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Abstract: A comprehensive investigation, including analytical modelling, numerical analysis
and experimental tests, has been carried out on many linear viscoelastic systems and structures.
This approach is the result of research conducted by two research institutes, ICECON and INCERC
Bucharest, from Romania. Thus, analyses were performed on the dynamic behaviour of composite
viscoelastic materials, anti-vibration viscoelastic systems made of discrete physical devices, road
structures consisting of layers of natural soil with mineral aggregates and asphalt mixtures, and
mixed mechanic insulation systems for industrial vibrations formed of elastic and viscous devices.
The objectives pursued were as follows: (a) providing a mass dosage of the mixture of earth (clay,
sand, mineral aggregates, water, and stabilizer) in five variants; (b) carrying out a test run with
a Bomag vibratory roller with variable vibration parameters; (c) Experimental evaluation of the
vibration parameters and the force transmitted to the ground, correlated with the determination of the
compaction layer; (d) use of methods of analysis for physic-mechanical and geotechnical parameters;
(e) rheological and numerical modeling based on Zener schematics, so the consistency and veracity of
the experimental data with the numerical simulation can be determined. Finally, a study is presented
for a test track, where experimental and correlated input and response data are determined to validate
the rheological model with a high loading rate.
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1. Introduction

This paper introduces significant novelties to the field of Zener modeling of composite earth for
road structures (consisting of masses of clay, sand, mineral aggregates, water, and ecological stabilizer).
From the analysis of the experimental results performed in the laboratory and in situ, it was found
that the most correct model is the Zener type. In this context, the research objectives were based on
dynamic behavior through the parametric dynamic response to harmonic excitation, using a vibratory
roller with parametric adjustments.

The common characteristic of linearly viscoelastic materials is their dynamic behavior based on
the Zener rheological model. The particularity of this dynamic is that the Zener linear viscoelastic
system is placed between the mobile mass m actuated by a rotating excitation inertial force, called
dynamic action F(t), and the fixed base to which a part of the dynamic action is transmitted, also called
transmitted dynamic force Q(t).

Dynamic response describes the evolution of the instantaneous displacement amplitude of the
transmitted dynamic force and of the dissipated energy with respect to the continuous variation of
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the excitation pulsation ω or Ω = ω
ωn

, and depending on the discrete variation of the linear viscosity
parameters c or ζ, where ωn is the natural pulsation of the system and ζ is the fraction of critical
damping, such that c = 2ζωnm.

Based on the families of curves that have been numerically traced and experimentally verified
on significant domains of technical interest, the specific conclusions aimed to provide a complete
image of the materials, systems, and structures that Zener modelled. Similar results were used for the
rheological models (Voigt–Kelvin, Hooke Voigt–Kelvin), with specific features, so that, for the dynamic
compaction process in this article, the Zener model was adopted as the most appropriate choice [1–3].

Al measure units conform to the System International of Units.

2. Dynamic Response with Respect to Displacements

The viscoelastic materials, which can be modelled by a combination in parallel with the Hooke
and Maxwell models, namely of the form E|(E−V), are characterized by a global rigidity reflecting
both the elastic behaviour expressed by the rigidity coefficients k1, k2, and by the dissipative behaviour
expressed by the dissipation coefficient c [4–6].

The dynamic model is presented in Figure 1, where F = F(t) = F0 sinωt, where either F0 = m0rω2,
c is the linear viscous amortization proportional to the deformation speed of the viscous element, m is
the mass, k1 = k rigidity of the Hooke elastic element, and k2 = kN is the rigidity of the elastic element
in the structure of the Maxwell model, where N is a multiplication coefficient for rigidity k1 [7,8].
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Figure 1. Zener linear model E|(E−V) with harmonically excited mass.

The parameter data for an experimental dynamic model are as follows: m = 4 × 103 kg;
m0r = 20 kgm; k = 108 N/m; N = 10; c = (7, 9, 11, 13)× 105 Ns/m; ζ= 0,15; 0,18; 0,22; 0,32;ω = 0...500 rad/s;
Ω = 0...10 [1,7–9].

