, the comparative analysis applies the subjective
weights obtained from this study to the three methods in [25] (p. 2).

The final ranking of the stochastic multi-criteria group decision making problem mentioned in
Section 5.1 are presented in Table 2, by utilizing the proposed method and the methods in [17,25,37]
(pp. 1–2, 11). By comparison, the results of the proposed method are consistent with those of most
comparison methods, which prove the effectiveness of the proposed method.

Table 2. A comparative study with some existing methods.

Method The Final Ranking The Optimal Alternative

The proposed method
Weighted geometric neutrosophic rule x5 � x3 � x4 � x2 � x1 x5
Weighted average neutrosophic rule x5 � x3 � x4 � x2 � x1 x5

The determinacy degree of decision makers ψt = {0.3913, 0.2826, 0.3261}
Maji [17] x5 � x4 � x3 � x2 � x1 x5

EDAS [25] x5 � x3 � x4 � x2 � x1 x5
Similarity [25] x5 � x3 � x4 � x2 � x1 x5

Level soft set [25] x5 � x4 � x3 � x2 � x1 x5
TOPSIS [37] x5 � x3 � x4 � x2 � x1 x5

From Table 2, we can find that the final rankings of the proposed algorithm are different from
Maji’s method and the level soft set method. The difference can be attributed to two reasons. One is
that both methods are approximate comparisons of the alternative evaluation values, and the original
evaluation values are not used to the greatest extent. The other is that the threshold value difference of
the level soft set method can directly lead to different final rankings. However, decision makers can
hardly decide which threshold value to use.

Through comparison, the final rankings of the other three methods are consistent with the
proposed method. Among them, EDAS also adopts the aggregation method just as the proposed
method. Different from EDAS, the proposed method considers the psychological expectation of
decision makers in the borrower selection issue. Thus, in complex group decision making problems,
the proposed method can produce more reasonable results than existing methods.

From the above analysis, the main superiorities of the proposed method can be summarized
into three aspects. Firstly, this study originally employs neutrosophic soft sets for handling stochastic
multi-criteria group decision making problems, which cannot be solved in existing methods. Secondly,
the proposed method expresses the weights of subjective weights of parameters by neutrosophic
numbers, which can fully reflect the hesitancies of decision makers. Meanwhile, this study presents the
weights of decision makers by neutrosophic numbers, which can better incorporate stochastic into the
decision making process. Thirdly, the proposed method considers the psychological expectations of
decision makers in the borrower selection process. Therefore, it is able to analyze the decision making
behavior more objectively.
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6. Conclusions

Under uncertain environments, a mass of inconsistent information appears. Neutrosophic soft sets
are powerful tools to address these issues involving inconsistent information. Considering this,
we develop a generalized stochastic multi-criteria group decision making framework under
neutrosophic soft sets, by innovatively integrating the prospect theory and neutrosophic soft sets into
our framework. This paper describes the reference point, the psychological expectations of decision
makers, in the form of neutrosophic sets. Then, in addition, this study demonstrates how to compute
the alternative prospect values as the reference for decision making.

We conduct experiments to test the feasibility and validity of our decision making framework.
The main contributions of this paper are fourfold. Firstly, we construct a new algorithm for the stochastic
multi-criteria group decision making based on neutrosophic soft sets, which can analyze inconsistent
information in decision making effectively. Secondly, the weights of decision makers and parameter
subjective weights are both expressed in the form of neutrosophic numbers. Compared with the way
directly given determinate values in existing methods [25] (p. 2), the proposed method can embody
the stochastic into decision making processes. Thirdly, the research successfully combines the prospect
theory with neutrosophic softs sets to construct the stochastic multi-criteria group decision making
algorithm. Compared with the existing literatures based on the expected utility theory [16,17,25,26]
(pp. 1-2), this research considers the influence of psychological expectations on decision results.
Finally, we explore the conflict degree measure of neutrosophic numbers and two aggregation rules of
neutrosophic soft sets, and further define the measure of the modified conflict degree to accommodate
the multi-criteria group decision making.

The proposed method is not only suitable for credit scoring, but also for decision-making problems
in other fields, especially for decisions with inconsistent information. As a suggestion for future
researches, we shall integrate more advanced decision theories into neutrosophic soft sets and address
stochastic multi-criteria group decision making issues.
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11. Kamacı, H.; Atagün, A.O.; Sönmezoğlu, A. Row-products of soft matrices with applications in
multiple-disjoint decision making. Appl. Soft Comput. 2018, 62, 892–914. [CrossRef]

12. Fatimah, F.; Rosadi, D.; Hakim, R.B.F.; Alcantud, J.C.R. N-soft sets and their decision making algorithms.
Soft Comput. 2018, 22, 3829–3842. [CrossRef]

13. Feng, F.; Li, C.; Davvaz, B.; Ali, M.I. Soft sets combined with fuzzy sets and rough sets: A tentative approach.
Soft Comput. 2010, 14, 899–911. [CrossRef]

14. Maji, P.K.; Biswas, R.; Roy, A.R. Fuzzy Soft Sets. J. Fuzzy Math. 2001, 9, 589–602.
15. Jiang, Y.; Tang, Y.; Chen, Q. An adjustable approach to intuitionistic fuzzy soft sets based decision making.

Appl. Math. Model. 2011, 35, 824–836. [CrossRef]
16. Smarandache, F. A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic; American

Research Press: Rehoboth, DE, USA, 1999.
17. Maji, P.K. Neutrosophic soft set. Comput. Math. Appl. 2013, 45, 555–562. [CrossRef]
18. Sahin, R.; Küçük, A. Generalised Neutrosophic Soft Set and its Integration to Decision Making Problem.

Appl. Math. Inf. Sci. 2014, 8, 2751. [CrossRef]
19. Deli, I.; Broumi, S. Neutrosophic soft matrices and NSM-decision making. J. Intell. Fuzzy Syst. 2015, 28,

2233–2241. [CrossRef]
20. Deli, I. Interval-valued neutrosophic soft sets and its decision making. Int. J. Mach. Learn. Cybern. 2017, 8,

665–676. [CrossRef]
21. Karaaslan, F. Possibility neutrosophic soft sets and PNS-decision making method. Appl. Soft Comput. 2017,

54, 403–414. [CrossRef]
22. Karaaslan, F. Correlation coefficients of single-valued neutrosophic refined soft sets and their applications in

clustering analysis. Neural Comput. Appl. 2017, 28, 2781–2793. [CrossRef]
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