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Abstract: An analysis of the invariance properties of self-adjoint extensions of symmetric operators
under the action of a group of symmetries is presented. For a given group G, criteria for the existence
of G-invariant self-adjoint extensions of the Laplace–Beltrami operator over a Riemannian manifold
are illustrated and critically revisited. These criteria are employed for characterising self-adjoint
extensions of the Laplace–Beltrami operator on an infinite set of intervals, Ω, constituting a quantum
circuit, which are invariant under a given action of the group Z. A study of the different unitary
representations of the group Z on the space of square integrable functions on Ω is performed and the
corresponding Z-invariant self-adjoint extensions of the Laplace–Beltrami operator are introduced.
The study and characterisation of the invariance properties allows for the determination of the
spectrum and generalised eigenfunctions in particular examples.
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1. Introduction

The relation between physics and symmetries has been successful and fruitful up to the point
that physical theories, from the most fundamental ones, such as the Standard Model, to the effective
ones applied, e.g., in condensed matter physics, are intimately related with the symmetries and
transformation properties of their underlying structures, for instance, gauge symmetries in the former
case or crystallographic groups in the latter.

One of the aims of this article is to provide a framework for a systematic analysis of the action
of symmetry groups on the configuration space of quantum circuits. Even if the configuration space
is invariant under the action of a given group, not all the possible self-adjoint extensions need to be
compatible with that symmetry group. We use the characterisation introduced in [1] to identify the set
of self-adjoint extensions compatible with the action of the symmetry group in the particular case of
infinite chains made up by repeating a finite block. This kind of periodic lattices is widely used in solid
state physics as approximations for systems such as crystals, when the period is much smaller than the
size of the system [2,3]. To have control on the symmetries that the system possess is also important
in the determination of the spectrum and the spaces of eigenfunctions, as they will carry the same
representation. The importance of this characterisation is that the space of mathematically possible
self-adjoint extensions for a given quantum circuit is very large. As is clear in the discussion below and
in the subsequent sections, the space of self-adjoint extensions contains all the possible topologies for a
given graph and also many other situations that are not compatible with any given topology [4,5].
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The study of symmetries in the context of quantum circuits is particularly relevant in relation with
the development of new quantum information and processing devices. Superconducting qubits [6,7] are
one of the promising technologies that can lead to scalable quantum computation. The framework of
quantum circuits provides a natural setting to model and study them. In particular, a superconducting
qubit can be seen as a truncation to the lowest energy levels of a corresponding quantum circuit [8].
Quantum circuits are, in general, infinite dimensional quantum systems and this has inherent difficulties
in their description. However, one of the sources of decoherence in the description of superconducting
qubits arises precisely because of the aforementioned truncation to the lowest orders. Hence, it is worth
addressing the system in its full generality and try, for instance, to achieve general controllability results,
as was done in [9].

In the most abstract setting, the dynamics of a quantum circuit can be described by the Schrödinger
equation, where the Hamiltonian of the system will be given formally by a Laplacian operator
defined over a disjoint union of intervals with, possibly, a scalar potential defined over the intervals.
The topology of the circuit, which can be described mathematically by a directed graph, will arise
from the boundary conditions that one implements at the boundaries of the intervals. These boundary
conditions need to be fixed in order to determine a well-defined self-adjoint operator. Otherwise,
the dynamics of the system will not satisfy the unitarity of the evolution as characterised by the
Stone–von Neumann Theorem.

It was proven by G. Grubb [10] that there is a one-to-one correspondence between self-adjoint
extensions of the Laplace–Beltrami operator and boundary conditions defined in terms of
pseudo-differential operators. We take here the approach introduced in [11] and further developed
in [1], according to which the space of self-adjoint extensions of the Laplace operator is given by
a unitary operator acting on the Hilbert space of boundary data. This approach is general enough to
accommodate all the physically acceptable self-adjoint extensions. Moreover, the self-adjoint extensions
characterised in this way are well suited for the numerical approximation of their spectrum (cf. [12,13]).
Another advantage is that the same ideas can be used to analyse other differential operators such as
the Dirac operator (cf. [14,15]), which are also important in the context of quantum circuits.

The article is organised as follows. In Section 2, we introduce the definitions of invariance and
symmetries that are needed for the rest of the article. In this section, we also carry on with the analysis
introduced in [16] to cover other possible situations not covered by the theorems proved in that work.
In Section 3, we use the invariance properties to characterise a blockwise structure of the possible
self-adjoint extensions that represents a given quantum circuit. Finally, in Section 4, we study the case
of an infinite quantum circuit, a quantum chain, that is made of the repetition of elemental finite blocks.
Some discussion and outlook are given in Section 5.

2. Self-Adjoint Extensions with Symmetries

In the Schrödinger–Dirac picture of Quantum Mechanics, one associates a Hilbert spaceH with
a quantum system, and self-adjoint operators play the role of observables, whereas pure states are
elements of the projective Hilbert space P(H). Moreover, dynamics of “closed” quantum systems are
described by strongly continuous one-parameter groups of unitary transformations, and according
to Stone–von Neumann Theorem the generator of a strongly continuous one-parameter group of
unitary transformations is a self-adjoint operator. Therefore, it is evident that self-adjointness plays
a fundamental role in any quantum theory and a proper treatment of self-adjoint extensions of
symmetric operators is required for a correct description of quantum systems. In particular, in this
article, we focus on the definition of self-adjoint extensions of symmetric operators which are
compatible with a given group of symmetries, G, of the dynamical system under investigation. This
section is devoted to recalling briefly the main results and definitions of the theory of self-adjoint
extensions that are needed, as well as to recall the notion of G-invariance.
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2.1. G-Invariant Self-Adjoint Extensions

Let (Ω, η) be a pair made up of a smooth manifold Ω, with a smooth boundary ∂Ω,
and a Riemannian metric η. We suppose that the measure µ is the Riemannian volume form associated
with the Riemannian structure η. The boundary itself has the structure of a Riemannian smooth
manifold without boundary, the metric tensor on the boundary, namely ∂η, being the pull-back of η

via the canonical inclusion i : ∂Ω 7→ Ω. Let H = L2(Ω, µ) be the Hilbert space of square-integrable
functions on Ω with respect to the measure µ, and let T = −∆ be the Laplace–Beltrami operator on Ω
acting on a dense domain of the Hilbert spaceH. Due to the presence of the boundary, the operator T
defined on the subspace C∞

0 (Ω) of smooth functions with compact support contained in the interior
of Ω, is an unbounded densely defined symmetric operator which in general is not self-adjoint: the
specification of a proper set of boundary conditions allows to get different self-adjoint extensions Tb.
Even if it is not the most general one, the Laplace–Beltrami operator is a paradigmatic example and of
fundamental importance in Quantum Mechanics. Indeed, it is the generator of the dynamics of a free
particle on Ω. Let us recall that an unbounded linear operator T on a complex, separable Hilbert space
H with dense domain D(T) is symmetric if

