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Abstract: The use of apron buses has become a common practice at many European airports. Previous
studies related to airplane boarding rarely apply when apron buses are used, leaving airlines with no
well-researched option except to use the random boarding method. In this paper, we test the time
to complete boarding a two-door airplane using various boarding methods with two apron buses.
These methods were inspired by the classical outside-in, back-to-front, and reverse-pyramid methods
considering the limited number of boarding groups corresponding to the limited number of apron
buses used for transporting passengers from the terminal to the aircraft. Unlike earlier publications,
we test these methods under partial aircraft occupancy. Furthermore, we test the boarding methods
under conditions involving: different passenger occupancy rates, different luggage situations, and
with two types of seating assignments—random and based upon passenger seating preferences—by
considering the advantages brought by the symmetric layout of the aircraft. Experimental results
indicate that the best performing method can reduce the boarding time by up to 38.6% compared to the
time resulting from the random boarding method. When the airplane is partially occupied, the best
performing methods are reverse pyramid–A, hybrid–A, and hybrid–B, all with similar performances.

Keywords: airplane boarding; apron buses; agent-based modeling; two-door boarding; symmetrical
boarding; NetLogo

1. Introduction

The use of apron buses for passengers’ transport from the airport terminal to the airplane has
become a common boarding process step at European airports, such as Frankfurt, Paris, London,
Amsterdam Schipol, Salzburg, Madrid, Munich, among others, as the number of flights is continually
increasing while the capacity of the airports to support a higher number of passengers only partially
follows this increase [1]. In June 2019, Schipol Airport reported 43,343 air transport movements,
with an increase of 0.4% compared to the same month of the previous year, while the number of
passengers increased by 1.8%, reaching 6,502,588 persons [2]. Not only are the large airports, with
thousands of flights per month, the target for the apron buses industry, but even small airports use this
type of boarding instead of letting the passengers walk directly from the gate to the airplane. Other
motivations for the use of the apron buses stem from the lack of enough jet bridges and from wanting
to avoid passengers moving freely on the apron (sometimes called the tarmac) [1]. On some occasions,
even when jet bridges are available, a particular airplane may be too small to use these bridges.
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Time remains one of the most important aspects, both for the passengers and for the airline
companies, and the use of good boarding methods can have a real and direct impact on reducing the
turn time (time between airplane arrival and departure). As reported by Nyquist and McFadden [3]
and Stainer and Philipp [4], the average cost for a delay is about $53.5 per minute, and the average
delay per flight is 12.4 minutes [5]. That leads to an average $633.4 delay cost per flight. With respect
to the number of flights within a year, e.g., more than 10 million flights in Europe [5], the aggregated
delay cost of airplanes is considerable [6].

A typical use of apron buses with a two-door airplane is explained as follows. Each passenger
boards one of two apron buses that transport the passengers from near the terminal to near the
airplane. One apron bus arrives near the airplane before the other bus. When a bus arrives near the
airplane, its passengers leave the bus (in random order), with each passenger proceeding to one of the
airplane’s doors.

Being aware that airports employ apron buses for boarding purposes and want to reduce the turn
time of their flights, some airline companies have adjusted their tickets to improve their passengers’
traveling experience by adding images suggesting which of the two doors of the airplane passengers
should enter based on their seat in the airplane. Figure 1 provides an example of such a ticket issued
by a European airline company in which the rear door is suggested for the boarding of a passenger
having seat 22A.

Figure 1. Example of an airplane boarding pass when two-door boarding is used.

Even though the use of apron buses has been increasing, research on boarding methods with
apron buses has lagged behind [7], and there are only a few studies in the literature that suggest
boarding methods that can be successfully applied in the presence of the apron buses [6–8].

Boarding strategies describe the sequence in which passengers (or groups of passengers) board an
airplane. Ferrari and Nagel [9] assert that the efficiency of a boarding strategy may depend on the
aircraft occupancy. In this paper, we aim to test the two-door boarding methods initially suggested in
Milne et al. [7] for a fully loaded (i.e., fully occupied) airplane, for a different situation when the airplane
is just partially loaded with passengers, by examining a 60%–90% occupancy rate. Furthermore,
as some of the airline companies offer their passengers the choice of selecting their seats through
a mobile application or website (see Figure 2), two seating situations are considered: the first one
(random seat assignments) refers to the case in which the airline company assigns the seats to the
passengers randomly without using any particular scheme, while the second one (preferential seat
assignments) assumes that the passengers have the option to select their seats prior to boarding through
a software application or an airline webpage. To model the seat selection process the passengers
might employ prior to boarding, we utilized results from a questionnaire that is summarized in
Delcea et al. [8]. Through the questionnaire, Delcea et al. [8] gathered passengers’ relative preferences
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for a window/middle/aisle seat, a seat in a row near the front/middle/rear of the airplane, and a
preference/indifference/antagonism to crowded areas. Of those passengers expressing a particular
preference as being “highly desirable,” a window seat and a row close to the front of the airplane are the
most popular choices. A middle seat is the most “highly disliked” choice. For better simulation of the
considered situations, an agent-based model in NetLogo [10] was created and calibrated in accordance
with the on-the-field observations made throughout the literature [11–18]. The BehaviourSpace tool
offered by NetLogo has been used for simulations [19]. As a result, the two-door boarding methods
were hierarchized based on the average time to complete passenger boarding and the obtained results
with partial occupancy conditions are compared to the case with a fully occupied airplane.

