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Abstract: We perform Lie symmetry analysis to a zero-coupon bond pricing equation whose price
evolution is described in terms of a partial differential equation (PDE). As a result, using the computer
software package SYM, run in conjunction with Mathematica, a new family of Lie symmetry group
and generators of the aforementioned pricing equation are derived. We furthermore compute the
exact invariant solutions which constitute the pricing models for the bond by making use of the
derived infinitesimal generators and the associated similarity reduction equations. Using known
solutions, we again compute more solutions via group point transformations.

Keywords: Lie symmetry analysis; zero-coupon bond; invariant solutions; interest rate derivatives
model; partial differential equation

1. Introduction

In order to raise capital, firms and governments normally do so by issuing financial instruments
known as bonds. A bond is a financial contract under which the issuer promises to pay a counter-party
intervals of payments (coupons) and a lump sum of money (termed principal) at the end of the agreed
time. The coupon payments are usually periodical. If there are no payments made in the interim
but only one payment of a lump sum of money at the agreed time, then this type of bond is called a
zero-coupon bond, and the lump sum paid is called the face value of the bond. Valuation of the bond
over a specific term depends crucially on the random fluctuations of the interest rate market. If the life
span of the contract is short, interest rates are normally assumed to be deterministic or constant, but,
with a long life span, it will be unrealistic to assume them to be still deterministic. This then led to other
ways being explored to address this issue, and several stochastic interest rate models were developed
in the past years. The most commonly used are the Vasicek model [1] and the Cox–Ingersoll–Ross
(CIR) model [2] as both have proved to be tractable and empirically relevant in capturing properties of
interest rates. It has been shown in Wilmott et al. [3] that, with the spot rate following a stochastic
differential equation

dr = a(r, t)dt + b(r, t)dX, (1)

where X is a Wiener process, the value of a zero-coupon bond W(r, t; T), with expiry at t = T, can be
obtained from solving the partial differential equation (PDE)

Wt +
b2

2
Wrr + (a− κb)Wr − rW = 0, (2)

subject to W(r, T) = 1. Pricing of financial securities has been one of the major concerns to financial
markets practitioners as discrepancies in financial products prices can lead to great profits to market
participants. This then led to special attention being given to the development of financial products
such as derivatives. One of the pioneering breakthroughs in the pricing of financial products was
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the research work by Black and Scholes [4]. The main subject of their work was a linear parabolic
differential equation:

ut +
1
2

S2σ2uSS + r(SuS − u) = 0, (3)

which upon solving produced interesting results that were then used as the pricing models for
contingent claims call and put options. The Black–Scholes Merton model, which it was later called
due to the contribution made by Merton [5], have been used as the main vehicle for pricing many
financial products whose price dynamics were expressed in terms of partial differential equations.
After this discovery, Black–Scholes valuation framework was extended to price many other financial
products, among them: bond options and other interest rate derivatives. In the case of bond options, a
challenge met was the issue of taking into account the convergence of a bond price to par at maturity.
Due to this, it is important that correct modelling of stochastic behaviours of interest rates, especially
the term structure of the interest rate through time, are carefully implemented when constructing
realistic and reliable valuation models of interest rate derivatives. Analytic approaches and numerical
methods have been mostly favoured in solving differential equations even though analytic approaches
seem to be more preferred as they provide much information on the pricing models. This fact is
supported by an increasing number of research papers published in recent years using this approach.
Among analytical approaches, we focus our attention on Lie symmetry analysis that have played a vital
role in solving PDE models arising in the field of mathematical finance. We recognise among others
the work by Ibragimov and Gazizov [6], who introduced the idea of Lie symmetry analysis in finance
problems when analysing the Black–Scholes pricing equation. Goard [7] also contributed by proposing
new and simple solutions to the bond pricing Equation (2) via symmetry analysis. Pooe et al. [8],
using transformations to reduce the bond-pricing equation to a heat equation, obtained the solution
to the zero-coupon bond via usage of those transformations. Sinkala and colleagues in [9] computed
new prices for the bond PDE model with special consideration given to Vasicek and CIR models.
In recent years, Khalique et al. [10] have proposed new invariant solutions and conservation laws for
the Vasicek pricing equation model. Lie symmetry analysis, as originated in studies by mathematician
Sophus Lie, has proved in studies to be one of the prominent tools for obtaining analytical solutions
for differential equations.