〈Ψ, TΦ〉 = 〈TΨ, Φ〉 ∀Ψ, Φ ∈ D(T), (1)

and it is self-adjoint if, in addition, D(T) = D(T†), where T† is the adjoint operator whose domain is
made up of those vectors Ψ ∈ H such that:

〈Ψ, TΦ〉 = 〈χ, Φ〉 ∀Φ ∈ D(T), (2)

for some χ ∈ H. The set of vectors χ forms the range of the adjoint operator. A self-adjoint extension
Tb of a symmetric operator T satisfies the conditions

Tb |D(T)= T , (3)

D(T†
b) = D(Tb). (4)

If the operator T is symmetric, but not essentially self-adjoint, different self-adjoint extensions
determine different quantum systems. On the other hand, symmetries of a certain quantum system are
implemented via unitary or anti-unitary linear operators acting on the Hilbert space H (cf. [17,18]).
Let G be a group of symmetries of the dynamical quantum system described by the operator T.
This group of symmetries acts onH via the strongly continuous unitary representation V : G → U (H).
Therefore, it is worthwhile asking what self-adjoint extensions are compatible with the group action
given by the map V, if we want the quantum system to have the group of symmetries G. Following
Ibort et al. [1], we consider the following definition of invariance for a given operator T:

Definition 1. Let T be a linear operator with dense domain D(T) ⊂ H and consider a unitary representation
V : G → U (H). The operator T is said to be G-invariant if TV(g) ⊇ V(g)T, that is V(g)D(T) ⊂ D(T) for
all g ∈ G and

TV(g)Ψ = V(g)TΨ ∀g ∈ G, ∀Ψ ∈ D(T). (5)

The issue of the existence and uniqueness of self-adjoint extensions of symmetric operators was
addressed by von Neumann [19], who gave a characterisation of self-adjoint extensions in terms of
unitary operators, K, between subspaces ofH, (N+,N−), called deficiency spaces.

However, if we think of self-adjoint extensions of differential operators on manifolds with
a boundary (as we consider in this work), the relationship between the unitary operator K defining the
self-adjoint extension TK and the specification of a certain set of boundary conditions is hard to obtain,
even if it is possible [10]. Therefore, for the Laplacian operator on a manifold Ω with a boundary ∂Ω,
an alternative approach has been proposed in [11,16], according to which self-adjoint extensions of
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the operator T = −∆ are in correspondence with unitary operators acting on the space L2(∂Ω) of
square integrable functions on the boundary of Ω. In the rest of the article, we address the issue of
G-invariant self-adjoint extensions of the Laplace–Beltrami operator looking at the boundary data.
Therefore, in the remainder of this section, we shortly outline some results concerning a large class of
self-adjoint extensions of T.

Exploiting the relationship between quadratic forms and self-adjoint operators (cf. [20] (Sec. VI.2)
for the details on this relation), it is possible to establish a correspondence between a class of self-adjoint
extensions of the Laplace–Beltrami operator on a manifold Ω with a smooth boundary ∂Ω and a class
of unitary operators on the space of square-integrable functions on its boundary (see [16] for details).
Before introducing this class of unitaries, it is worth providing some additional definitions. The Sobolev
Hilbert space of order k on a manifold Ω is denoted by Hk(Ω) (see, for instance, [21] for a detailed
presentation of Sobolev spaces).

Definition 2. A unitary operator U has spectral gap at −1 if one of the following conditions holds:

(i) 1+ U is invertible; and

(ii) −1 belongs to the spectrum σ(U) of the operator U but it is not an accumulation point of σ(U).

Let U be a unitary operator having −1 in its spectrum. If P is the projector operator onto the
eigenvalue −1 and P⊥ = 1− P, the partial Cayley transform of the operator U is defined as follows:

AU ϕ = iP⊥
(1−U)

(1+ U)
ϕ, ϕ ∈ L2(∂Ω). (6)

Definition 3. Let U be a unitary operator having spectral gap at −1. It is admissible if the partial Cayley
transform AU leaves the subspace H1/2(∂Ω) invariant and is continuous with respect to the Sobolev norm of
order 1/2, i.e.,

‖AU ϕ‖H1/2(∂Ω) ≤ K ‖ϕ‖H1/2(∂Ω) , ϕ ∈ H1/2(∂Ω). (7)

Then, there is a one-to-one correspondence between a class of self-adjoint extensions of the
Laplace–Beltrami operator on a manifold Ω with smooth boundary and the class of unitary operators
U : L2(∂Ω) → L2(∂Ω), which have spectral gap at −1 and are admissible.

Given an admissible unitary with spectral gap at −1, the associated self-adjoint extension
Tb is defined on the subspace D(Tb) ⊂ D(T†) ⊂ H whose elements Ψ satisfy the following
boundary conditions:

ψ− iψ̇ = U(ψ + iψ̇), (8)

where (ψ, ψ̇) are the boundary data, i.e., ψ is the restriction to the boundary of the function Ψ and
ψ̇ is the restriction of its normal derivative pointing outwards. These restrictions are obtained via
the trace operator γ : Hk(Ω) → Hk−1/2(Ω), whenever k > 1

2 , which is a continuous surjective
operator, with kernel defined by the functions in Hk

0(Ω) (see, for instance, [21] for more details).
Having defined a class of self-adjoint operators in terms of unitary operators at the boundary, one
can look for conditions on these unitaries such that the corresponding self-adjoint extensions are
G-invariant with respect to some unitary representation of a group of symmetry G. Before introducing
the main theorem of this section, let us give some additional definitions.

Definition 4. A strongly continuous unitary representation V : G → U (L2(Ω)) has a trace (or it is traceable)
along the boundary ∂Ω if there exists another strongly continuous unitary representation v : G → U (L2(∂Ω))

such that:
γ(V(g)Ψ) = v(g)γ(Ψ), (9)

for all Ψ ∈ H1(Ω) and g ∈ G.
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We can now state the main theorem characterising G-invariant self-adjoint extensions defined via
admissible unitary operators at the boundary with spectral gap at −1:

Theorem 1 ([16] (Thm. 6.10)). Let G be a group and V : G → U (L2(Ω)) a topological traceable
representation of G, with unitary trace v : G → U (L2(∂Ω)) along the boundary ∂Ω. Let U ∈ U (L2(∂Ω))

be an admissible unitary operator with spectral gap at −1 defining a self-adjoint extension Tb of the
Laplace–Beltrami operator. Assume that the self-adjoint extension corresponding to Neumann boundary
conditions (ψ̇ = 0) is G-invariant. Then, we have the following cases:

(i) If [v(g), U] = 0 for all g ∈ G, then Tb is G-invariant;

(ii) Consider the decomposition of the boundary Hilbert space L2(∂Ω) = W ⊕W⊥, where W is the eigenspace
relative to the eigenvalue −1 of the operator U, and denote by P the orthogonal projection onto W. If Tb is
G-invariant and P : H1/2(∂Ω) → H1/2(∂Ω) is continuous, then [v(g), U] = 0 for all g ∈ G.