Figure 2. Example of an interface for choosing a seat on an airline company’s webpage.

The remainder of the paper is organized as follows. Section 2 presents a brief literature review on
both the classical methods used for one-door boarding in the presence of a jet bridge and on some
of the papers addressing boarding methods for the case in which the apron buses are used. In this
section, some of the methods presented in the literature for the apron buses boarding situation are
presented, along with their results with a fully occupied airplane. An Airbus A320 configuration with
30 seat rows, as in Figure 3, is used as suggested by References [11,20]. Section 3 describes aspects
related to passenger movement and luggage assumptions. In this section, we also discuss two types of
passengers’ seat assignment: random and with seat preferences. Section 4 considers the two situations
related to passengers’ seat assignment and, by using an agent-based model developed in NetLogo
6.1.0, tests the boarding methods for the case of partially occupied airplanes to determine which
methods result in the fastest boarding time when a series of elements are varied, such as the number of
passengers boarding the airplane carrying small and big hand luggage, the type of the luggage, and
the aircraft passenger occupancy load. The results are also discussed in Section 4. The paper concludes
with a brief summary of highlights and directions on how the research can be further extended.

Figure 3. Airbus A320 configuration with 30 seat rows.



Symmetry 2019, 11, 1044 4 of 23

2. Literature Review

Over time, a series of boarding methods have been developed in the literature with the aim of
minimizing the time to complete passenger boarding. Considering the research papers, it can be
observed that most of the methods address the situation where the airplane can be connected to the
airport terminal through a jet bridge and only a few of them address the case of having two jet bridges
or the use of the apron buses. Thus, in the following, we first discuss some of the boarding methods
for the one-door situation, and second, we discuss the methods developed for the two-door situation.

2.1. Summary of One-Door Boarding Methods

As a reduction in the boarding time [3,4,13,21–26] was one of the main motivations in developing
new boarding methods, the literature associated with this field can be divided into several categories
based on the main issues taken into account when employing a new boarding method, such
as: passenger movement [21,27]; the presence of carry-on hand luggage [13,16,21,23,24]; seat
selection [9,27]; aircraft characteristics, e.g., the number of rows or aircraft type [9,13,22,28,29];
aircraft occupancy [13,16,17,25,28,30,31]; costs [3]; the existence of pre-boarding areas [4]; seat and aisle
interferences [18,32]; etc.

We provide a summary of well-known boarding methods in Table 1. We summarize only these
methods because they contain the core ideas that are used in the methods that apply when apron buses
are used. Additional methods and their boarding rules can be found in References [14,15,21,25,30,31,33].

Table 1. Brief description of well-known airplane boarding methods.

Classification Boarding Method Summary of the Method

Random

Random without assigned seats

Passengers board the airplane through a first-come first-serve
basis. The passengers do not have the option to select their seats
prior to boarding, nor does the airline company assign them seats.

This method is also called free-for-all boarding.

Random with assigned seats

The passengers have a seat assigned on their ticket. The boarding
process (sequence in which passengers board) is made in a

random manner. Once inside the aircraft, each passenger proceeds
to the seat indicated on the boarding pass.

By group

Outside-in (also known as WilMA)

The passengers are divided into three main groups, each group
being individually called for boarding, starting with the seats near
the window, continuing with the middle seats, and ending with
the seats near the aisle. Within each group, the passengers board

randomly.

Reverse pyramid
The groups are boarded using a diagonal scheme, starting with

passengers near the window in the rear rows of the airplane and
ending with those having aisle seats in the front rows.

Back-to-front

The passengers are divided into five or more groups based on the
rows in which they have their seats. The first group to board is
formed by passengers having seats in the rear of the airplane,

while the last group to board contains passengers with seats in the
front of the airplane.

By seat

Back to front by seating order

As with all “by seat” strategies, the passengers are called for
boarding one-by-one using a given scheme. In this case, the

passenger sitting in the very last row of the airplane in the column
identified by letter A is called first, followed by the passenger with
letter F, B, E, C, and D. Then the last-but-one row of passengers is
called one-by-one. The last person called to board has the seat in

the first row, with letter D.