In complex wording, the movement differential equations are: m
..
x̃ + k1x̃ + k2 ỹ = F0e jωt

c
( .
x̃−

.
ỹ
)
= k2 ỹ

(1)

The response in instantaneous displacement is given by the relations:

x̃ = X̃e jωt, where X̃ = X0e jϕ

ỹ = Ỹe jωt, where Ỹ = Y0e jθ.
(2)
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Introducing x̃,
.
x̃,

..
x̃, and ỹ,

.
ỹ in Equation (1), we obtain the system in X̃ and Ỹ, as follows:

(
k1 −mω2

)
X̃ + k2Ỹ = F0

jcωX̃ − (k2 + jcω)Ỹ = 0
, (3)

with the solutions:

X̃ = F0
k2 + jcω

D̃
, (4)

Ỹ = −F0
jcω

D̃
, (5)

where D̃ = −k2
(
k1 −mω2

)
− jcω

(
k1 + k2 −mω2

)
.

If we introduce the following notations, α = k2, β = cω, δ = k2
(
k1 −mω2

)
, γ = cω

(
k1 + k2 −mω2

)
,

where D̃ = −δ− jγ, Equations (4) and (5) may be rewritten:

X̃ = −F0
α+ jβ
δ+ jγ

= X0e jϕ, (6)

Ỹ = F0
jβ

δ+ jγ
= Y0e jθ. (7)

For Equation (6), the complex form of X̃ results as follows:

X̃ = −F0
(α+ jβ)(δ− jγ)
(δ+ jγ)(δ+ jγ) ,

X̃ = −F0
(αδ+βγ)+ j(βδ−αγ)

δ2+γ2 ,

therefore ∣∣∣X̃∣∣∣2 = X2
0 = F2

0
(αδ+ βγ)2 + (βδ− αγ)

(δ2 + γ2)2

or

X2
0 = F2

0
α2 + β2

δ2 + γ2 , (8)

where we introduce α, β, δ, γ, and obtain:

X0 = F0

√√
k2

2 + c2ω2

k2
2(k1 −mω2)2 + c2ω2(k1 + k2 −mω2)2 . (9)

We have from Equation (7):

Ỹ = F0
jβ(δ− jγ)

(δ+ jγ)(δ− jγ)
,

or

Ỹ = F0
βγ+ jβδ
δ2 + γ2 (10)

therefore, ∣∣∣∣Ỹ∣∣∣∣2 = Y2
0 = F2

0
β2

δ2 + γ2 ,

in which we replace the notations β, δ, γ, and obtain:

Y0 = F0
cω√

k2
2(k1 −mω2)2 + c2ω2(k1 + k2 −mω2)2

. (11)



Symmetry 2019, 11, 1050 4 of 13

Phase terms ϕ and θ included in Equations (6) and (7) are determined as:

tgϕ =
βδ− αγ

αδ+ βγ
,

or

tgϕ =
−cωk2

2

k2
2(k1 −mω2) + c2ω2(k1 + k2 −mω2)

, (12)

and
tgθ =

δ
γ

,

therefore

tgθ = −
k2

(
k1 −mω2

)
cω(k1 + k2 −mω2)

. (13)

With relative sizes Ω = ω
ωn

, N = k2
k , where k = k1 = mω2

n, ζ = c
2mωn

, cω = (2ζΩ)k, the amplitudes
X0 and Y0 based on Equations (9) and (10) may be expressed as

X0 =
F0

k

√√√√ N2 + (2ζΩ)2

N2
(
1−Ω2

)2
+ (2ζΩ)2

(
N + 1−Ω2

)2 , (14)

or
Y0 =

F0

k
2ζΩ√

N2
(
1−Ω2

)2
+ (2ζΩ)2

(
N + 1−Ω2

)2
. (15)

Terms tgϕ and tgθ, with relative sizes Ω, N, ζ, based on Equations (12) and (13), may be written
as follows:

tgϕ =
−2ζΩN2

N2
(
1−Ω2

)
+ (2ζΩ)2

(
N + 1−Ω2

) , (16)

or

tgθ =
−

(
1−Ω2

)
N

(2ζΩ)
(
N + 1−Ω2

) . (17)