In the rest of the article, we make wide use of this result, since we define self-adjoint extensions of
the Laplace–Beltrami operator on Ω by specifying a suitable set of boundary conditions. Moreover,
we focus on one dimensional manifolds, and, as better clarified in the following sections, many of the
technical requirements in the above discussion are automatically satisfied.

2.2. Additional Remarks on Symmetries and Self-Adjoint Extensions

Before moving on, in this subsection, we add some remarks about the previous results. Let us
start mentioning a result about G-invariant self-adjoint extensions in the von Neumann approach to
the problem. Let K : N+ → N− be the unitary operator between the two deficiency spaces N+, N−
characterising a given self-adjoint extension TK of an operator T. Then, G-invariant self-adjoint
extensions can be built according to the result of the following theorem:

Theorem 2 ([16] (Thm. 3.5)). Let T : D(T) ⊂ H → H be a closed, symmetric and G-invariant operator with
equal deficiency indices. Let TK be the self-adjoint extension defined by the unitary operator K ∈ U (N+,N−).
Then, TK is G-invariant iff V(g)Kξ = KV(g)ξ, ∀ξ ∈ N+, g ∈ G.

Therefore, if the symmetric operator T is G-invariant, G-invariant self-adjoint extensions are
characterised by unitaries K, which commute with all the elements of the representation V of the
symmetry group G. However, one possibility not considered in [16] is to study whether it is possible
that the symmetric operator T is not G-invariant while one (or several) of its self-adjoint extensions Tb
are. In particular, one could ask if there exist unitary representations V of a symmetry group G which
do not preserve the domain D(T) of the operator T but preserve the domain of a self-adjoint extension
Tb. A simple instance is given by the following example (cf. [22] (Ch. 3)).

Example 1. LetH = L2 (R) and let T = − d2

dx2 with domain

D (T) =
{

Φ ∈ H2 (R) | ϕ(0) = 0
}

.

It is a symmetric operator with deficiency indices (1, 1), which implies that there are infinitely many
self-adjoint extensions characterised by a single real parameter, say α. The domains of these self-adjoint extensions,
which we call Tα, can be characterised as:

D(Tα) =
{

Φ ∈ H1 (R) ∩ H2 (R− {0}) | ϕ′(0+)− ϕ′(0−) = αϕ(0)
}

. (10)

The unitary representation of the group R given by

V(t) = e−itTα (11)
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preserves the domain D (Tα) and commutes with Tα on its domain; therefore, Tα is R-invariant. If α is positive
the spectrum of Tα is the positive half-line R+ and the generalised eigenfunctions (see, for instance, [23] (Chs. 4
and 9), [24] (Ch. 8) and [25]) Ψk(x) can be written in terms of a real parameter k as follows:

Ψk(x) =

√
4k2

2π (α2 + 4k2)

(
eikx +

sign(x) + sign(k)
2

sin kx
k

)
. (12)

Therefore, the action of the unitary operator V(t) can be expressed as follows:

V(t)Φ(x) =
∫
R

dk
∫
R

dye−itk2
Ψk(x)Ψ̄k(y)Φ(y) =

∫
R

dyG(x, y; t)Φ(y), (13)

where G(x, y; t) =
∫
R dke−itk2

Ψk(x)Ψ̄k(y) is the Green-kernel associated with the operator Tα.
In this case, however, the symmetric operator T is not R-invariant since D(T) is not invariant with respect

to the group action V(t). This is a consequence of the following lemma (see [26] (Lemma 8.4.1)):

Lemma 1. Let Tα be an unbounded self-adjoint operator on a complex Hilbert spaceH. Let D(T) ⊂ D(Tα)

be a dense linear subspace of H and suppose V(t) = e−itTα leaves D(T) invariant. Then, T = Tα |D(T)
(i.e., Tα restricted to D(T)) is essentially self-adjoint.

Let us recall that essentially self-adjoint means that the operator has a unique self-adjoint extension that
coincides with its closure. Indeed, since in the case in question T is not essentially self-adjoint, the linear dense
subspace D(T) cannot be invariant with respect to the action given by V(t). Therefore, Tα is R-invariant,
whereas T is not.

However, we know that it is possible to associate self-adjoint extensions of the Laplace–Beltrami
operator on a manifold with boundary with unitaries on the space of boundary data. In this case,
Theorem 1 was proven under two assumptions on the unitary representation V, i.e., it has to have
a trace and preserve the Neumann self-adjoint extension. Therefore, one could see if there are
G-invariant self-adjoint extensions with respect to a representation V of a group G, while either
the unitary representation is not traceable or it does not preserve the Neumann self-adjoint extension
of the Laplace–Beltrami operator, or both. In fact, the system defined above is an example of this
situation, too. Indeed, if a unitary representation is traceable, it has to preserve the kernel of the trace
map. Since the kernel of the trace map, which, in the previous example, is given by the subspace
Kerγ =

{
Φ ∈ H2 (R) | ϕ(0) = 0, ϕ̇(0) = 0

}
⊂ L2(R), is not preserved the unitary representation V

is not traceable. (Indeed, the operator T restricted to this domain is symmetric but not essentially
self-adjoint. Therefore, according to Lemma 1, this domain is not preserved by the representation V
of the group R.) Therefore, concerning this situation, the assumption in Theorem 1 on the unitary
representation, namely being traceable, is analogous to the assumption in Theorem 2 about the
preservation of the domain of the symmetric operator. Since a careful analysis of symmetries which
either are not traceable or are not compatible with the symmetric operator T or both, is out of the
scope of this article, in the following sections, we limit ourselves to representations that respect the
hypotheses of the theorems introduced above, and we postpone such an investigation to future works.

After this introduction containing a critical review of previous results, in the following sections,
we focus on the issue of self-adjoint extensions of the Laplace–Beltrami operator on quantum circuits,
which are compatible with a given group of symmetries.

3. Quantum Circuits: Adjacency and Local Symmetries

The central part of this work focuses on the description of self-adjoint extensions of the
Laplace–Beltrami operator for one-dimensional manifolds. As shown below, this discussion can
be fruitfully exploited in connection to the theory of quantum circuits. A quantum circuit is nothing
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but a quantum system consisting of a particle moving in a one-dimensional space. For such a system,
the most general setting is that of a particle moving in a collection of intervals, Ω =

⊔
e∈E Ie, arranged

in such a way that some of them are connected through their endpoints. A good way to depict this
arrangement is by associating a directed graph to Ω, with edges representing the intervals Ie and
vertices representing their connections (see Figure 1). We use Ω to denote the union of intervals and G
for the associated directed graph, whose vertex and edge spaces are denoted by V and E , respectively.

a1 b1

a2 b2

a3 b3

I1

I2

I3

(a)

a
bI1

I2

I3

(b)
Figure 1. (a) The intervals Ie for an Ω made out of three intervals; and (b) the associated graph if
we connect on one side a1 with a2, b1 and b3, and in the other side b2 with a3. The first of the two
connections is represented with the graph vertex labelled by a and the second is represented with the
vertex b.