Steffen method

The “by seat” approach applies in this case too. The first
passenger called for boarding has the seat in the last row, near the

window. The second passenger to board has a seat near the
window but two rows in front of the first-called passenger. The
scheme continues every other row until reaching the front of the
airplane, then continues in the same way on the other side of the
airplane near the window. After that, the “missed” seats near the
first window are filed-in following the same scheme, then the free
seats near the other window follow. The scheme continues in the
same way for passengers to be seated in the middle and aisle seats.
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2.2. Summary of Two-Door Boarding Methods

Most of the papers addressing the two-door boarding methods consider the presence of two jet
bridges for boarding [3,20,34–36]. These works employ the one-door methods, with small modifications
(e.g., the presence of another person who would call the groups boarding through the rear door) in the
case of two-door boarding.

Considering the study conducted by Boeing [37], and summarized in Jaehn and Neumann [36],
regarding boarding with two doors, it has been established that the boarding time can be reduced by
5 minutes on average, while using a particular boarding method has the potential to diminish the
overall boarding time by up to 17 minutes.

Nyquist and McFadden [3] provide a boarding time comparison between the one-door and
two-doors situation and conclude that in the case of two-door boarding, the time is reduced by 61%
in the case of no luggage and by 33% in the case in which the passengers bring hand luggage inside
the aircraft. However, when apron buses are used, the applicability of the methods developed in the
literature is limited as, in most real-world situations, two such buses are used and all the “by seat”
methods and some of the “by group” methods, e.g., the ones that imply the use of more than two
groups, are completely unusable.

For the apron buses case, a back-to-front approach has been proposed in Delcea et al. [1] (see
Figure A1 in Appendix A). This approach results in an 8.9% reduction in the time to complete boarding
when compared to the classical random boarding method with assigned seat preferences. In Milne
et al. [7], we proposed 13 boarding methods for the case in which two apron buses are used and
the boarding is made using two doors. The methods have been tested in various conditions for the
case of a fully occupied flight. Based on the simulations, it has been determined that by using some
of these methods, a time improvement between 23.8% and 36.6% can be achieved compared to the
back-to-front approach.

Table 2 summarizes the main boarding methods that can be used for two-door airplane boarding
with two apron buses. Figures illustrating these methods can be found in Figures 4–7 below and in
Figures A1–A10 in Appendix A.

Figure 4. Spread across rows.

Figure 5. Half spread across rows.
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Figure 6. Reverse pyramid–A.

Figure 7. Hybrid–A.

Table 2. Brief description of two-door boarding methods for use with two apron buses.

Classification Boarding Method Summary of the Method

By group

Back-to-front

The airplane is divided into four equal groups starting from the rear of the
airplane. The passengers having the seats in the rows located in the middle,
groups 2 and 3, are boarded in the first apron bus, while the passengers with

seats in the front and in the rear of the airplane board in the second apron bus
(Figure A1).

Spread across rows

The method was inspired by the WilMA method and applies some of the
WilMa concepts to the case in which only two boarding groups can be formed.
For the first apron bus, all the passengers having the seats near the window are

assigned, along with half of the passengers having middle seats, while the
second apron bus carries all the passengers having the seats near the aisle and
the remainder of the passengers with the middle seats. The complete scheme
for an Airbus A320 is presented in Figure 4. Note that in each row there is an
equal number of passengers to be boarded in the first and second apron bus.

Half-spread across rows

The method is inspired by the spread across rows and back-to-front methods.
As a result, the passengers with window seats are assigned to the first bus,

along with most of the passengers located in the two middle groups formed in
the back-to-front method case. The remainder of the passengers are allocated to

the second apron bus (Figure 5).

Variations in reverse pyramid
(from A to F)

The variations in the reverse pyramid combine concepts from the rules of the
WilMA, back-to-front, and reverse pyramid methods applied in the case of the
use of two apron buses. The first variation, reverse pyramid–A is presented in

Figure 6. The first apron bus includes all the passengers with seats near the
window and all the passengers with middle seats located in the middle part of
the airplane, which are groups 2 and 3 from the back-to-front method. As we

move further to the other five variations in reverse pyramid (reverse
pyramid–B to reverse pyramid–F), the scheme for assigning passengers to the
buses is modified for each iteration, where some of the seats located near the

window in the front and in the rear of the airplane will be no longer allocated to
the first bus, but rather will be assigned to the second bus. In compensation,

more seats adjacent to the aisle in the middle part of the airplane will be
assigned to the first bus. The schemes for reverse pyramid–B to reverse

pyramid–F are given in Figures A2–A6.

Variations in hybrid methods
(from A to E)

The variations in the hybrid methods leverage concepts from the reverse
pyramid–A and spread across rows method. The first variation, hybrid–A is

slightly different from reverse pyramid–A (Figure 7), while hybrid–B to
hybrid–E (Figures A7–A10) in turn provide an increasing number of rows with

three passengers assigned to each apron bus.