The dynamic response to the excitation with force F(t) may be expressed by instantaneous
displacements x = x(t) = X0 sin(ωt + ϕ) and y = y(t) = Y0 sin(ωt + θ), where ϕ is the phase shift
between x(t) and F(t), and θ is the phase shift between y(t) and F(t). In complex form, the dynamic
response may be written as:  x̃ = X̃0e j(ω+ϕ)

ỹ = Ỹ0e j(ω+θ) , (18)

which yields {
x = Imx̃ = X0 sin(ωt + ϕ)

y = Imỹ = Y0 sin(ωt + θ)
(19)

Variation of Displacement Amplitudes X0 and Y0

(a) Case of natural parameter sizes ω, c, k1, k2.

We introduce the amplitude of the excitation force in the Equations (9) and (10) as F0 = m0rω2.
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For the continuous variation of the excitation pulsation ω and the discrete variation of the linear
viscosity coefficient c, we have X0(c, ω) and Y0(c, ω) as [8,10,11]:

X0(c,ω) = m0rω2

√
N2k2 + c2ω2

N2k2(k−mω2)2 + c2ω2(k + Nk−mω2)2 , (20)

Y0(c,ω) =
m0rcω3√

N2k2(k−mω2)2 + c2ω2(k + Nk−mω2)2
, (21)

with representation in Figure 2 for X0(c,ω) and in Figure 3 for Y0(c,ω), where X0, Y0 is in m, ω in
rad/s, c in Ns/m.
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(b) Case with relative sizes Ω,ζ, N:

X0(ζ, Ω) =
m0r
m

Ω2

√√√√ N2 + (2ζΩ)2

N2
(
1−Ω2

)2
+ (2ζΩ)2

(
N + 1−Ω2

)2 , (22)

Y0(ζ, Ω) =
m0r
m

Ω2 2ζΩ√
N2

(
1−Ω2

)2
+ (2ζΩ)2

(
N + 1−Ω2

)2
, (23)

with representation in Figure 4 for X0(ζ, Ω) and in Figure 5 for Y0(ζ, Ω) for the force F0 = m0r
m kΩ2.
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3. Transmitted Dynamic Force

The force Q̃ = Q̃(t) transmitted to the fixed base represents the effect of the connection (E|E−V )

in a dynamic regime, which can be formulated as [12,13]:

Q̃ = Q̃(t) = kx̃ + Nkỹ, (24)
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where k = k1, and Nk = k2.
Introducing x̃ and ỹ as

x̃ = X̃e jωt = F0
Nk+ jcω

D̃
,

ỹ = Ỹe jωt = −F0
jcω
D̃

,

in Equation (24), we obtain

Q̃ =
F0

D̃

[
Nk2 + jcωk(1−N)

]
. (25)

We introduce D̃ = Nk
(
k−mω2

)
+ jcω

(
k + Nk−mω2

)
in Equation (25) and obtain

Q̃ = F0
Nk2 + jcωk(1−N)

Nk(k−mω2) + jcω(k + Nk−mω2)
, (26)

By making q1 = Nk2; q2 = cωk(1 + N); q3 = Nk
(
k−mω2

)
; q4 = cω

(
k + Nk−mω2

)
,

Equation (26) becomes

Q̃ = F0
q1 + jq2

q3 + jq4
,

from which Q2
0 becomes ∣∣∣∣Q̃∣∣∣∣2 = Q2

0 = F2
0

q2
1 + q2

2

q2
3 + q2

4

and the amplitude of the transmitted force Q0 is

Q0 = F0

√√
q2

1 + q2
2

q2
3 + q2

4

, (27)

Replacing q1; q2; q3; q4 with prior notations, we obtain Q0 in natural sizes, as follows:

Q0(c,ω) = F0

√√
N2k4 + c2ω2k2(1−N)2

N2k2(k−mω2)2 + c2ω2(k + Nk−mω2)2 , (28)

In the relative parameters Ω, ζ, and N, Equation (28) may be written as

Q0(ζ, Ω) = F0

√√√√ N2 + (2ζΩ)2(1−N)2

N2
(
1−Ω2

)2
+ (2ζΩ)2

(
N + 1−Ω2

)2 , (29)