The Hilbert space associated with this quantum system is given by H = L2(Ω) This means,
in particular, that the Hilbert space can be characterised as:

L2(Ω) =

{
Φ = (Φ1, Φ2, . . . , Φn, . . . ) | Φe ∈ L2(Ie), ∑

e∈E
‖Φe‖2

L2(Ie)
< ∞

}
.

Analogously we have the Sobolev spaces Hk(Ω) with the norm defined as
‖Φ‖Hk(Ω) = ∑e∈E ‖Φe‖2

Hk(Ie)
. Note that. since Ω is the disjoint union of intervals, there is no

condition on the regularity of functions on Hk(Ω) at the endpoints: the function at each edge Φe

is a priori unrelated to other components of Φ = (Φ1, . . . , Φn, . . . ). On the contrary, the Sobolev
space Hk(G) would contain different regularity properties due to the topology of the digraph and the
vertices connections.

Let ae and be denote the endpoints of the interval Ie = [ae, be]. It is clear that the boundary of Ω is
the set ∂Ω = {a1, a2, . . . , an, . . . , b1, b2, . . . , bn, . . . }. Since the boundary consists of a countable set of
points, whenever the trace map γ is well defined, γ(Φ) = Φ|∂Ω will be a sequence of complex numbers,
which, in the most general case, does not need to converge. However, if we consider Φ ∈ H1(Ω) (and
therefore every component Φe is continuous), the fact that both ∑e∈E ‖Φe‖2

L2(Ie)
and ∑e∈E ‖Φ′e‖2

L2(Ie)

have to be finite makes

ϕ = γ(Φ) = (Φ1(a1), Φ1(b1), . . . , Φn(an), Φn(bn), . . . )

a sequence in `2, due to the continuity of the trace operator on each interval and provided that the
the length of the intervals and their measures are uniformly bounded from above and from below.
Moreover, if Φ ∈ H2(Ω), the same argument applied to Φ′ implies that

ϕ̇ = (−Φ′1(a1), Φ′1(b1), . . . ,−Φ′n(an), Φ′n(bn), . . . ) ∈ `2.

Therefore, the Hilbert space of boundary data coincides with the induced Hilbert space at the
boundary of Ω, `2.

Instead of the sequential order used above for the boundary data ϕ and ϕ̇, we can write them in
a way more related to the topology of the underlying graph. We call this arrangement the threaded
arrangement, and it consists of placing together the values corresponding to connected endpoints (that
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is, corresponding to the same vertex on the associated graph). For instance, if we consider the example
in Figure 1 using the threaded arrangement we have

ϕ = (Φ(a1), Φ(a2), Φ(b1), Φ(b3), Φ(a3), Φ(b2)) ,

ϕ̇ =
(
−Φ′(a1),−Φ′(a2), Φ′(b1), Φ′(b3),−Φ′(a3), Φ′(b2)

)
,

where the first four component correspond to the vertex a in Figure 1b and the other two, to the
vertex b.

According to Section 2.1, we can describe (a subset of) the self-adjoint extensions of the
Laplacian on Ω in terms of admissible unitary operators U : `2 → `2 with gap at −1 through
the boundary equation

ϕ− iϕ̇ = U(ϕ + iϕ̇). (14)

The end of the previous section anticipates that the technical difficulties do not appear in the
one-dimensional case, since we establish above that the space of boundary data is the same as the
Hilbert space induced at the boundary. For this reason, every U satisfies the admissibility condition.
Hence, we are left only with the spectral gap condition.

According to Equation (14), a general unitary (with gap at −1) imposes general conditions
involving the boundary data of all the components of functions on the domain of the associated
self-adjoint extension. However, to model a quantum circuit its topology should be respected, in the
sense that the probability associated with wave functions on the domain of the self-adjoint extension
should be continuous throughout the circuit. Since continuity is a local property, it is natural to
consider self-adjoint extensions associated to unitaries not relating boundary data from unconnected
endpoints. Therefore, we are interested in self-adjoint extensions whose unitary, written according to
the threaded arrangement, has a block structure given by the graph vertices:

U =
⊕
ν∈V

Uν.

Further simplification follows when considering circuits whose graphs have finite degree on all
its vertices. For such a system, the blocks Uν are dν × dν matrices, where dν is the degree of the vertex
ν, and the following property holds.

Proposition 1. Let {Ui}i∈N be unitary matrices and U =
⊕∞

i=1 Ui a unitary operator on `2. Then,
the spectrum of U is given by the closure of the union of the spectra of all Ui. That is, σ(U) =

⋃∞
i=1 σ(Ui).

Proof. Since U is unitary, it is a bounded normal operator and thus cannot have residual spectrum
(cf. [27], (Thm. 6.10.10)).

Let Pi be the orthogonal projector associated to the ith block of U, that is UPi ϕ = PiUϕ = UiPi ϕ

for every ϕ ∈ `2. Since the blocks Ui are finite-dimensional matrices, they have only point spectrum
and given any eigenvector it is immediate to promote it to a vector ϕ ∈ `2, extending by zero. Therefore,
σ(Ui) ⊂ σ(U) for every i.

Suppose now that λ ∈ σ(U). Since λ is either in the point or in the continuous spectrum,
there must exist a sequence ϕn such that ‖ϕn‖ = 1 and limn→∞ ‖(U − λ)ϕn‖ = 0. One has that

‖(U − λ)ϕn‖2 =
∞

∑
i=1
‖(Ui − λ)Pi ϕn‖2 .
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Since Ui is a unitary matrix, it is unitarily diagonalisable. Let {µij}di
j=1 denote the eigenvalues of

Ui and Vi the unitary such that V∗i UiVi = diag(µij). Then,

‖(U − λ)ϕn‖2 =
∞

∑
i=1

di

∑
j=1
|(µij − λ)(ViPi ϕn)j|2

≥ inf
i≥1

min
1≤j≤di

|µij − λ|2
∞

∑
i=1

di

∑
j=1
|(ViPi ϕn)j|2

= inf
i≥1

min
1≤j≤di

|µij − λ|2 ‖ϕn‖2

where (ViPi ϕn)j denotes the jth component of the vector ViPi ϕn. Using that ‖ϕn‖ = 1, one gets

‖(U − λ)ϕn‖2 ≥ inf
i≥1

min
1≤j≤di

|µij − λ|2.

Therefore, λ ∈ σ(U) implies that infµ∈⋃ σ(Ui)
|µ− λ| = 0, that is, λ ∈ ⋃ σ(Ui).

Remark 1. This property has two immediate consequences that we use repeatedly in the rest of the work. First,
if U is made of a finite number of blocks which are repeated, then it has gap at −1. Second, if there is an ε > 0
such that for each block the lowest distance between an eigenvalue and −1 is greater than ε, then U has gap
at −1.