3. Passenger Seat Assignment, Movement, and Luggage Assumptions

In order to simulate the methods introduced in Table 2 for a partially occupied airplane,
an agent-based model in NetLogo was developed (please see Figure 8).
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Figure 8. The graphical user interface (GUI) of NetLogo.
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The agent-based modeling is one of the well-known choices for researchers when conducting
experiments that involve human activities [38–46]. The agents used in this type of modeling possess a
series of characteristics, such as autonomy, social ability, responsiveness, proactiveness, adaptability,
mobility, veracity, and rationality [10,47–49], which makes them a close replicate of humans. In the
context of this paper, passengers were modeled as agents. We make the following assumptions:

3.1. Passenger Seat Assignment

Most of the studies assume a random seat assignment for passengers boarding an airplane.
This means that passengers are randomly assigned to seats with no choice to select their preferred seats.

In reality, airlines offer methods through which the passengers can choose their seats with
or without additional costs. In this case, prior to check-in, the passengers can choose their seats
based on the seat location (either window, middle, or aisle seats); the row location; or based on the
preference/indifference/antagonism to crowded areas. Once a passenger uses an application provided
by an airline for seat selection, he/she is able to see the remainder of the seats and how crowded some
parts of the airplane are and decide upon the preferred seat based on this information.

Thus, two approaches related to seat assignment were modeled here: random seat assignments,
where each passenger’s seat was assigned at random, and preferential seat assignment, in which
passenger seating preferences were considered but the actual seat assigned was randomly generated
(but in a manner influenced by their preferences). For the case in which the airplane was fully occupied,
the two seat assignment methods did not impact the relative efficiency of the proposed boarding
methods because all seats were assigned to passengers in either seat assignment method. Conversely,
when the seats in the airplane were only partially occupied, using random or preferential seating might
have an impact on the selected strategy for boarding. In the present study, we conducted simulation
experiments with both random seat assignments and preferential seat assignments.

For the preferential seat assignments case, we considered the data extracted through a questionnaire
in Delcea et al. [8]. In that study, the row preference (see Figure A11 in Appendix B), column preference
(see Figure A12 in Appendix B), and category importance of passengers (see Figure 9) was determined.

Figure 9. Category importance.

Based on these results, a fitness function was defined to randomly assign the passengers to their
most preferred seats.



Symmetry 2019, 11, 1044 9 of 23

The formula for the fitness function was the same as in Delcea et al. [8]:

Fitness = iRow ×pRow + iColumn× pColumn
+iAgglomeration×AgglomerationState

(1)

where:

• pRow and pColumn are passenger preference indicators, having values between 1 and 10.
• iRow, iColumn, and iAgglomeration are passenger importance indicators, having values between 1

and 10.
• AgglomerationState is a variable taking 0 or 10 as values.

pRow =


pRowFront, i f the row is in the f ront o f the aircra f t

pRowMiddle, i f the row is in the middle o f the aircra f t
pRowBack, i f the row is in the back o f the aircra f t

(2)

pColumn =


pColumnWindow, i f the seat is near the window

pColumnMiddle, i f the seat is in the middle column
pColumnAisle, i f the seat is near the aisle

(3)

AgglomerationState =

{
0, i f one or both seats located in the hal f row are occupied
10, i f the seats in the same hal f row are both empty

(4)

By applying this function for each agent, a particular seat in the airplane was allocated in accordance
to his/her preference to a seat near the window/middle/aisle, considering the front/middle/rear part of
the airplane, and the preference/antagonism for the crowded areas of the airplane. For details on how
this function is incorporated in the agent-based model, please see Delcea et al. [8].

Thus, we referred to these as preferential seat assignments because they are randomly generated
in a manner that is influenced by the fitness function and passenger preferences.

Figures 10 and 11 present two examples of passengers’ seat assignment for the two cases: random
seat assignments and preferential seat assignments, both with an 80% occupancy level.
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Figure 10. Example of seating for an 80% passenger occupancy level with preferential seat assignments.

Figure 11. Example of seating for an 80% passenger occupancy level with random seat assignments.
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3.2. Passenger Movement Assumptions

We made the same passenger movement and luggage assumptions that we did in Milne et al. [7].
We assumed the two apron buses had the same carry-on capacity and transport the passengers from
near the terminal to near the aircraft. Once an apron bus with passengers arrives near the aircraft, the
passengers got off the bus and selected the airplane door to enter according to the indications received
on the boarding ticket. We assume that each passenger had a boarding ticket mentioning which door to
enter and that none of the passengers decided to use a door other than the one indicated on the ticket.

At time zero, the passengers stepped into the airplane using both doors: the one located in the
front of the airplane and the one located in the rear of the airplane.