Most interest rate models do not satisfy the following important two properties: mean-reversion
and positivity of interest rate. A well known interest rate model that does not satisfy the second
property is the Vasicek interest rate model as its interest rate can be negative. Luo et al. [11], using
the combination of the Ornstein–Unlenbeck process (satisfying mean-reversion property) and Bessel
process (satisfying positivity property), derived and proposed the following functional interest rate
model:

dXt =

(
−η(t)Xt +

ε(t)
Xt

)
dt + σ(t)dZt, (4)

where {Zt}t≥0 is a Brownian motion, and ε, η, σ are given functions of t. In this setup, rt = f (Xt, t) is
modelled as a function of Markov state variable Xt and time t. If f ’s range is confined to only positive
real values, then this enables avoidance of negative interest rates, which are usually occurring in
Vasicek models. This interest rate model embeds most known interest rate models that can be deduced
for different choices of f , η, ε and σ. Using this functional interest rate model, it can be shown that, for
an interest rate derivative such as a zero-coupon bond, its price dynamics are described in terms of the
following partial differential equation

vt(x, t) +
σ2

2
vxx(x, t) +

(
−ηx +

ε

x

)
vx(x, t)− rv(x, t) = 0. (5)

Numerical methods such as binomial trees, Monte Carlo simulation, and finite-difference methods
are normally tools used to value financial products such as interest rate derivatives. In this work,
we use an analytical approach of Lie symmetry analysis to derive four Lie point symmetries plus



Symmetry 2019, 11, 1056 3 of 9

an additional infinite sub-algebra, and we make use of these symmetries to deduce three types of
closed-form solutions for this interest rate derivative pricing equation associated with the functional
interest rate model. We further analyse the obtained solutions by investigating their application to the
Vasicek interest rate model numerically.

The paper is put together as follows: in Section 2, we derive the PDE model associated with
this zero-coupon bond model and perform Lie symmetry analysis to the zero-coupon bond pricing
Equation (5). In Section 3, we deduce exact invariant solutions of the model from the associated
infinitesimal generators. In Section 4, we obtain numerical solutions, applications made to the Vasicek
model, and analyse our findings thereafter. Concluding remarks of the paper are given in Section 5.

2. Governing Equation and Symmetry Analysis

Consider a bond that does not pay any coupons but pays h(rT ) at expiry time T. Using the
functional interest rate model in Equation (4), the payoff of this zero-coupon bond is expressed as
h( f (XT , t)) and its price given by v(Xt, t), where

v(x, t) = E
(

e
∫ T

t f (Xs ,s)dsh( f (XT , T))|Xt = x
)

, t < T. (6)

Applying the Feynman–Kac formula on Equation (6), this results in v(x, t) satisfying the partial
differential equation in Equation (5).

Computation of Lie symmetries is an algorithmic process in nature, but there are nowadays many
computational packages available to assist in the calculations. In this work, we have used computer
package SYM [12] together with Mathematica (11.0, Wolfram S., New York, USA) for our computations.
From Lie’s symmetry theory, the construction of the symmetry group is equivalent to the determination
of the infinitesimal generator

λ = ξ(x, t, u)∂x + τ(x, t, u)∂t + φ(x, t, u)∂u, (7)

with infinitesimals ξ, τ and φ functions of variables (x, t, u). These infinitesimals are obtained from
solving Lie’s invariance condition. That is, if pr(2)λ is the second extension or prolongation of λ

given by
pr(2)λ = λ + φx∂ux + φt∂ut + φxx∂uxx + φxt∂uxt + φtt∂utt , (8)

where

φt = Dt(φ− ξux − τut) + ξuxt + τutt,

φx = Dx(φ− ξux − τut) + ξuxx + τuxt,

φxx = D2
x(φ− ξux − τut) + ξuxxx + τuxxt,

. . .

and “D” represents the total derivative, i.e.,

DxR =
∂

∂x
R + ux

∂

∂u
R + uxx

∂

∂ux
R + uxt

∂

∂ut
R + . . . ,

then, the invariance condition constituted by our model (call it F) is pr(2)λF|F=0= 0 [6] or

pr[2]λ
{

ut(x, t) +
σ2

2
uxx(x, t) +

(
−ηx +

ε

x

)
ux(x, t)− ru(x, t)

} ∣∣∣∣
(5)

= 0. (9)
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Using SYM to solve Equation (9), β = σ2

2 , the infinitesimals are computed as

τ =
e2ηtc1

η
− e−2ηtc2

η
+ c3

ξ = xe2ηtc1 + xe−2ηtc2 (10)