Since the probability associated to a wave function is given by its modulus, unitaries enforcing
the continuity of such probability need to impose some conditions involving only the function trace,
ϕ. It is not hard to see that conditions involving only ϕ are given by the eigenvalue −1 of U. In fact,
acting with the orthogonal projector over ker(U + 1), P, on both sides of Equation (14), one gets

Pϕ = 0. (15)

Therefore, we look into self-adjoint extensions such that ker(U + 1)⊥ is the space of the traces
ϕ of functions such that |Φ| is continuous. It is clear that the projector P must have the same block
structure as the unitary U,

P =
⊕
ν∈V

Pν. (16)

Let us denote by ϕν the projection of ϕ into the block associated with the vertex ν. It is clear that
for |Φ| to be continuous on the digraph G, at every node the entries of ϕν can differ only by a relative
phase. The selection of the relative phases among the components of the vector φν, amounts to dν − 1
conditions, in such a way that the space ker(Uν + 1)⊥ is the following one dimensional space:

ker(Uν + 1)⊥ = span{(1, eiα1 , eiα2 , . . . , eiαdν−1)T}

and thus P⊥ν = 1 − Pν has to be the rank-one orthogonal projector onto the linear span of
(1, eiα1 , eiα2 , . . . , eiαdν−1)T . It immediately follows that the corresponding block of the unitary has
the form

Uν = eiδP⊥ν − (1− P⊥ν ), (17)

where eiδ is the only eigenvalue of Uν different from −1. We call this family of self-adjoint extension
the quasi-δ family, characterised by the parameters δ, α1, . . . , αdν−1. For all the self-adjoint extensions in
this family, it is possible to restrict a suitably defined self-adjoint momentum operator. In other words,
there exists a self-adjoint extension of the symmetric operator P = −i ∂

∂x , which can be restricted to
the domain of a quasi-δ self-adjoint extension of the Laplace–Beltrami operator, and is essentially
self-adjoint on it.
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Now that the unitaries leading to a self-adjoint extension of the Laplacian compatible with a given
quantum circuit have been characterised, for the rest of this section, we focus on the study of the
symmetries that are compatible with them. When applying Theorem 1 to the one-dimensional case,
the fact that the space of traces is `2 also means that the extra condition on Part (ii) of the same theorem
is always satisfied, and therefore both parts always hold. The condition for the self-adjoint extension
to be invariant under the action of a group is that the trace representation commutes with the unitary
operator defining the self-adjoint extension. Therefore, in the remainder of this work, we characterise
some unitary representations of a group of symmetries G that commute with a matrix U possessing a
blockwise structure as in Equation (17). For that, it is useful to consider each block separately leaving
the global aspects for the next section.

Definition 5. We say that the group G is a local symmetry at the vertex ν of the self-adjoint extension
determined by U =

⊕
ν Uν if it admits a faithful representation v : G → U (dν) such that [v(g), Uν] = 0 for

every g ∈ G.

Remark 2. It is important to note that it is usually not possible to build an actual symmetry of the associated
self-adjoint extension from a collection of local symmetries. In fact, the representation v might not even be the
trace of a representation in L2(Ω). Because of this, local symmetries have to be understood only as tools to study
global ones.

The following proposition provides a necessary and sufficient condition for G to be a local
symmetry of a self-adjoint extension compatible with the quantum circuit.

Proposition 2. Consider a quasi-δ self-adjoint extension with parameters δ, α1, . . . , αdν−1 at the vertex ν.
A group G is a local symmetry at ν if and only if it admits a unitary representation v : G → U(dν) such that it
leaves invariant the linear space span

{
(1, eiα1 , . . . , eiαdν−1)T

}
.

Proof. The proof follows straightforwardly from Equation (17). It is clear that [v(g), Uν] = 0 iff
[v(g), P⊥ν ] = 0. Since P⊥ν is the orthogonal projector onto span{(1, eiα1 , . . . , eiαdν−1)T}, the sought
result follows.

Since the only condition to be a local symmetry of this family is to preserve a one-dimensional
subspace of Cdν , it follows immediately the next corollary:

Corollary 1. The biggest group which is a local symmetry at the vertex ν of a given quasi-δ family of self-adjoint
extensions is the unitary group U(dν − 1).

Before ending this section, let us remark that the given characterisation of local symmetry at
the vertex ν is nothing but the preservation of the structure of the eigenspaces of Uν. Consequently,
the unitary group U(dν − 1) not only preserves the family of quasi-δ self-adjoint extensions but also
any other family with the same eigenspaces but different eigenvalues associated to each eigenspace.
Each of this families can be seen as different orbits of a subgroup of U(dν) changing the invariant
vector in Proposition 2:

Proposition 3. Let ζ = (1, eiα1 , . . . , eiαdν−1)T and denote by Uδ,ζ the quasi-δ self-adjoint extension
parameterised by δ, α1, . . . , αdν

. Then, every unitary matrix V such that Vζ is proportional to ζ ′ =

(1, eiα′1 , . . . , eiα′dν−1)T transforms Uδ,ζ into Uδ,ζ ′ . That is,

V∗Uδ,ζV = Uδ,ζ ′ .

Proof. Denote by P⊥ζ the orthogonal projector onto span{ζ}; since V∗ζ ∝ ζ ′, V∗P⊥ζ V = P⊥ζ ′ . Using this
and Equation (17), the result follows.
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4. Global Symmetries on the Graph. Z-invariance

As pointed out in the Introduction, in this section, we consider an example which is useful as
an approximation of big, complex quantum circuits consisting of a repeated structure. The simplest
example is the case of a graph which is the union of infinitely many intervals arranged in such a way
to form a chain with loops at each node (see Figure 2). However, all the discussion can be extended
straightforwardly to the general case of an arbitrary quantum circuit provided that the action of the
considered group preserves the topology of the underlying graph.

i− 2 i− 1 i+ 1 i+ 2i

Ivi−1 Ivi Ivi+1

Iui−1 Iui Iui+1 Iui+2

Figure 2. Representation of the infinite graph associated with Ω.

To properly describe such a structure, let us fix the following nomenclature: any vertex is labelled
by an integer i ∈ Z. We can distinguish two families of edges in the graph: the edge connecting the
vertices i− 1 and i is denoted by Iu

i ; the edge forming the loop at vertex i is called Iv
i . In this way, it is

easy to generalise this periodic structure to a graph where the “unit cells” at each node have a more
complex structure.

As already explained in the previous section, we consider the manifold

Ω =
⊔
i∈Z

a∈{u, v}

Ia
i , (18)

which is a non-connected manifold made up of the disjoint union of all the pairs of intervals {Iu
i , Iv

i }.
A convenient way to describe this manifold is realised as follows. Assume that there is a reference
interval I = [0, 1] and that there are diffeomorphisms

ξa
i : I → Ia

i

x → ξa
i (x) (19)

which play the role of local charts. Then, each point in Ω can be identified by this family of
diffeomorphisms

{
ξa

i
}

, since for any point P we can find a point x ∈ I and a diffeomorphism,
say ξa

i , such that P = ξa
i (x).