The passenger might carry no luggage, or one or two pieces of luggage, either small or large.
Depending on the carry-on luggage, the speed of the agents varied. For example, when an agent
travelled without hand luggage, their default speed was up to 0.33 m/s, as it is adjusted based on the
agent in front of him, due to the fact that, similar to Referenes [11,26,50], we also assumed that no
overtaking in the aisle was possible. When the agent had one or two pieces of luggage, the speed was
a random number between 0.2 m/s and 0.3 m/s; even in this case, the speed was adjustable based on
the speed of the leading passenger [7]. A minimum distance of 0.4 m was also considered with respect
to the personal space and to the space occupied by the carry-on luggage [11].

Seat and aisle interferences have been considered in the agent-based model as the previous studies
acknowledged that the passengers’ interferences can negatively affect the boarding time [12,25,37,51].
The aisle interference depended on the time needed by the leading passengers to store their luggage,
while different types of seat interferences can occur depending on the seats passengers are assigned [7,11]
(please see Table 3).

Table 3. Seat interferences and delay times.

Types of Seat Interferences Type 1 Type 2 Type 3 Type 4

Scheme

Average duration (seconds) 22 12 10 10

Range (seconds) [20,26] [10,13] [9,13] [9,13]

The agent behavior from entering the airplane through sitting in its assigned seat is presented in
Figure 12.
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Figure 12. Agent behavior while in the airplane.

3.3. Luggage Assumptions

Similar to Milne and Salari [26], an unlimited overhead bin capacity was assumed in this case. Also,
we have considered the assumptions made by Audenaert et al. [52] and used by References [7,13,26] in
their research regarding the time needed by an agent to store the luggage:

Tstore = ((NbinLarge + 0.5 NbinSmall + NpassengerLarge
+0.5 NpassengerSmall) × (NpassengerLarge
+0.5 NPassengerSmall)/2) × Trow

(5)

where:

Tstore is the time to store the luggage.
NbinLarge is the number of large bags in the bin prior to the passenger’s arrival.
NbinSmall is the number of small bags in the bin prior to the passenger’s arrival.
NpassengerLarge is the number of large bags carried by the passenger.
NpassengerSmall is the number of small bags carried by the passenger.
Trow is the time for a passenger to walk from one row to the next (when not delayed by another
passenger in front of them).
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As NetLogo operates with ticks, the tick being the time unit, a transformation was made from
seconds to ticks by dividing the seconds by 1.2 and rounding up the received number to the nearest
integer [7]. Depending on the hand luggage carried inside of the airplane, seven main situations were
considered [7]—Table 4.

Table 4. The situations considered in the simulation experiments based on the luggage carried.

Situation
Percentages of Bags Carried by the Passengers

0 Bag 1 Small Bag 2 Small Bags 1 Large Bag 1 Large and
1 Small Bag

S1 10% 10% 0% 10% 70%
S2 15% 20% 5% 10% 50%
S3 25% 20% 10% 15% 30%
S4 35% 25% 10% 15% 15%
S5 60% 10% 10% 10% 10%
S6 80% 5% 5% 5% 5%
S7 100% 0% 0% 0% 0%

4. Numerical Results

The boarding methods described in Section 2.2 determined how a passenger on a fully loaded
(i.e., 100% full) airplane is assigned to a particular apron bus based on the passenger’s assigned seat.
In this section, we assumed that for each of the boarding methods, each passenger was assigned to the
same bus that the passenger would have been assigned on a fully occupied airplane, even though the
airplane’s seats may be only partially occupied for the cases tested below.

Two cases have been simulated using the BehaviorSpace tool offered by NetLogo [10]:

• Case 1: random seat assignment (results discussed in Section 4.1).
• Case 2: random with seat assignment preferences (results discussed in Section 4.2).

For both cases, seven situations have been considered for the luggage as presented in Table 4 and
four levels of passenger occupancy: 60%, 70%, 80%, and 90%. The results are presented and analyzed
in the following.

The NetLogo 6.1.0 model and a few video simulations can be accessed at link given in the
Supplementary Materials section.

4.1. Random Passenger Seating Assignment

For the experiments of this subsection, passengers were assigned to seats randomly. We simulated
each combination of luggage situation, boarding method, and occupancy rate with 10,000 replications
(simulation runs). First, we considered the S4 luggage situation from Table 4. The primary benchmark
method was back-to-front as it was already proven in Delcea et al. [1] that this boarding method
provides reduced boarding times when compared to the random boarding method used in practice
on a fully occupied airplane. A total number of 600,000 runs were conducted with random seating
assignments to achieve the average results given in Table 5. The average results for each occupancy
level were rounded up to the nearest integer and were expressed in ticks. The two rightmost columns
of the table show the boarding time averaged across all occupancy levels and the average improvement
of the method when compared to the random boarding method.
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Table 5. The average boarding times (in ticks) for partial occupancy levels, random seat assignments,
and the S4 luggage situation.