φ =

(
−1− ε

β
+

r
η
+

x2η

β

)
e2ηtuc1 −

r
η

e−2ηtuc2 + uc4 + B(x, t),

where c1, c2, c3, c4 are any constants and B(x, t) is a solution of Equation (5). The arbitrary constants in
Equation (10) constitute an infinite dimensional Lie algebra of symmetries and they are given as

λ1 =
∂

∂t
,

λ2 = − e−2ηt

η

∂

∂t
+ xe−2ηt ∂

∂x
− re−2ηt

η
u

∂

∂u
,

λ3 =
e2ηt

η

∂

∂t
+ xe2ηt ∂

∂x
+

(
−1− ε

β
+

r
η
+

x2η

β

)
ue2ηt ∂

∂u
, (11)

λ4 = u
∂

∂u
, and

λB = B(x, t)
∂

∂u
.

Using the Lie point symmetries in Equation (11), we obtain the point transformations or
one-parameter groups of symmetries ψ : (x, t, u)→ (x̃, t̃, ũ) of the model in Equation (5) with ũ(x̃, t̃)
as its solution. Making use of the five generators in Equation (11) and solving the following ordinary
differential equations:

dx̃
dκ

= ξ(x̃, t̃, ũ),
dt̃
dκ

= τ(x̃, t̃, ũ),
dũ
dκ

= φ(x̃, t̃, ũ), (12)

taking into consideration the initial conditions

x̃|κ=0= x, t̃|κ=0= t, ũ|κ=0= u, (13)

we obtain the following corresponding five one-parameter groups of symmetry for Equation (5)

ψ1 : (x, t, u) → (x, t + κ1, u)

ψ2 : (x, t, u) →
[

xe(e
−2ηtκ2),

1
2η

ln
{
−2η

(
κ2

η
− e2ηt

2η

)}
, e
−rκ2
ηe2ηt u

]

ψ3 : (x, t, u) →

xe(e2ηtκ3),
−1
2η

ln
{
−2η

(
κ3

η
− e2ηt

2η

)}
, ue

(
1+ ε

β−
r
η−

x2η
β

)
e2ηtκ3

 (14)

ψ4 : (x, t, u) → (x, t, ueκ4)

ψ5 : (x, t, u) → (x, t, u + B(x, t)eκ5),

with κi, i = 1, 2, . . . , 5 representing any constant.

3. Exact Invariant Solutions of Equation (5)

In this section, we use infinitesimal generators obtained to deduce similarity variables from
associated characteristic equations to get a family of new invariant solutions of the zero-coupon
bond model associated with functional interest rate model. Given any partial differential equation of
the form
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∆(x, t, u, ux, ut, uxx, uxt, utt . . . ) = 0, (15)

a function u = θ(x, t) resulting from its invariance under the associated infinitesimal generator λ is
regarded as its invariant solution provided:

λ(u− θ(x, t)) = 0 when u = θ(x, t). (16)

Making use of this important concept, we deduce the characteristic equations associated with the
infinitesimal generators in Equation (11) to obtain the following three types of close-form invariant
solutions of Equation (5) as deduced in Examples 1–3 below.

Example 1. Considering the infinitesimal generator λ1 and solving the associated characteristic equations

dt
1

=
dx
0

=
du
0

, (17)

this results in the following two invariants J1 = x, and J2 = u. The invariant solution is given by J2 = ω(J1),
i.e., u = ω(x).

Substituting u = ω(x) in Equation (5), this reduces the model to the following ODE:

rxω(x) + (ε− x2η)ω′(x) + βxω′′(x) = 0. (18)

Solving this differential equation, we get the following result with the solution

ω(x) =
(

c1M
(

m, n,
ηx2

2β

)
+ c2U

(
m, n,

ηx2

2β

))
xρ, (19)

where

m =
1
2
(η + r)β− ηε

ηβ
, n =

1
2

3β− ε

β
, ρ =

β− ε

β
(20)

and c1, c2 are any chosen constants. M(a, b, .) and U(a, b, .) are special types of the Kummer M and U described
in more depth in reference [13]. Therefore, the derived explicit exact invariant solutions for the zero-coupon bond
Equation (5) associated with λ1 are

u(x, t) =
(

c1M
(

m, n,
ηx2

2β

)
+ c2U

(
m, n,

ηx2

2β

))
xρ, (21)

where m, n, ρ are as above.