Variation of transmitted force amplitude Q0

(a) Case of natural sizes
Q0(c,ω) = m0rω2

·R(c,ω)

where R(c,ω) is given by the relation

R(c,ω) =

√√
N2k4 + c2ω2k2(1−N)2

N2k2(k−mω2)2 + c2ω2(k + Nk−mω2)2 (30)

(b) Case of relative sizes
Q0(ζ, Ω) =

m0r
m

kΩ2
·R(ζ, Ω)
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where R(ζ, Ω) is given by the relation

R(ζ, Ω) =

√√√√ N2 + (2ζΩ)2(1−N)2

N2
(
1−Ω2

)2
+ (2ζΩ)2

(
N + 1−Ω2

)2 (31)

The force Q0(c,ω) is presented in Figure 6, while Figure 7 shows a representation of force Q0(ζ, Ω)

at force F0 = m0rω2, which is, respectively, F0 = m0r
m kΩ2.Symmetry 2019, 11, x FOR PEER REVIEW 9 of 14 
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of c. The excitation force amplitude F0 is expressed as F0 = m0rω2.
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4. The Capacity of Dynamic Insulation

The force transmissibility is given by the relation T = Q0
F0

and may be respective to the natural or
relative sizes.

In this case, based on Equations (28)–(31), we have

T(c,ω) =
Q0(c,ω)

F0
= R(c,ω) (32)
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or

T(ζ, Ω) =
Q0(ζ, Ω)

F0
= R(ζ, Ω). (33)

Variation of Force Transmissibility

For transmissibility T(c,ω) and T(ζ, Ω), considering F0 = m0rω2 and F0 = m0r
m kΩ2, respectively,

we have

T(c,ω) =
Q0(c,ω)
m0rω2 = R(c,ω)

or

T(ζ, Ω) =
Q0(ζ, Ω)

m0rk
·

m
Ω2 = R(ζ, Ω),

which are represented in Figure 8.
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5. Amplitude of Instantaneous Deformation for a Linearly Viscous Buffer.

For the linearly viscous buffer with c characteristics, the instantaneous deformation may be
assessed by two methods [6,9–11]:

Method I

The instantaneous deformation z̃ is given by the relation

z̃ = x̃ + ỹ (34)

where we introduce x̃ and ỹ as follows:

x̃ = X̃e jωt; ỹ = Ỹe jωt̃z = −F0
(αδ+ βγ)

δ2 + γ2 − j
βδ− αγ

δ2 + γ2 + F0
βγ+ jβδ
δ2 + γ2 z̃ = −F0

[
αδ− jαγ
δ2 + γ2

]
(35)

thus

Z2
0 = F2

0
α2δ2 + α2γ2

(δ2 + γ2)2 = α2F2
0

1
δ2 + γ2

or
Z0 =

αF0√
δ2 + γ2

. (36)
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Method II

From c̃
.
z = k2 ỹ or c̃

.
z = k2F0

βγ+ jβδ
δ2+γ2 e jωt, and recalling that k2 = α and β = cω, it follows that

.̃
z =

d̃z
dt

=
αF0

c
·
βγ+ jβδ
δ2 + γ2 e jωt, (37)

so

z̃ =
αβF0

c
·
γ+ jδ
δ2 + γ2

∫
e jωtdt,

or

z̃ =
αF0

j
·
γ+ jδ
δ2 + γ2 . (38)

The expression z̃ may be established as a complex number. Therefore,

z̃ =
αF0

δ2 + γ2
[δ− jγ] = Z0eiϕ0 , (39)

so we have
α2F2

0

(δ2 + γ2)2

[
δ2 + γ2

]
= Z2

0 (40)

or Z0 = αF0√
δ2+γ2

, which is identical to that from method I, respective to Equation (36).