Boarding Method

Luggage Situation: S4

Occupancy Level: Average
Boarding

Time

Boarding Time
Improvement When

Compared to Random60% 70% 80% 90%

Benchmark1: Random 203 240 273 316 258.00

Benchmark2:
Back-to-front 177 218 252 293 235.00

Spread across rows 160 184 208 233 196.25 23.93%
Half spread across rows 155 179 201 228 190.75 26.07%

Reverse pyramid–A 149 172 192 214 181.75 29.55%
Reverse pyramid–B 151 180 194 215 185.00 28.29%

Reverse pyramid–C 159 185 195 216 188.75 26.84%

Reverse pyramid–D 160 189 195 217 190.25 26.26%

Reverse pyramid–E 162 190 199 221 193.00 25.19%

Reverse pyramid–F 164 199 232 267 215.50 16.47%
Hybrid–A 149 171 193 213 181.50 29.65%
Hybrid–B 149 171 207 217 186.00 27.91%
Hybrid–C 152 173 213 217 188.75 26.84%
Hybrid–D 151 173 218 223 191.25 25.87%
Hybrid–E 152 174 229 231 196.50 23.84%

In Table 5, the fastest boarding time for each occupancy level is highlighted in bold font, and the
best (well) performing methods are dark (light) shaded. Observe that reverse pyramid–A, hybrid–A,
and hybrid–B had the shortest average boarding times. Comparing the results gathered through
reverse pyramid–A with the back-to-front approach, the average improvement in boarding time was
22.66%; when comparing it to the random boarding method, a 29.55% time improvement was found.
Translated into minutes, the use of the reverse pyramid–A boarding method can reduce the boarding
time, on average, by 1 minute and 37 seconds for an 80% passenger occupancy level, random seating
assignment, and an S4 luggage situation when compared to the back-to-front boarding method.

Considering all the seven luggage situations, an 80% occupancy level, random seating assignments,
and simulating each case 10,000 times, after an additional 900,000 simulation runs, the data in Table 6
was obtained. The two rightmost columns of the table pertain to the boarding time averaged across all
luggage situations.

Considering different luggage situations, the hierarchy of the boarding methods based on their
boarding time efficiency did not change. As highlighted in Table 6, the best boarding methods
when two doors were used for boarding were reverse pyramid–A, hybrid–A, and hybrid–B. A 38.6%
improvement was recorded for the S7 luggage situation with an 80% passenger occupancy level when
comparing the boarding times of reverse pyramid–A with the random boarding method. A reduction of
30.53% in boarding time resulted from using reverse pyramid–A instead of back-to-front. Comparable
results were obtained for the variations in hybrid methods.
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Table 6. The average boarding times (in ticks) for 80% occupancy level, random seat assignments, and
S1-S7 luggage situations.

Boarding Method
Occupancy Level: 80%

Luggage Situations: Average
Boarding

Time

Boarding Time
Improvement When

Compared to RandomS1 S2 S3 S4 S5 S6 S7

Benchmark1: Random 339 315 297 273 262 239 215 277.14

Benchmark2:
Back-to-front 314 293 269 252 233 220 190 253.00

Spread across rows 270 249 228 208 190 171 145 208.71 24.69%
Half spread across rows 258 240 219 201 185 168 141 201.71 27.22%

Reverse pyramid–A 251 229 212 192 177 161 132 193.43 30.21%
Reverse pyramid–B 260 241 219 194 190 174 145 203.29 26.65%

Reverse pyramid–C 263 246 232 195 195 180 156 209.57 24.38%

Reverse pyramid–D 271 253 235 195 209 188 157 215.43 22.27%

Reverse pyramid–E 283 260 244 199 212 192 168 222.57 19.69%

Reverse pyramid–F 291 267 247 232 215 200 176 232.57 16.08%
Hybrid–A 249 233 210 193 179 159 132 193.57 30.15%
Hybrid–B 251 232 213 207 178 159 133 196.14 29.23%
Hybrid–C 252 232 213 213 179 160 134 197.57 28.71%
Hybrid–D 252 234 214 218 178 160 132 198.29 28.45%
Hybrid–E 254 234 213 229 182 162 132 200.86 27.53%

4.2. Preferential Passengers Seat Assignments

In this case, prior to assigning the seats to one of the two buses, we considered the situation
in which the passengers had the option to select their seats based on their preferences. Thus, in
the simulation runs summarized in this subsection, passenger seat assignments were determined
based on their seat preference while also considering randomness, as presented in Delcea et al. [8].
For example, as indicated in Appendix B, many passengers would prefer a window seat, but some
passengers would prefer an aisle seat (or less likely a middle seat); these possibilities were generated
randomly, with the more preferred seat assignments being generated more often than those that were
less preferred. For this case we conducted 1,500,000 simulation runs, 10,000 for each change in the
parameters considered.

Table 7 summarizes the results for the S4 passenger luggage situation and an occupancy level
ranging between 60%–90%, when the passenger seating preferences were considered.