Example 2. Considering the infinitesimal generator λ2 and following the same procedure as in Example 1
above, we solve the characteristic equations to obtain the invariants

ζ = t +
ln x

η
, u(x, t) = x−

r
η ω

(
t +

ln x
η

)
= x−

r
η ω (ζ) , (22)

and the similarity function ω = ω(ζ) satisfies the following similarity reduction equation:

r(rβ + (β− ε)η)ω(ζ) + (−2rβ− βη + εη)ω′(ζ) + βω′′(ζ) = 0. (23)

Solving this differential equation, we result with the following solution

ω(ζ) = eζ(rβ+βη−εη)c1 + erζc2. (24)
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Therefore, the derived explicit exact invariant solutions of the zero-coupon bond Equation (5) associated
with λ2 are

u(x, t) = x−
r
η

(
eζ(rβ+βη−εη)c1 + erζc2

)
, (25)

where c1, c2 are arbitrary constants and ζ is as defined in Equation (22).

Example 3. Considering lastly the infinitesimal generator λ3, the invariants are computed from the
characteristic equations and are obtained as

ζ = t− ln x
η

, u(x, t) = e
x2η
2β x

(
−1− ε

β +
r
η

)
ω

(
t− ln x

η

)
, (26)

and the similarity function ω = ω(ζ) satisfies the following similarity reduction equation:

(r− 2η)(rβ− (β + ε)η)ω(ζ) + (−2rβ + 3βη + εη)ω′(ζ) + βω′′(ζ) = 0. (27)

Solving this differential equation, we receive results with the following solution:

ω(ζ) = e
ζ(rβ−βη−εη)

β c1 + eζ(r−2η)c2. (28)

Hence, the derived explicit exact invariant solutions of the zero-coupon bond Equation (5) associated with
λ3 are

u(x, t) = e
x2η
2β x

(
−1− ε

β +
r
η

) (
e

ζ(rβ−βη−εη)
β c1 + eζ(r−2η)c2

)
, (29)

where c1, c2 are arbitrary constants and ζ is as defined in Equation (26). This concludes the calculations of
invariant solutions as λ4 does not have any invariants.

3.1. New Solutions via Group Point Transformations

In this section, we make use of known solutions in Equations (25) and (29) to compute new
solutions from them using group point transformations in Equation (14). An important concept about
Lie’s group theory is its ability to transform solutions of a differential equation into other solutions of
the same equation using point transformations. If λ in Equation (7) is the group generator admitted by
Equation (5) and u = w(x, t) is any of the equation solutions, then ũ = w̃(x̃, t̃) will also define another
solution of Equation (5) obtained via group point transformations. That is, if we replace x̃, t̃, and ũ in
transformations in Equation (14) and solve for u, this then results with new solutions for Equation (5).
We give an illustrate of this point by making use of ψ1 in Equation (14). With this transformation, since
x̃ = x and ũ = u, both solutions in Equations (25) and (29) are transformed to new solutions, whereby
t in both equations is replaced by (t− κ1). That is, Equations (25) and (29) will only be affected for ζ as
it now changes to (t− κ1) +

ln x
η and (t− κ1)− ln x

η , respectively, for Equations (25) and (29).

4. Results Discussion

Numerical solutions are deduced in this section to emphasise the novelty of Lie’s group theory.
We use the newly obtained explicit solutions in Equations (25) and (29); and application is done to the
Vasicek interest rate model. It has been shown in Chern [14] that, with parameters: x = r + α, ε = 0
and η = κ, the functional model can be transformed to the Vasicek model. Again, with parameters:
β = 2η, α = (σ2 + 2ε)/(8η), r = 1

4 x2, a functional model can be transformed into the CIR model, and
so on. The parameters chosen for illustration are as follows:

• interest rate (risk-free) r = 0.90,
• volatility σ = 0.80,
• parameter α = 0.01,
• parameter η = 0.5,
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• constant 1 c1 = 1,
• constant 2 c2 = 0.5,
• time to expiration T = 14 years.

We illustrate the solutions in Figures 1 and 2 for the newly explicit solutions associated with λ2

and λ3.

0 2 4 6 8 10 12 14

Time

0

1

2

3

4

5

6
u(

r,
t)

105 Zero-coupon bond price

Figure 1. Explicit exact invariant solutions associated with λ2.
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Figure 2. Explicit exact invariant solutions associated with λ3.