Each interval Ia
i has the structure of a Riemannian manifold with metric ηa

i . Consequently,
the whole manifold Ω possesses a Riemannian metric tensor field

η =
⊕
i∈Z

a∈{u, v}

ηa
i .
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A basis of the tangent space TPΩ at the point P ∈ Ω is made up of one vector which is written ∂
∂x

in the coordinate x. A generic vector field X ∈ X(Ω) on the manifold Ω is written as

X =
⊕
i∈Z

a∈{u, v}

Xa
i

and we have that X(P) = Xa
i (P) = Xa

i (ξ
a
i (x)) ∂

∂x where we have named Xi
a both the vector field and

its unique component in a given basis.
Therefore, the action of the metric tensor field η on a real valued vector field X can be expressed

as follows:
η(X, X)(ξa

i (x)) = ηa
i (ξ

a
i (x)) (Xa

i (ξ
a
i (x)))2 , x ∈ I. (20)

The corresponding invariant Riemannian volume form dµ ∈ Λ(Ω) is given by

dµ(P) =
√

ηa
i (ξ

a
i (x))dx . (21)

The previous definitions lead to the following Laplace–Beltrami operator

∆ =
⊕
i∈Z

a∈{u, v}

∆a
i (22)

which acts on a dense subspace of the space of square integrable functions over Ω, denoting the latter
by L2(Ω) with the induced scalar product defined by

〈Ψ, Φ〉 = ∑
i∈Z

a∈{u, v}

〈Ψa
i , Φa

i 〉i,a.

Each of the “local” Laplace–Beltrami operators can be written as follows:

(∆Ψ)(ξa
i (x)) = (∆a

i Ψa
i ) (x) = − 1√

ηa
i (x)

∂

∂x

 1√
ηa

i (x)

∂

∂x
Ψa

i (x)

 (23)

where Ψa
i (x) is the function in L2(I, dxi

a), where the measure dxi
a is the pull-back of the measure dµa

i
via the diffeomorphism ξa

i . This function represents Ψa
i ∈ L2(Ia

i , dµa
i ), and it is supposed regular

enough for the previous equation to make sense.
Let us consider the following symmetric domain for the Laplace–Beltrami operator

D0 = C∞
c (Ω) , (24)

which is the space of smooth functions with compact support contained in the interior of
Ω =

⊔
i∈Z,a∈{u, v} Ia

i . This implies that these functions can have support only on a finite number of
intervals. Correspondingly, the domain of the adjoint operator is the Sobolev space H2(Ω). As already
explained in the previous section, the space of self-adjoint extensions of this operator compatible with
the topology of the graph is in correspondence with the space of unitaries U, which have a blockwise
structure, i.e.,

U =
⊕
i∈Z

Ui ,

each block Ui being a 4× 4 unitary matrix representing the node of the form shown in Figure 3.
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ii− 1 i+ 1

Ivi

Iui Iui+1

Figure 3. Elementary cell of the graph Ω.

Any unitary Ui represents the “local” boundary conditions at each vertex of the graph via
the formula:

ϕi − iϕ̇i = Ui (ϕi + iϕ̇i) , (25)

where ϕi and ϕ̇i denote the boundary data at the node labelled by i:

ϕi =


Φu

i (1)
Φv

i (0)
Φv

i (1)
Φu

i+1(0)

 , ϕ̇i =


(Φu

i )
′(1)

−(Φv
i )
′(0)

(Φv
i )
′(1)

−(Φu
i+1)

′(0)

 . (26)

We now want to study symmetry transformations on our graph, such that we can apply the
results of Section 2. In particular, we consider an action of the group Z, and we start with an action
which preserves both the boundary and the adjacency properties of the nodes. We define therefore the
following map:

V : Z×Ω → Ω

(k, P) 7→ Q = Vk(P) (27)

such that, if P ∈ Ia
i with P = ξa

i (x), then Q ∈ Ia
i+k and

Q = ξa
i+k(x) = Vkξa

i (x) . (28)

This action, for a fixed k ∈ Z, is implemented by a family of diffeomorphisms Va
i+k,i

Va
i+k,i : Ia

i → Ia
i+k

P 7→ Q = ξa
i+k ◦ (ξa

i )
−1(P) := Va

i+k,i(P) , (29)

which preserve the boundary. It induces an action on the space D0 ⊂ L2(Ω) of smooth functions with
compact support on Ω, via the pull-back, i.e.,

V : Z → B
(

L2(Ω)
)

k 7→ (VkΦ)(ξa
i (x)) =

(
V∗−kΦ

)
(ξa

i (x)) = Φa
i−k(ξ

a
i−k(x)) . (30)

In addition, we want this action to define a symmetry of the Laplace–Beltrami operator over Ω
with domain D0, i.e., for all k ∈ Z

∆Vk(Φ) = Vk(∆Φ) , Φ ∈ D0 . (31)



Symmetry 2019, 11, 1047 14 of 21

Clearly, VkD0 ⊂ D0, for all k ∈ Z. A sufficient condition for this action to implement a unitary
representation of Z such that ∆ is Z-invariant is that Vk acts as an isometric diffeomorphism, i.e.,
V∗k η = η for all k ∈ Z. This requirement imposes a restriction on the class of metric tensors that one
can consider; indeed, on the one hand, we have

V∗k η (X, Y) (ξa
i (x)) = η ((Vk)∗X, (Vk)∗Y)

(
ξa

i+k(x)
)
= ηa

i+k(ξ
a
i+k(x))Xa

i Ya
i ,

where Xa
i , Ya

i are the components of two tangent vectors at the interval Ia
i , and they remain invariant

under the action of the push-forward. On the other hand,

η (X, Y) (ξa
i (x)) = ηa

i (ξ
a
i (x))Xa

i Ya
i .

Consequently, if η must be invariant, ηa
i+k(x) = ηa

i (x) for all k ∈ Z. Hence, one has that Ia
i and Ia

j
are isometric for all i, j ∈ Z. Since we are in one dimension, one can always choose the diffeomorphism
ξa

i such that the metric tensor is constant, and the only remaining freedom in order to choose the
Riemannian structure of the manifold Ω amounts to fix the length of the intervals of type u and v for
all i ∈ Z. We denote these lengths lu, lv, respectively.

Since the group G acts on Ω via isometric diffeomorphisms, the corresponding action V on the
space L2(Ω) is a unitary representation of the group Z which is traceable. Concerning this last point,
in fact, it is enough to consider the restriction of the action of G to the boundary ∂Ω:

vk : ∂Ω → ∂Ω (32)

P → Q = vk(ξ
a
i (x)) = Vk(ξ

a
i (x)) , x ∈ {0, 1} , (33)

because, as already mentioned, this action preserves the boundary. Then, the trace representation
v : G → U (L2(∂Ω)) is obtained from vk in the same way as V is obtained from Vk, i.e., via the
pull-back.