Consistent with the earlier cases, again in Table 7, the methods resulting in the shortest average
boarding times were: reverse pyramid–A, hybrid–A, and hybrid–B. The time improvement ranged
between 28.64% and 32.92% when comparing the boarding time of the three methods with the random
boarding method.

The best methods hierarchy did not change when we considered different luggage situations,
S1–S7, and we kept the occupancy level constant at 80%, as shown in Table 8. The reverse pyramid–A
and the variations in the hybrid methods produced the best boarding times. Also, considering all the
methods in comparison with the two benchmarks, namely the random and back-to-front boarding
methods, we observed that all of them provided shorter average boarding times.
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Table 7. The average boarding times (in ticks) for partial occupancy levels, preferential seat assignments,
and S4 luggage situation.

Boarding Method

Luggage Situation: S4

Occupancy Level: Average
Boarding

Time

Boarding Time
Improvement When

Compared to Random60% 70% 80% 90%

Benchmark1: Random 199 248 286 325 264.50

Benchmark2:
Back-to-front 174 219 264 306 240.75

Spread across rows 154 184 209 236 195.75 25.99%
Half spread across rows 145 178 203 232 189.50 28.36%

Reverse pyramid–A 142 168 197 218 181.25 31.47%
Reverse pyramid–B 145 177 206 229 189.25 28.45%
Reverse pyramid–C 150 185 217 241 198.25 25.05%

Reverse pyramid–D 151 189 222 256 204.50 22.68%

Reverse pyramid–E 156 194 234 265 212.25 19.75%

Reverse pyramid–F 161 202 241 274 219.50 17.01%
Hybrid–A 142 169 196 220 181.75 31.29%
Hybrid–B 143 172 198 220 183.25 30.72%
Hybrid–C 144 170 196 220 182.50 31.00%
Hybrid–D 144 172 199 221 184.00 30.43%
Hybrid–E 146 174 199 223 185.50 29.87%

Table 8. The average boarding times (in ticks) for an 80% occupancy level, preferential seat assignments,
and S1–S7 luggage situations.

Boarding Method
Occupancy Level: 80%

Luggage Situations: Average
Boarding

Time

Boarding Time
Improvement When

Compared to RandomS1 S2 S3 S4 S5 S6 S7

Benchmark1: Random 362 332 306 286 268 243 220 288.14

Benchmark2:
Back-to-front 334 311 283 264 246 228 204 267.14

Spread across rows 276 252 232 209 191 173 147 211.43 26.62%
Half spread across rows 268 246 224 203 189 170 141 205.86 28.56%

Reverse pyramid–A 257 237 215 197 177 161 134 196.86 31.68%
Reverse pyramid–B 262 244 223 206 186 172 143 205.14 28.81%
Reverse pyramid–C 272 252 233 217 196 178 152 214.29 25.63%

Reverse pyramid–D 283 262 239 222 212 190 160 224.00 22.26%

Reverse pyramid–E 295 268 249 234 215 196 171 232.57 19.29%

Reverse pyramid–F 303 285 260 241 228 208 182 243.86 15.37%
Hybrid–A 255 239 215 196 179 160 134 196.86 31.68%
Hybrid–B 254 237 215 198 183 160 134 197.29 31.53%
Hybrid–C 263 234 216 196 183 161 133 198.00 31.28%
Hybrid–D 262 237 217 199 183 160 135 199.00 30.94%
Hybrid–E 262 241 219 199 183 161 134 199.86 30.64%

4.3. Comparing the Methods’ Performances in the Cases of Full and Partial Flights

When comparing the methods, we considered the S4 luggage situation, with two levels of
occupancy: 80% and 100%. The data for the 100% occupancy was taken from Milne et al. [7]. Two cases
of passenger seat assignment were considered: random and random with seating preferences. For the
case in which the aircraft was full, we got the same results no matter the type of seating assignment;
thus, we have added the results in Table 9 in a single column. The boarding methods were compared
to the back-to-front method in accordance with the data presented in Milne et al. [7].
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Table 9. Boarding time improvements when compared to the results of the back-to-front method (in %).

Boarding Method

Luggage Situation: S4

Occupancy Level:

80% 80% 100%

Passengers Seat Assignment:

Random Preferences Random/Preferences
Spread across rows 20.83% 22.36% 22.45%

Half spread across rows 23.11% 23.17% 23.62%
Reverse pyramid–A 25.38% 28.05% 27.11%
Reverse pyramid–B 21.97% 24.39% 20.99%
Reverse pyramid–C 17.80% 20.33% 18.08%

Reverse pyramid–D 15.91% 13.82% 14.58%

Reverse pyramid–E 11.36% 12.60% 11.08%

Reverse pyramid–F 8.71% 7.32% 7.87%
Hybrid–A 25.76% 27.24% 27.41%
Hybrid–B 25.00% 25.61% 27.41%
Hybrid–C 25.76% 25.61% 26.82%
Hybrid–D 24.62% 25.61% 26.82%
Hybrid–E 24.62% 25.61% 26.24%

From Table 9, we observe that the best boarding methods with two airplane doors remained
reverse pyramid–A, hybrid–A, and hybrid–B, followed by the rest of the variations in hybrid methods
(C, D, and E), half spread across rows, reverse pyramid–B, and spread across rows.