A zero-coupon bond being a simple agreement indicating a time a single lump sum of money will
be exchanged between counter-party A (bond-seller, say company) and counter-party B (bond-buyer,
say investor), an important question that one may ask is what should happen to the prices of a
zero-coupon bond as time passes? As Bodie et al. [15] on page 433 illustrates with an example,
the zero-coupon bond is expected to sell for par value at maturity, but, before then, it should sell at
a discount from par value due to the time value of money. In fact, when the interest rate is constant,
a zero-coupon bond price should increase at exactly the rate of interest. We observe that the curves of
the explicit exact invariant solutions obtained in Section 3, an analysis made with the Vasicek model,
are smooth and monotonically increasing with respect to time towards the maturity of the bond.
Section 3.1, using group ψ1 to illustrate the novelty of the method, graphs in Figures 1 and 2 will still
be the same shape under ψ1, but they will be horizontally shifted to the right (or translated) by κi units
(κi > 0). These results show some resemblance to the graphs in Bodie et al. [15], and Goard [7]; and
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thus emphasise the important point that, as time passes, the price of the zero-coupon bond indeed
increases at the rate of interest. Again, we observe that solutions of the zero-coupon bond pricing
equation have a direct mapping with one another through point transformations; this then emphasises
an important concept of Lie symmetry analysis as mentioned in Section 3.1.

5. Conclusions

In this work, Lie symmetry analysis has been performed on a zero-coupon bond pricing equation
in mathematical finance. It has been shown that the zero-coupon bond pricing equation admits four
point symmetries plus an additional infinite dimensional sub-algebra λB, which are the symmetries we
propose for this model. Using the obtained infinitesimal generators, exact solutions of the zero-coupon
bond model have been computed as invariant solutions. The novelty of the solutions has been
resembled as graphs where we observed an exponential growth by prices of the zero-coupon bond
equation. There seems to be direct relationship between solutions of bond options under functional
interest rate modelling and solutions under usual interest rate models, and we believe direct mappings
via Lie symmetry analysis could link them. A good model therefore depends entirely on the choices
made from parameters r, ε, σ and η.

It is a well known fact that interest rate derivatives are much more complex to value than equity
and foreign exchange derivatives due to the behaviour of an interest rate being more complicated
as compared to that of stock prices or an exchange rate. Due to this, numerical computations seem
to be more appreciated in the valuation of interest rate derivatives as there are not many analytical
expressions for interest rate derivatives. The model in Equation (5) can be referred to as a functional
PDE model due to interest rate associated with it modelled as a certain functional transformation of the
underlying state variable. This functional transformation as we have noted does not only embed the
known single factor interest rate models, but also provides a flexible approach and analytical scheme
for constructing many more new models to expand the existing family of interest rate financial models.
Again, as pointed out in [11], this model can provide great benefits in numerical computations as well.

Using the solutions in Equations (25) and (29), the important concept of Lie symmetry analysis
has been verified in Section 3.1, since, through group point transformations, unknown solutions have
been derived from known solutions. This then suggests that there exists a mapping that transforms
functional interest rate derivative PDE models into models like the Vasicek equation and other model
equations; in addition, a mapping of solutions of functional interest derivative PDE models to solutions
of known interest rate models’ PDE equations. Therefore, with these facts, we want to believe that this
work can contribute to the pricing of interest rate derivatives models and it can expand the minute
number of analytical expressions that are currently available for pricing interest rate derivatives.
Again, with the range of f (Xt, t) = rt restricted to positive real values, this then can enable one to
avoid negative interest rates, such as those usually occurring in the Vasicek model. The model in
Equation (4) combines the Ornstein–Unlenbeck process and the Bessel process; therefore, it satisfies
both the two important properties of the interest rate models as mentioned in the Introduction, and it
can, as a result, enable one to construct new models with ease due to its flexibility. The CIR models
satisfy both properties of the interest rate model, since it is also embedded in this model; through
application of functional transformations presented in Section 4, a mapping connecting solutions of
the functional PDE model and the CIR equation can be obtained in the same approach the Vasicek
model was dealt with. In as much as Chern [14] states that literature regarding this approach is still
minute, we would like to believe that this model, due to its functional approach to modelling interest
rates and its ability to provide a unified framework for representing existing single factor interest rate
models, can play a vital role in finance literature for pricing interest rate derivatives to expand existing
analytical expressions for debt securities. This fact is supported by the valuations approach and
application of Lie symmetry analysis, used to deduce closed-form invariant solutions for this interest
rate derivative model. The Heath–Jarrow–Morton (HJM) Model, which specifies the volatilities of all
instantaneous forward rates, only has inputs that are the underlying and a measure of its volatility.
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We notice from the model in Equation (4) that the underlying is resembled by a Markov state variable
Xt and uncertainty associated with the model resembled by σ(t), which are both incorporated in the
model. Therefore, like other known models, a mapping connecting HJM models and functional models
should exist, and it is part of this work that we plan to explore further in future work.
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