Returning to natural size, we obtain

Z0(c,ω) =
NkF0√

N2k2(k−mω2)2 + c2ω2(k + Nk−mω2)2
, (41)

and returning to relative sizes, we have

Z0(ζ, Ω) =
F0

k
N√

N2
(
1−Ω2

)2
+ (2ζΩ)2

(
N + 1−Ω2

)2
. (42)

6. Dissipated Energy

In the Zener model, the energy dissipated per cycle is expressed as

Wd = πcωZ2
0. (43)

Replacing Z0 from Equation (41) and (42), we determine the dissipated energy per cycle as

Wd(c,ω) = π(m0r)2 cω5N2k2

N2k2(k−mω2)2 + c2ω2(k + Nk−mω2)2 (44)

or

Wd(ζ, Ω) = π
(m0r

m

)2
k

(
2ζΩ5

)
N2

N2
(
1−Ω2

)2
+ (2ζΩ)2

(
N + 1−Ω2

)2 (45)

with the graphic representations in Figures 9 and 10.
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Figure 10. The plots of the dissipated energy per unit cycle Wd(ζ, Ω) for continuously varying Ω and
discrete values of ζ. The excitation force amplitude F0 is expressed as F0 = m0r

m kΩ2.

7. Conclusions

The Zener linear viscoelastic model may be used to study the dynamic behaviour of materials,
systems, and structures that are technologically manufactured both to assure predictable values for
the dynamic forces transmitted to the base and to evaluate the dissipated energy. Based on some
anti-vibrating devices assembled to follow the Zener linear model, solutions for the dynamic insulation
of the industrial vibrations for dynamic equipment in a technological flow at working frequencies
ranging from 20 Hz to 50 Hz have been studied and established.

In addition, Zener type dynamic behaviors were identified when compacting process is made by
vibrating rolls and for certain stratifications of the road structures [1–3,7,8].

Numerical analysis and experimental data allowed for the adjustment of a Zener rheological
model, with mass and harmonic excitation using inertial rotating force.

(a) The analytical model and parametric curves lead to the following conclusions:
(b) The X0 and Y0 amplitudes define the largest displacements of the mass m, and, respectively, of the

elastic component k2 = kN, which is useful in the evaluation of the technological parameters [4,5,7];
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(c) The parametric curves of amplitudes X0 and Y0 show distributions depending on on the
ante-resonance, resonance, and post-resonance dynamic regimes [3,7,14,15];

The dynamic area of interest for the stable behaviour of the technological vibrations is specific to the
post-resonance field [1,7,15];

Thus, for significantly high values of the excitation pulsations, in conditions of predictable
amortization, the X0 amplitude presents a stable layer at low variations of the excitation pulsation,
suggesting that Y0 continuously increased with ω.

(d) The maximal dynamic transmitted force Q0 in the post-resonance field for ω >> ωn or Ω >> 1
shows the stable values set by the size of the viscous amortization.

(e) Transmissibility decreases at high values of the excitation pulsation once a discrete value is set
for amortization.

(f) The dissipated energy increases in the post-resonance stage along with the excitation frequency
and amortization level [1,8,12,13].

Consequently, based on the physical–mechanical parameters specific to the Zener rheological model for
viscoelastic materials, systems, and structures, assessments can be performed on the parameter sizes of
the dynamic answer and behaviour in the harmonic excitation regime with harmonic rotation forces.

The input numerical values presented for the case study show that for a composition of land
where predominant material is clay 60%, sand (10–15%), mineral aggregates (20%), stabilizer (1%),
water (10–18%), the Zener model, according to the response values, reflects with high fidelity the
rheological behavior at the excitation pulseω = (250...320) rad/s or Ω = 1.5 ÷ 2.5.

For the excitation pulse interval of interest mentioned, the technological effect, expressed as good
compacting, is given by the parametric values for the amplitude of the forced vibrations X0 = 0,005 m,
the force transmitted to the field Q0 = (1,5 ÷ 2,5) × 103 kN, and the dissipated energy Wd = (10 ÷ 25) kJ.

Author Contributions: P.B. designed the rheological model based on the experimental data and formulated the
dynamic equations and established calculation formulas for the dissipated energy; C.D. provided the experimental
data in the form of input parameters for the vibratory compactor dynamic model and for the viscous-linear
characteristics of the compacted earth. She also set the computation formulas for field strength correlated with
dissipated energy and degree of compaction.
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