This is not the unique traceable representation that one can obtain from the action Vk. Since Z
is an infinite cyclic group, any unitary representation of the group G can be obtained from a unitary
representation of its generator V1. Therefore, we can consider more generally the unitary representation
given by

Vθ : Z → U (L2(Ω))

(Vθ
1 Φ)(ξa

i (x)) = e−iθ(ξa
i (x)) (V∗−1Φ

)
(ξa

i (x)) =

= e−iθ(ξa
i (x))Φa

i−1(ξ
a
i−1(x)) , (34)

where θ(ξa
i (x)) can depend both on the interval and the point on the interval. However, for the case

under investigation, this action commutes with the Laplace–Beltrami operator on an interval Ia
i if θi

a is
constant on each interval. Indeed, we have that

∆(e−iαΦ) = ∆(e−iα)Φ + 2
∂e−iα

∂x
∂Φ
∂x

+ e−iα∆(Φ) (35)

and the multiplication by a constant phase commutes with the Laplace–Beltrami operator.
This representation of the generator induces the following unitary representation of the cyclic

group Z:

Vθ : Z → U (L2(Ω)) (36)

k 7→
(
Vθ

k Φ
)
(ξa

i (x)) = e−i ∑k
n=1 θa

i+n(VkΦ)(ξa
i (x)) (37)

and each phase θa
j is defined up to the sum of a multiple of 2π.
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In particular, if the function θa
j is the same for each j ∈ Z, we get the following representation

Vθ : Z → U (L2(Ω)) (38)

k →
(
Vθ

k Φ
)
(ξa

i (x)) = e−ikθa
(VkΦ)(ξa

j (x)) , (39)

where two different choices for the parameter θa, satisfying θa − θ̃a = 2mπ for some m ∈ Z, define the
same representation of the group Z.

The representation above induces a trace representation, which acts in the following way:

(vk ϕ)a
i = e−i ∑k

n=1 θa
i+n ϕa

i−k. (40)

Before we state the main result of this section, let us recall that the quasi-δ family of self-adjoint
extensions is characterised by the parameters {δi, αi

1, . . . , αi
di
}i∈Z, determining the unitary block Ui

associated with the ith vertex.

Theorem 3. Consider the quantum circuit depicted in Figure 2. The group Z is a symmetry compatible with
every quasi-δ self-adjoint extension such that:

(i) The value of the parameter δi is the same at each vertex, δ.

(ii) The relative phases between the boundary data associated with the loop is the same in all the vertices, i.e.,
αi

1 − αi
2 does not depend on the vertex i.

Proof. Consider the representation given in Equation (36). Since θ does not depend on x and Vθ
k

is unitary for all k, it follows that this representation preserves the Neumann self-adjoint extension
(see [1], (Prop. 6.14)). Then, it follows that the requirements of Theorem 1 are fulfilled, and we only
need to proof that there exist θa

i such that the trace action defined in Equation (40) satisfies v∗k Uvk = U.
Since the group is cyclic, it is enough to prove it for its generator, v1. The matrix representation of U
and v1 is the following:

U =


· · · 0 0 0 · · ·
· · · Ui−1 0 0 · · ·
· · · 0 Ui 0 · · ·
· · · 0 0 Ui+1 · · ·
· · · 0 0 0 · · ·

 v1 =


· · · vi−2

1 0 0 · · ·
· · · 0 vi−1

1 0 · · ·
· · · 0 0 vi

1 · · ·
· · · 0 0 0 vi+1

1
· · · 0 0 0 · · ·


where each element in the matrix is a 4× 4 block. From its definition, it is clear that v1 respects
the block structure of U and that the ith block of v∗1Uv1 is equal to (vi−1

1 )∗Ui−1vi−1
1 , where vi−1

1 =

diag(e−iθu
i−1 , e−iθv

i , e−iθv
i , e−iθu

i ). Since vi
1 is unitary, (vi−1

1 )∗Ui−1vi−1
1 has the same eigenvalues as Ui−1,

and δi must be equal to δi−1. This is satisfied by Hypothesis (i).
The only thing left to show is that Ui = (vi−1

1 )∗Ui−1vi−1
1 . By Proposition 3, this is equivalent to

vi−1
1 ζi−1 ∝ ζi, where ζi = (1, eiαi

1 , eiαi
2 , eiαi

3)T . One has that

vi−1
1 ζi−1 =


e−iθu

i−1

e−i(θv
i −αi−1

1 )

e−i(θv
i −αi−1

2 )

e−i(θu
i −αi−1

3 )

 , ζi =


1

eiαi
1

eiαi
2

eiαi
3

 ,

which shows that θa
i can be chosen so that vi−1

1 ζi−1 ∝ ζi if Condition (ii) holds.

Before concluding this section, it is important to add a remark. Indeed, the contents of the previous
theorem can be analysed also from a different perspective: for any representation Vθ of the group Z,
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there is a family of quasi-δ self-adjoint extensions compatible with it. In particular, the action Vθ with θa
i

constantly zero is compatible only with self-adjoint extensions characterised by ζi = (1, eiα2 , eiα2 , eiα3)T ,
which amounts to require that the quasi-δ condition is the same on every vertex. If θa

i is constant and
does not depend on the interval i all the relative phases can be incremented by a constant factor from
one vertex to another, i.e., αi

l − αi+1
l must remain constant, and also αi

1 − αi
2 needs to be independent

from i by Hypothesis (ii). However, only if the phase θa
j in the representation Vθ can vary from an

interval to the other, self-adjoint extensions with αi
l varying from a vertex to the other are Z-invariant,

once more with the restriction that αi
1 − αi

2 must be vertex independent. In each of these situations,
we can compute the spectrum of the Laplace–Beltrami operator. Indeed, after computing the solutions
of the equation ∆a

i Φa
i = k2Φa

i in each interval, the generalised eigenfuctions of the Laplace–Beltrami
operator can be obtained after imposing the chosen boundary conditions. This procedure results in a
set of algebraic linear equations involving the boundary data. For the family of self-adjoint extensions
considered in Theorem 3, if k is an eigenvalue and Φa

i (x) = Aa
i eikx + Ba

i e−ikx the corresponding
solution on the interval Ia

i , at the i-node, one gets the following system of equations:

Au
i eik + Bu

i e−ik = eiαi
1
(

Av
i + Bv

i
)

(41)

Au
i eik + Bu

i e−ik = eiαi
2

(
Av

i eik + Bv
i e−ik

)
(42)

Au
i eik + Bu

i e−ik = eiαi
3
(

Au
i+1 + Bu

i+1
)

(43)

4 tan
(

δ
2

) (
Au

i eik + Bu
i e−ik

)
= ik

((
Au

i eik − Bu
i e−ik

)
+

−eiαi
1
(

Av
i − Bv

i
)
+ eiαi

2

(
Av

i eik − Bv
i e−ik

)
− eiαi

3
(

Au
i+1 − Bu

i+1
))