The remainder of the reverse pyramid variations (C, D, E, and F) provided shorter boarding times
than those resulting from the back-to-front method.

Overall, all the considered methods provided better boarding time than the back-to-front and
random boarding methods. In some cases, depending on the airplane occupancy level, passenger
seating assignments, and the luggage situation, the difference between the best performing methods
and the random boarding method commonly used today in practice were up to 38.6%.

5. Conclusions

A series of methods have been developed in the literature to reduce the time it takes to complete
passenger boarding of an airplane. However, the vast majority of this literature assumes the airplane
can be connected to the airport terminal through a jet bridge. Only a few previous works address
airplane boarding when apron buses (instead of jet bridges) are used to transport passengers from
the terminal to the airplane. In these works [1,7], two-door airplane boarding methods were created
and tested for use with two apron buses and an airplane with 100% of its seats occupied. Considering
Ferrari and Nagel’s [9] observation that some boarding methods may behave differently on a partially
occupied flight than on a full flight, the present paper tests the efficiency of boarding methods
for a partially loaded airplane. Furthermore, as most of the airlines offer seat selection choices to
their passengers with or without paying an additional charge, we investigate the case in which
the seats were not randomly assigned to passengers by a computer, but instead were selected by
the passengers by using the airline company‘s website or a mobile app. To model the passengers’
preference for window/middle/aisle seats, for seats in rows near the front/middle/rear of the airplane,
and their preference/indifference/antagonism to crowded areas, we used the data gathered through a
questionnaire in Delcea et al. [8].

We created a configurable agent-based model in NetLogo 6.1.0 and used it to conduct simulation
experiments. Different airplane seat occupancy levels were used, ranging from 60% to 90%, along with
seven possible cases of passenger luggage situations, and for both the situations where random seating
and seats selected by passengers were implemented. The results with partially occupied airplanes
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have been compared in terms of boarding time with the ones we have determined for fully occupied
airplanes in Milne et al. [7].

As a result, we determined that the best-performing methods for two-door boarding with apron
buses were reverse pyramid–A, hybrid–A, and hybrid–B. Also, we observed that all the proposed
methods improved the overall boarding time when compared to the back-to-front method with
percentage improvements between 7.32% and 30.53%. Moreover, compared to the random boarding
method, reductions in boarding time can be up to 38.6%.

In the future, we plan to extend our work on two-door airplane boarding with apron buses by
further improving upon the best-ranked methods, i.e., reverse pyramid–A, hybrid–A, and hybrid–B.
Other opportunities for improvement include the consideration of passengers traveling together in
groups (e.g., families) and the testing of different airplane configurations (e.g., the widebody Airbus
A380).

Supplementary Materials: The NetLogo 6.1.0 model and a few video simulations can be accessed at: https:
//github.com/liviucotfas/ase-2019-airplane-boarding-two-doors-partial.

Author Contributions: Conceptualization: L.-A.C., C.D., R.J.M. and M.S.; Data curation: L.-A.C.; Formal analysis:
C.D., R.J.M. and M.S.; Investigation: L.-A.C., C.D. and M.S.; Methodology: L.-A.C., C.D., R.J.M. and M.S.;
Resources: L.C. and A.G.M.; Software: L.-A.C. and C.D.; Supervision: R.J.M.; Validation: R.J.M.; Visualization:
M.S., Liliana Craciun, and A.G.M.; Writing—original draft: C.D.; Writing—review and editing: L.-A.C., R.J.M.,
M.S., L.C. and A.G.M.
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Appendix A. Airplane Boarding Methods when Two Apron Buses and Two Airplane Doors
are Used

Figure A1. Back-to-front.

Figure A2. Reverse pyramid–B.

https://github.com/liviucotfas/ase-2019-airplane-boarding-two-doors-partial
https://github.com/liviucotfas/ase-2019-airplane-boarding-two-doors-partial
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Figure A3. Reverse pyramid–C.

Figure A4. Reverse pyramid–D.

Figure A5. Reverse pyramid–E.

Figure A6. Reverse pyramid–F.

Figure A7. Hybrid–B.
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Figure A8. Hybrid–C.

Figure A9. Hybrid–D.

Figure A10. Hybrid–E.

Appendix B. Passenger Seating Preferences for Rows and Columns

Figure A11. Row seating preferences.
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Figure A12. Column seating preferences.
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