, (44)

where αi
2 − αi

1 = α is constant along the graph and δ as well. As a particular instance of this general
form, we can consider the self-adjoint extension for which αi

1 = αi
2 = αi

3 = δ = 0 for all i ∈ Z. In this
case, the final system of equations simplifies and we get:

Au
i eik + Bu

i e−ik = Av
i + Bv

i

Av
i eik + Bv

i e−ik = Av
i + Bv

i

Au
i eik + Bu

i e−ik = Au
i+1 + Bu

i+1

Au
i eik − Bu

i e−ik −
(

Av
i − Bv

i
)
+ Av

i eik − Bv
i e−ik −

(
Au

i+1 − Bu
i+1
)
= 0

If we introduce the new variables

A(1) = Av
i + Au

i

A(0) = Av
i + Au

i+1

B(1) = Bv
i + Bu

i

B(0) = Bv
i + Bu

i+1 ,

it is immediate to derive the equation A(0) = A(1)eik and B(0) = B(1)e−ik. From these conditions,
we derive the following relationships:

Au
i − Au

i+1 = A(1)(1− eik)

Bu
i − Bu

i+1 = B(1)(1− e−ik)
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After some straightforward computations, one can express the value of the coefficients {Au
i , Bu

i }
in terms of {A(1), B(1)} as follows:

2Au
i

(
1 + eik

)
= A(1)

(
2 + eik

)
− B(1)e−ik (45)

2Bu
i

(
1 + eik

)
= B(1)

(
1 + 2eik

)
− A(1)e2ik . (46)

The same strategy can be used to find the solutions of Equations (41)–(44) for other values of the
parameters. Indeed, we can introduce the new variables

Ai
out = Av

i eiαi
2 + Au

i

Ai
in = Av

i eiαi
1 + Au

i+1eiαi
3

Bi
out = Bv

i eiαi
2 + Bu

i

Bi
in = Bv

i eiαi
1 + Bu

i+1eiαi
3 ,

which, for δ = 0, satisfy the relation Ai
in = Ai

oute
ik and Bi

in = Bi
oute

−ik. (if δ 6= 0, the relation between{
Ai

out, Bi
out
}

and
{

Ai
in, Bi

in
}

is more complicated, but using it we can solve the initial system following
the same steps illustrated for the case δ = 0) From the definition of the new variables and their relations,
we get the following expressions:

Au
i − Au

i+1ei(αi
3+α) = Ai

out(1− ei(k+α))

Bu
i − Bu

i+1ei(αi
3+α) = Bi

out(1− ei(α−k))

Au
i (e
−iα + eik) + Bu

i (e
−iα + e−ik) = (Ai

out + Bi
out)e

−iα

Au
i eik + Bu

i e−ik = eiαi
3
(

Au
i+1 + Bu

i+1
)

,

and straightforward substitutions lead to the following results:

2Au
i

(
e2ik − 1

)
= Ai

out

(
e2ik + ei(k+α) − 2

)
+ Bi

out(e
−i(k−α) − 1) (47)

2Bu
i

(
1− e−2ik

)
= Bi

out

(
2− e−2ik − e−i(k−α)

)
+ Ai

out(1− ei(k+α)) . (48)

Eventually, let us also notice that the previous results can be identically extended to the situation
in which we consider on each interval the sum of the Laplace–Beltrami operator and a continuous
potential bounded from below va

i (x) which has to be periodic, i.e., va
i+1(x) = va

i (x). Indeed,
such a function does not affect the analysis of self-adjoint extensions, which remain those of the
Laplace–Beltrami operator.

Before concluding this section, let us remark that the above discussion only shows that the
calculated functions are candidates to be generalised eigenfunctions. However, to actually be
a generalised eigenfunction, they also need to satisfy an additional property: its inner product with
every function in the domain of the Laplacian must be finite. Therefore, even if one can impose the
boundary conditions for every k in some interval of the positive line, some of these values might not
be in the spectrum of the associated Laplace–Beltrami operator. In Figures 4–6, some of the candidates
to generalised eigenfunctions are shown for different combinations of k and αi

j.
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(b) Imaginary part.

Figure 4. Real and imaginary parts of a generalised eigenfunction for αi
j = 0 and several values of k.

For each of the images, the upper row shows the value on the loops while the lower row shows the
value in the chain.
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row shows the value on the loops while the lower row shows the value in the chain.
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1 = 0, and αi
2 = 0.9/π. The

upper row shows the value on the loops while the lower row shows the value in the chain.
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5. Conclusions and Discussion

In this paper, we have addressed the issue of the existence of self-adjoint extensions of the Laplace
operator on quantum circuits compatible with the action of a group of symmetries. In particular,
we have investigated a class of circuits obtained as a chain of small unit cells, each one forming a finite
graph. The simple example of unit cells made up of single loops has been fully analysed and different
unitary representations of the group of integers Z on the Hilbert space associated with the quantum
system have been provided. Eventually, the features of the Z-invariant self-adjoint extensions of the
Laplace–Beltrami operator with respect to these unitary representations are shown and a way to obtain
the generalised eigenfunctions is outlined. The generalisation to more complex unit cells follows
straightforwardly. Moreover, the method can be applied without modification to another important
situation: the case of closed, compact quantum circuits. For these systems, the same kind of analysis
leads to similar conclusions provided that the group under study respects the symmetry of the circuit
itself. For instance, one could have considered a chain with a finite number, say m, of repeated cells,
with periodic boundary conditions. In this case, the cyclic group of order m, Zm, would act in a similar
way as the group Z on an infinite chain. In this case, the spectrum of the Laplacian operator would be
discrete, as the carrier space of the quantum system is compact.

The analysis presented in this work can be considered as a preliminary work towards a complete
modelisation of quantum circuits. The attention paid to this topic has recently grown because quantum
systems on graphs provide a setting for universal computation [28]. Therefore, coming back to the
chain described in this work, any unit cell could be thought of as a gate of a more complex quantum
computer, and the family of quasi-δ self-adjoint extensions provides a set of vertex connections which
preserve the underlying topology of the circuit and can be compatible with translational symmetry, too.

As a final remark, let us stress the role played by the group Z as a symmetry of the quantum
system. Indeed, using symmetry considerations, we have been able to identify a wide class of
self-adjoint extensions, which preserves the topology of the graph (these self-adjoint extensions are
obtained by imposing boundary conditions already known in the literature as quasi-δ boundary
conditions [9]). Notice that the family of self-adjoint extensions obtained is more general than a merely
periodic repetition of the parameters defining the self-adjoint extension at each unit cell. Due to
the group of symmetries, not all the parameters define Z-invariant self-adjoint extensions for some
representation V of the group Z. The parameters α and δ introduced in the last section, indeed, have to
be constant. Such an action has also allowed us to compute more easily the generalised eigenfunctions
only knowing the eigenfunctions on an interval. It would be interesting to see the difference in the
spectral properties when a periodic potential is added, and compare these results with those deriving
from Bloch theory of periodic quantum systems.
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